
Pergamon 
Appl. Math. Lett. Vol. 11, No. 2, pp. 109-114, 1998 

Copyright(~)1998 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0893-9659/98 $19.00 + 0.00 
PII: S0893-9659(98)00020-2 

D-Stability Analysis for Discrete 
Uncertain Time-Delay Systems 

F E N G - H S I A G  HSIAO 
Department of Electrical Engineering, Chang Gung University 

259, Wen-Hwa 1 st Road, Kwei-San, Taoyuan Shian, Taiwan, 333, R.O.C. 

J I I N G - D O N G  HWANG 
Department of Information Management, Jin-Wen College of Business and Technology 

99, An Chung Road, Hsin Tien, Taipei, Taiwan, 231, R.O.C. 

S H I N G - P A I  PAN 
Department of Control Engineering, National Chiao Tung University 

1001, Ta Hsueh Road, Hsinch, Taiwan 300, R.O.C. 

(Received December 1996; accepted January 1997) 

Communicated by K. Glover 

A b s t r a c t - - T w o  cases of the robust D-stability criterion are derived for discrete uncertain systems 
with multiple time delays. One is a direct test and the other is a boundary test. These cases provide 
the sufficient conditions under which all solutions of the characteristic equation remain inside the 
specific disk D(a, r) in the presence of parametric uncertainties. 
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1. I N T R O D U C T I O N  

The problem of pole assignment in linear system theory has been discussed by many  authors 
and solved in various ways. However, locations of poles vary and cannot be fixed because of 
parametr ic  uncertainties tha t  originate from different sources, e.g., identification errors, aging of 
devices, variation of operating points, etc. Therefore, placing all poles in a specific region rather  
than  assigning them to precise locations may be satisfactory in practical applications. One such 
specific region for discrete systems is a disk D(~,  r) centered at D(~,  0) with radius r, where 
I~ I + r < 1. The assignment of all poles of a system in the specific disk D ( a ,  r) shown in Figure 1 
is known as a D-pole placement problem [1]. This subject has received much at tention in the 
li terature [1-3]. 

The  problem of stabilization of time-delay systems has been explored over the years, primarily 
because the delay is often encountered in various engineering systems, e.g., chemical process- -  
steel smelting and refinery--or  in long transmission lines, in pneumatic,  hydraulic, or electrical 
networks. I ts  occurrence may frequently result in undesirable system responses. Consequently, 
the problem of stability analysis of time-delay systems is one of the main concerns of the re- 
searchers who would like to inspect the properties of such systems. Numerous reports  in regard 
to this subject have been published [4-6]. 
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the National Science Council of the Republic of China under Contract NSC 85-2213-F_~182-006. 
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Figure 1. A disk D(a, r) centered at (a, 0) with radius r. 

The introduction of time-delay factor complicates the D-pole placement problem, since the 
number of poles of a system will increase due to time delays. The D-stability problem for 
discrete time-delay systems has been discussed by Lee et al. [2] and their result is extended 
to include multiple time-delay systems by Su and Shyr [3]. However, the criteria proposed by 
Lee et al. [2] and Su and Shyr [3] are too conservative. In order to improve their results, two cases 
of the robust D-stability criterion in terms of complex stability radius are proposed for discrete 
uncertain systems with multiple time delays. One is a direct test (i.e., check dl < ds) and the 
other is a boundary test. The robust D-stability is first checked by the direct test. If it fails, 
resort to the boundary test. 

2. R O B U S T  D - S T A B I L I T Y  A N A L Y S I S  

Consider a discrete uncertain system, with multiple time delays, described by the following 
difference equation: 

n 

X ( k  + 1) = AX(k)  + A A X ( k )  + Z AdiX (k - hi) + Z AAd~X (k - h~) , (1) 
i=1  i=1 

in which X(k)  E R m and hi, i = 1, 2 , . . . ,  n, are positive integer numbers; A and Adi are constant 
matrices with proper dimensions. Also, AA and AAd~ denote the parametric uncertainties with 
the following upper norm-bounds: 

IIAAII _< ,~, (2) 
HAAdiI[ ~- ~/i, i = 1 ,2 , . . .  ,n,  (3) 

where/3 and ~?i are given constants. 
Before proceeding to the main result, some useful concepts are given in the following. 

DEFINITION 1. A system is said to be D(a, r)-stable if all poles of the system axe within the 
specific disk D(a, r) centered at (a, O) with radius r. Namely, all the solutions of its characteristic 
equation satisfy [(z - a)/r[ < 1, in which r > 0 and [a[ + r < 1. 

DEFINITION 2. Let all eigenvalues of the matrix A be inside the unit circle of the complex plane, 
then the positive value 

p(A)-= o { (4) 
is said to be a complex stability radius of the matrix A. 

REMARK 1. The value p(A) depends on the choice of norm. For instance, if the Euclidean norm 
is used, then it is easy to show that  

p(A) = min {a_ [ e J e I -  A]} (5) 
O_<O_<2~r 

in which _a(.) is the minimal singular value of matrix (.). 
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LEMMA 1 [7]. Let el/eigenvalues of the matr/x M be inside the unit disk of the complex plane. 
All the eigenvalues of all matrices M + A M  are inside the unit disk i f  and only i f  HAM[[ < p( M) .  

LEMMA 2 [8]. Let a matr/x E(z)  E v-oo~'nx'* with --oo~mx~ denoting the set of  m x n matrices whose 
elements are proper stable rational functions, then 

sup IlE(z)ll = sup IlE(z)ll = sup liE ( j0) ll, (6) 
zEf2 [z[>_l 0E[0,2~r] 

where f~ - {z = re #°, 0 E [0, 2~r], r > 1}. Since E(z )  is analytic for z E f~, this norm is well 

defined. 

After reviewing the above definition and lemma, we are in the position to derive the robust 
D-stability criterion in terms of complex stability radius for a discrete uncertain multiple time- 
delay system. 

THEOREM l. 

(I) Suppose that all the eigenvalues of  A are within the specific disk D(a,  r). Sys tem (1) is 
robustly D(a,  r)-stable (with In[ < r), ff  

(7) 

(II) I f  dx >_ ds and the function 

h(g) - - ~ + ~ Ad,(rg + + n, (r -I 1) -h '  
r i=l 

(8) 

lies outside the interval [ds, dl], where In[ < r and g take the values in the bounded region 
Ul = {6 [ 1 _< [6[ _< dlr} with dlr = [[(A - aI)/r[[ + dl, then system (1) is robustly 
D(  a, r )-stable. 

PROOF. See the Appendix. 

REMARK 2. Case (I) of Theorem 1 gives a nice algebraic condition to test the robust D-stability 
of system (1) at the cost of conservativeness. It is therefore reasonable to check the D-stability 
with Case (I), and then if it fails, resort to Case (II). Thus, Cases (I) and (II) complement each 
other. 

REMARK 3. It is easy to see that  the D-stability criterion in Theorem I will get a less conservative 
result than the criteria proposed by Su and Shyr [3]. 

However, for a practical application, it is difficult to examine Case (II) of Theorem 1. The 
following 'boundary test '  may be helpful in examining Case (II) of Theorem 1. 

COROLLARY 1. I f  dl ~_ ds azld the following inequality holds: 

I$ ] h(g) - - /3 + Acl~(rg + a) -h '  + 7h(r - lal) -h '  < ds, 
r i =1  

(9) 

where lal < r and g = e j° for 8 E [0, 27r], then system (1) is robustly D(a,  r)-stable. 

PROOF. The matrix ) - ~ 1  Ad~(rg + a) -h '  of which all poles of the elements have the modulus 
Igl = la l / r  < 1 belongs to R ~  . Consequently, based on Lemma 2, the function h(g) in (21) 
takes on its supremum in the range given by g = e#0 for O E [0, 21r]. Therefore, if inequality (9) 
holds, h(g) lies outside the interval [ds, dl] for all g E Us and then system (1) is robustly D(a ,  r)- 
stable (according to Case (II) of Theorem 1). This completes the proof. 
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3. E X A M P L E  

Consider a discrete uncertain multiple time-delay system: 

[002 ] ] [_0.0010] X ( k  + l) = 0 X ( k )  + I 0"0168 0 X ( k - 1 )  4- X ( k -  2) 
0.2 i 0.01 -0.05 0.01 0.001 (10) 

+ A A X ( k )  + A A d l X ( k  - 1) + A A d 2 X ( k  - 2), 

in which 
IIAAII < 0.4749, I]AAdlH < 0.0186, and IIAAd2H ~ 0.016. (11) 

(see footnote1). 
The purpose is to inspect whether system (10) satisfies the following time-domain specifications: 

(i) overshoot < 15%, or equivalently, damping ratio ~ _> 0.5; 
(ii) rise time < 4.17s, or equivalently, natural frequency w, ~ 0.6; 

(iii) settling time < 43.65s, or equivalently, all poles less than 0.9 (the sampling interval 
T =  ls) .  

These constraints (i)-(iii) may be interpreted as pole locations inside the specified disk D(0.2, 0.7) 
(see [9]). 

SOLUTION. According to (2), (3), and (11), the norm-bounds of parametric uncertainties are 
given as f~ = 0.4749, 7z = 0.0186, and 72 = 0.016. From (7), we have 

d l  ---- _1 f~ 4- (IIAdiH 4- 7i) (r - I~l) -h, = 1.2264 > ds = P A _ a I  = 1. (12) 
1" i=1 

Therefore, the inequality (7) is not satisfied. We now proceed to Corollary 1. 

The simulation of the function h(g) in (9), where g = e je for 8 E [0, 21r], is depicted in Figure 2. 
This figure reveals that  h(g) < ds = 1. Therefore, according to Corollary 1, we can conclude that  
system (10) is D(0.2, 0.7)-stable. 
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Figure 2. 
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In order to verify this result, a set of parametric uncertainties which satisfies the norm-bound 
conditions (11) is chosen as follows: 

[0::1 o] 
AA = . 0.44 J '  AAdl  = 0 . ' L0.009 0.01 " 

lThe  Euclidean norm is considered in this example. 
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By the computer simulation shown in Figure 3, we find that  all poles (0.5299=kj0.1218, -0 .0585+ 
j0.164, 0.019 -4- j0.1091) of the system lie inside the specific disk D(0.2, 0.7). Therefore, the 
multiple time-delay system (10) meets the time-domain specifications (i)-(iii) in the presence of 
parametric uncertainties as depicted in (13). This justifies our result. 
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4. C O N C L U S I O N  

Two cases of the robust D-stability criterion are proposed for discrete uncertain systems with 
multiple time delays. One is a direct test (i.e., check dl < ds) and the other is a boundary test. 
The robust D-stability of system (1) is first checked by the direct test. If it fails, resort to the 
boundary test, as illustrated in the example. 

A P P E N D I X  

PROOF OF THEOREM 1. 

CASE I. From (7), the following inequality (14) can be achieved: 

_1 [[AAI[ + ([[Ad~[[ + [[AA~il[)Irg + a[ -h' < p 
r i=1  

=~ AA + (Aa~ + AAd~) (rg + a) -h' < P r ' 
i = l  

for Igl-> 1, 

for [g[ > 1. 

(14) 

(15) 

Hence, from Lemma 1, 

A {  A - a I r  1 
E (A4~ + AA4i) (rg + a) -h ,  - - + -  A A +  

r i--1 
< 1 ,  for Igl >-- 1. (16) 

This implies that  

Igl # A - a_._____I/+ 1 AA + E (Adi + AAd~) (rg + a) -h' 
r r ~=1 

for Ig[ ~ 1. (17) 

In view of (17), we can see that  the solutions of the characteristic equation (of system (1)) 

{[  ]} det z I -  A + A A +  (Adi+AAdi)z -h~ = 0 ,  (18) 
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or equivalent ly  (with z = rg  ÷ ~),  

(19) 

sat isfy Igl < 1 (i.e., I(z - ~ ) / r  I < 1). Therefore,  sys tem (1) is robus t ly  D(c~,r)-s table .  This  
comple tes  the  p roof  of  Case I. 

CASE II .  I f  sys tem (1) is not D(~ ,  r ) -s table ,  then  there  exists a solut ion g of  the  character is t ic  
equa t ion  (19) sat isfying 

_> 1. (20) 

Based on L e m m a  1 and  (20), we can get the  following inequality:  

<_ - AA l l  + A d i ( r g  + ~ ) - h ,  + IIAAdill Irg ÷ al - h '  = h(g)  (21) 
r i---1 

<_ - ~ + (]lAdiII + ~li) (r  - Ial) - h '  -~ d l ,  for Igl -> 1. 
r i~ l  

ds = p _< 

Moreover,  according to (20), we have 

(22) 

1 <_ Ig] = A - ~_____~I + _1 A A  + (Adi  -~ A A d i )  ( rg  + c~) - h '  
r r i--1 

<- + r j3 + (llAdiH + Tli) (r  - [al) - h '  = dlr .  
i---1 

This  implies t ha t  if sys tem (1) is not  D(c~, r ) -s table ,  then  all the  uns table  poles of  this sys tem 
mus t  be  wi thin  the  bounded  region U1 = (if I 1 < I~1 < d l r ) .  Hence,  if inequal i ty  (21) is 
not  t rue  (i.e., h(g)  lies outs ide the interval  [ds, dl]) for all g E U1, then  sys tem (1) is robus t ly  
D ( ~ ,  r ) -s table .  Th is  completes  the  proof  of  Case II. 
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