
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 28 April 2014, At: 05:01
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Systems Science
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tsys20

GA-based reinforcement learning for neural networks
CHIN-TENG LIN a , CHONG-PING JOU a & CHENG-JIANG LIN a
a Department of Electrical and Control Engineering , National Chiao-Tung University ,
Hsinchu, Taiwan, Republic of China
Published online: 16 May 2007.

To cite this article: CHIN-TENG LIN , CHONG-PING JOU & CHENG-JIANG LIN (1998) GA-based reinforcement learning for neural
networks, International Journal of Systems Science, 29:3, 233-247, DOI: 10.1080/00207729808929517

To link to this article: http://dx.doi.org/10.1080/00207729808929517

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the
publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations
or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any
opinions and views expressed in this publication are the opinions and views of the authors, and are not the
views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be
independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses,
actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever
caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tsys20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207729808929517
http://dx.doi.org/10.1080/00207729808929517
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

International Journal of Systems Science, 1998, volume 29, number 3, pages 233-247

GA-based reinforcement learning for neural networks

CHIN-TENG LINt, CHONG-PING Jout and CHENG-JIANG LINt

A genetic reinforcement neural network (GRNN) is proposed to solve various rein­
forcement learning problems. The proposed GRNN is constructed by integrating two
feedforward multilayer networks. One neural network acts as an action network for
determining the outputs (actions) of the GRNN, and the other as a critic network to
help the learning of the action network. Using the temporal difference prediction
method, the critic network can predict the external reinforcement signal and provide
a more informative internal reinforcement signal to the action network. The action
network uses the genetic algorithm (GA) to adapt itself according 10 the internal
reinforcement signal. The key concept of the proposed GRNN learning scheme is to
formulate the internal reinforcement signal as the fitness function for the GA. This
learning scheme forms a novel hybrid GA, which consists of the temporal difference and
gradient descent methods for the critic network learning, and the GA for the action
network learning. By using the internal reinforcement signal as the fitness function, the
GA can evaluate the candidate solutions (chromosomes) regularly, even during the
period without external reinforcement feedback from the environment. Hence, the
GA can proceed to nell' generations regularly without waiting for the arrival of the
external reinforcement signal. This can usually accelerate the GA learning because a
reinforcement signal may only be available at a time long after a sequence of actions
has occurred in the reinforcement learning problems. Computer simulations have been
conducted to illustrate the performance and applicability of the proposed learning
scheme.

I. Introduction

In general, the neural learning methods can be distin­
guished into three classes: supervised learning, reinforce­
ment learning and unsupervised learning. In supervised
learning a teacher provides the desired objective at each
time step to the learning system. In reinforcement
learning the teacher's response is not as direct,
immediate or informative as that in supervised learning
and serves more to evaluate the state of system. The
presence of a teacher or a supervisor to provide the
correct response is not assumed in unsupervised
learning, which is called learning by observation.
Unsupervised learning does not require any feedback,
but the disadvantage is that the learner cannot receive
any external guidance and this is inefficient, especially
for the applications in control and decision-making. If

Received 5 July 1997. Revised 19 August 1997. Accepted 29 August
1997.

t Department of Electrical and Control Engineering, National
Chiao-Tung University, Hsinchu, Taiwan, Republic of China.

supervised learning is used in control (e.g. when the
input-output training data are available), it has been
shown that it is more efficient than the reinforcement
learning (Barto and Jordan 1987). However, many con­
trol problems require selecting control actions whose
consequences emerge over uncertain periods for which
input-output training data are not readily available. In
such a case, the reinforcement learning system can be
used to learn the unknown desired outputs by providing
the system with a suitable evaluation of its performance,
so the reinforcement learning techniques are more
appropriate than the supervised learning. Hence, in
this paper we are interested in the reinforcement
learning for neural networks.

For the reinforcement learning problems, Barto et al.
(1983) used neuron-like adaptive elements to solve diffi­
cult learning control problems with only reinforcement
signal feedback. The idea of their architecture, called the
actor-critic architecture, and their adaptive heuristic
critic (AHC) algorithm were fully developed by Sutton
(1984). The AHC algorithms that rely on both a learned

0020-7721/98 $12.00 © 1998 Taylor & Francis Ltd.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

234 c.-T. Lin et a!'

critic function and a learned action function. Adaptive
critic algorithms arc designed for reinforcement learning
with delayed rewards, The AHC algorithm uses the tem­
pond difference method to train a critic network that
Icarus to predict failurc. The prediction is then used to
heuristically generate plausible target outputs at each
time step, thereby allowing the use of backpropagation
in a separate neural network that maps state variables to
output actions. They also proposed the associative
reward-penalty (AR_I') algorithm for adaptive elements
culled AR-I' elements (Barto and Anandan 1985).
Several generalizations of A R_ P algorithm have been
proposed (Barto and Jordan 1987). Williams formulated
the reinforcement learning problem as a gradient­
following procedure (Williams 1987), and he identified
a class of algorithms, called REINFORCE algorithms,
that possess thc gradient ascent property. Anderson
(1987) developed a numerical connectionist learning
system by replacing thc neuron-like adaptive elements
in thc actor-critic architecture with multilayer networks.
With multilayer networks, the learning system can
enhance its representation by Icarning new features
that arc required by or that facilitate the search for the
task's solution. In this paper we shall develop a rein­
forccmcnt learning system also based on the actor­
critic architecture, However, because the use of gradient
descent (ascent) method in the above approaches usually
sutlers the local minima problem in the network
learning, we shall combine thc genetic algorithm (GA)
with thc AHC algorithm into a novel hybrid GA for
reinforcement learning to make use of the global opti­
mization capability of GAs.

GAs arc general-purpose optimization algorithms
with a probabilistic component that provide a means
to search poorly understood, irregular spaces. Holland
(1975) developed GAs to simulate some of the processes
observed in natural evolution. Evolution is a process
rluu operates on chromosomes (organic devices that
encode thc structure of living beings). Natural selection
links chromosomes with thc performance of their
decoded structure, The processes of natural selection
cause those chromosomes that encode successful struc­
turcs to reproduce more often than those that do not.
Recombination processes create different chromosomes
in children by combining material from the chromo­
somes of thc two parents. Mutation may cause the chro­
mosorncs of children to be different from those of their
parents. GAs appropriately incorporate these features of
natural evolution in computer algorithms to solve dif­
fcrcnt problems in the way that nature has done through
evolution. GAs require the problem of maximization (or
minimization) to be stated in the form of a cost (fitness)
function. In a GA a set of variables for a given problem
is encoded into a string (or other coding structure),
analogous to a chromosome in nature. Each string con-

tains a possible solution to the problem. To determine
how well a chromosome solves the problem, it is first
broken down into the individual substrings which repre­
sent each variable, and these values are then used to
evaluate the cost function, yielding a fitness value.
GAs select parents from a pool of strings (population)
according to the basic criteria of survival of the fittest. It
creates new strings by recombining parts of the selected
parents in a random manner. In this manner, GAs are
able to use historical information as a guide through the
search space.

The GA is a parallel and global search technique.
Because it simultaneously evaluates many points in the
search space, it is more likely to converge toward the
global solution. The GA applies operators inspired by
the mechanics of natural selection to a population of
binary strings encoding the parameter space at each
generation, it explores different areas of the parameter
space, and then directs the search to regions where there
is a high probability of finding improved performance.
By working with a population of solutions, the algo­
rithm can effectively seek many local minima and
thereby increases the likelihood of finding the global
minima. In this paper the GA is applied to find the
near-optimal weights of a neural network controller in
the reinforcement learning environment.

Recent applications of GAs to neural network weight
optimization produce results that are roughly competi­
tive with standard backpropagation (Montana and
Davis 1989, Whitley et al. 1990). The application of
GAs to the evolution of neural network topologies has
also produced interesting results (Harp et al. 1990,
Schaffer 1990). There are domains, however, where
GAs can make a unique contribution to neural network
learning. In particular, because GAs do not require or
use derivative information, the most appropriate appli­
cations are problems where gradient information is una­
vailable or costly to obtain. Reinforcement learning is
one example of such a domain. Whitley et al. (1993)
demonstrated how GAs can be used to train neural net­
works for reinforcement learning and neurocontrol
applications. They used the external reinforcemenl
signal from the environment directly as the fitness func­
tion for the GA, and thus their system required the
action network only. This structure is different from
the actor-eritic architecture (Barto et al. 1983), which
consists of an action network and a critic network. In
our system we shall use a critic network to provide the
action network with a more informative internal rein­
forcement signal such that the GA can perform a more
effective search on the weight space of the action net­
work.

In this paper we propose a genetic reinforcement
neural network (G RNN) to solve various reinforcement
learning problems. The proposed learning system can

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

GA-based reinforcement learning for neural networks 235

construct a neural network controller according to a
reward-penalty (i.e. good-bad) signal, called the rein­
forcement signal. It allows a long delay between an
action and the resulting reinforcement feedback infor­
mation. The proposed G RNN is constructed by inte­
grating two neural networks, each of which is a
feedforward multilayer network, and forms an actor­
critic architecture. In the GRNN the network used as
the action network can determine a proper action
according to the current input vector (environment
state). There is no 'teacher' to indicate the output
errors of the action network for its learning in the rein­
forcement learning problems. The other feedforward
multilayer network (the critic network) can predict the
external reinforcement signal and provide the action net­
work with a more informative internal reinforcement
signal, which is used as a fitness function for the GA­
based learning of the action network.

Associated with the GRNN is a GA-based reinforce­
ment learning algorithm. It is a hybrid GA, consisting of
the temporal difference method, the gradient descent
method and the normal GA. The temporal difference
method is used to determine the output errors of the
critic network for the multistep prediction of the
external reinforcement signal (Anderson 1987). With
the knowledge of output errors, the gradient descent
method (the back propagation algorithm) can be used
to train the critic network to find proper weights. For
the action network, the GA is used to find the weights
for desired control performance. To optimize the con­
nection weights of the action network, we encode these
weights as a real-valued string (chromosome). In other
words, each connection weight is viewed as a separate
parameter and each real-valued string is simply the con­
catenated weight parameters of the action network.
Initially, the GA generates a population of real-valued
strings randomly, each of which represents one set of
connection weights for the action network. After a
new real-valued string has been created, an interpreter
uses this string to set the connection weights of the
action network. The action network then runs in a feed­
forward fashion to produce control actions acting on the
environment. At the same time, the critic network pre­
dicts the external reinforcement signal from the con­
trolled environment, and produces the internal
reinforcement signal to indicate the performance or fit­
ness of the action network. With such evaluative infor­
mation (fitness values) from the critic network, the GA
can look for a better set of weights (a better string) for
the action network.

The proposed GA-based reinforcement learning
scheme is different from the scheme proposed by
Whitley et al. (1993), especially in the definition of fit­
ness function. In this system there is no critic network,
and the external reinforcement signal is used as the fit-

ness function of the GA directly in training the action
network. Hence, an action network (defined by a string)
can be evaluated only after the appearance of an
external reinforcement signal, which is usually available
only after very many actions have acted on the environ­
ment in the reinforcement learning problems. The major
feature of the proposed GA-based reinforcement
learning scheme is that we formulate the internal rein­
forcement signal as the fitness function of the GA based
on the actor-eritic architecture. In this way, the GA can
evaluate the candidate solutions (the weights of the
action network) regularly even during the period
without external reinforcement feedback from the envir­
onment. Hence, the GA can proceed to new generations
regularly without waiting for the arrival of the external
reinforcement signal. In other words, we can keep the
time steps for evaluating each string (action network)
fixed, because the critic network can give predicted
reward/penalty information for a string without waiting
for the final success or failure. This can usually accel­
erate the GA learning, because an external reinforce­
ment signal may be available only at a time long after
a sequence of actions has occurred in the reinforcement
learning problems. This is similar to the fact that we
usually evaluate a person according to his/her potential
or performance during a period, not after he/she has
done something really good or bad.

This paper is organized as follows. Section 2 describes
the basic of GAs and hybrid GAs. Section 3 describes
the structure of the proposed GRNN. The corre­
sponding GA based reinforcement learning algorithm
is presented in section 4. In section 5 the cart-pole bal­
ancing system is simulated to demonstrate the learning
capability of the proposed GRNN. Performance com­
parisons are also made in this section. Finally, conclu­
sions are summarized in section 6.

2. Genetic algorithms

Genetic algorithms (GAs) were invented to mimic some
of the processes observed in natural evolution. The
underlying principles of GAs were first published by
Holland (1962). The mathematical framework was
developed in the 1960s and was presented by Holland
(1975). GAs have been used primarily in two major
areas: optimization and machine learning. In optimiza­
tion applications GAs have been used in many diverse
fields such as function optimization, image processing,
the travelling salesman problem, system identification
and control. In machine learning GAs have been used
to learn syntactically simple string IF-TH EN rules in an
arbitrary environment. Excellent references on GAs and
their implementations and applications can be found in
(Goldberg 1989, Davis 1991, Michalewicz and
Krawezyk 1992).

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

236 c.-T. Lin et al.

The encoding mechanisms and the fitness function
form the links between the GA and the specific problem
to be solved. The technique for encoding solutions may
vary from problem to problem and from GA to .GA.
Generally, encoding is carried out usmg bit stnngs.
The coding that has been shown to be the optimal one
is binary coding (Holland 1975). Intuitively, it is better
to have few possible options for many bits than to have
many options for few bits. A fitness function takes a
chromosome as input and return a number or a list of
numbers that is a measure of the chromosome's perfor­
mance on the problem to be solved. Fitness functions
play the same role in GAs as the environment plays in
natural evolution. The interaction of an individual with
its environment provides a measure of fitness. Similarly,
the interaction of a chromosome with a fitness function
provides a measure of fitness that the GA uses when
carrying out reproduction.

The GA is a general-purpose stochastic optimization
method for search problems. GAs differ from normal
optimization and search procedures in .several ,:ays.
First, the algorithm works with a population of stnng~,

searching many peaks in parallel. By employing genetic
operators, it exchanges information between the peaks,
hence lowering the possibility of ending at a local
minimum and missing the global minimum. Second, it
works with a coding of the parameters, not the para­
meters themselves. Third, the algorithm only needs to
evaluate the objective function to guide its search, and
there is no requirement for derivatives or other auxiliary
knowledge. The only available feedback from the system
is the value of the performance measure (fitness) of the
current population. Finally the transition rules are prob­
abilistic rather than deterministic. The randomized
search is guided by the fitness value of each string and
how it compares to others. Using the operators on the
chromosomes which are taken from the population, the
algorithm efficiently explores parts of the search space
where the probability of finding improved performance
is high.

The basic element processed by a GA is the string
formed by concatenating substrings, each of which is a

In applying GAs for neural network learning, the
structures and parameters of neural networks are
encoded as genes (or chromosomes), and GAs are then
used to search for better solutions (optimal structures
and parameters) for the neural networks. The funda­
mental concepts of genetic operators and hybrid genetic
algorithms will be discussed in the following sub­
sections.

2.1. Basics of genetic algorithms

GAs are search algorithms based on the mechanics of
natural selection, genetics and evolution. It is widely
accepted that the evolution of living beings is a process
that operates on chromosomes, organic devices that
encode the structure of living beings. Natural selection
is the link between chromosomes and the performance
of their decoded structures. Processes of natural selec­
tion cause those chromosomes that encode successful
structures to reproduce more often than these that do
not. In addition to reproduction, mutations may cause
the chromosomes of biological children to be different
from those of their biological parents, and recombina­
tion processes may create quite different chromosomes
in the children by combining material from the chromo­
somes of two parents. These features of natural evolu­
tion influenced the development of GAs.

Roughly speaking, GAs manipulate strings of binary
digits, Is and as, called chromosomes which represent
multiple points in the search space through proper
encoding mechanism. Each bit in a string is called an
allele. GAs carry out simulated evolution on popula­
tions of such chromosomes. Like nature, GAs solve
the problem of finding good chromosomes by manipu­
lating the material in the chromosomes blindly without
any knowledge of the type of problem they are solving,
the only information they are given is an evaluation of
each chromosome that they produce. The evaluation IS

used to bias the selection of chromosomes so that those
with the best evaluations tend to reproduce more often
than those with bad evaluations. GAs, using simple
manipulations of chromosome such as simple encodings
and reproduction mechanisms, can display complicated
behaviour and solve some extremely difficult problems
without knowledge of the decoded world.

A high-level description of a GA is as follows (Davis
1991). Given a way or a method of encoding solutions to
the problem on the chromosomes and a fitness (evalua­
tion) function that returns a performance measurement
of any chromosome in the context of the problem, a GA
consists of the following steps.

Step I. Initialize a population of chromosomes.

Step 2. Evaluate each chromosome in the population.

Step 3.

Step 4.

Step 5.

Step 6.

Create new chromosomes by mating current
chromosomes; apply mutation and recombina­
tion on the parent chromosome's mate.

Delete members of the population to make
room for the new chromosomes.

Evaluate the new chromosomes and insert them
into the population.

If the stopping criterion is satisfied, then stop
and return the best chromosome; otherwise, go
to Step 3.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

GA-based reinforcement learning for neural networks 237

binary coding of a parameter of the search space. Thus,
each string represents a point in the seach space and
hence a possible solution to the problem. Each string
is decoded by an evaluator to obtain its objective func­
tion value. This function value, which should be max­
imized or minimized by the GA, is then converted to a
fitness value which determines the probability of the
individual undergoing genetic operators. The popula­
tion then evolves from generation to generation through
the application of the genetic operators. The total
number of strings included in a population is kept
unchanged through generations. A GA in its simplest
form uses three operators: reproduction, crossover and
mutation (Goldberg 1989). Through reproduction,
strings with high fitnesses receive multiple copies in the
next generation, whereas strings with low fitnesses
receive fewer copies or even none at all. The crossover
operator produces two offspring (new candidate solu­
tions) by recombining the information from two parents
in two steps. First, a given number of crossing sites are
selected along the parent strings uniformly at random.
second, two new strings are formed by exchanging alter­
nate pairs of selection between the selected sites. Tn the
simplest form, crossover with single crossing site refers
to taking a string, splitting it into two parts at a ran­
domly generated crossover point and recombining it
with another string which has also been split at the
same crossover point. This procedure serves to promote
change in the best strings which could give them even
higher fitnesses. Mutation is the random alteration of a
bit in the string which assists in keeping diversity in the
population.

2.2. Hybrid genetic algorithms

Traditional simple GAs, though robust, are generally
not the most successful optimization algorithm on any
particular domain. Hybridizing a GA with algorithms
currently in use can produce an algorithm better than
the GA and the current algorithms. Hence, for an opti­
mization problem, when there exist algorithms, optimi­
zation heuristics or domain knowledge that can aid in
optimization, it may be advantageous to consider a
hybrid GA. GAs may be crossed with various prob­
lem-specific search techniques to form a hybrid that
exploits the global perspective of the GA (global
search) and the convergence of the problem-specific
technique (local search).

There are numerous gradient techniques (e.g. the gra­
dient descent method, the conjugate gradient method)
and gradient-less techniques (e.g. the golden search, the
simplex method) available to find the local optimal in a
calculus-friendly function (e.g. continuous function)
(Luenberger 1976). Even without a calculus-friendly
function, there are well-developed heuristic search

schemes for many popular problems. For example, the
greedy algorithms in combinatorial optimization are a
form of local search (Lawler 1976). An intuitive concept
of hybridizing GAs with these local search techniques is
that the GA finds the hills and the local searcher goes
and climbs them. Thus, in this approach, we simply
allow the GA to run to substantial convergence and
then we permit the local optimization procedure to
take over, perhaps searching from the top 5% or 10%
of points in the last generation.

Tn some situations hybridization entails using the
representation as well as optimization techniques
already in use in the domain, while tailoring the GA
operators to the new representation. Moreover, hybrid­
ization can entail adding domain-based optimization
heuristics to the GA operator set. In these cases we
can no longer apply the familiar GA operators directly
and must create their analogue to account for new repre­
sentations and/or added optimization schemes. For
examples, Davis (1991) and Adler (1993) describe an
approach to hybridizing a simple GA with the simulated
annealing algorithm, and Tsinas and Dachwald (1994)
and Petridis et al. (1992) describe an approach to hybri­
dizing a simple GA with the back propagation algo­
rithm. A hybrid of both categories of learning
methods results in a more powerful, more robust and
faster learning procedure. Tn this paper we develop a
novel hybrid GA, called the GA-based reinforcement
learning algorithm, to train the proposed GRNN to
solve various reinforcement learning problems.

3. The structure of the GRNN

Unlike the supervised learning problem in which the
correct target output values are given for each input
pattern to instruct the network learning, the reinforce­
ment learning problem has only very simple evaluative
or critic information available for learning, rather than
instructive information. In the extreme case there is only
a single bit of information to indicate whether the
output is right or wrong. Fig. I shows how a network
and its training environment interact in a reinforcement
learning problem. The environment supplies a time­
varying input vector to the network, receives its
time-varying output/action vector and then provides a
time-varying scalar reinforcement signal. In this paper
the reinforcement signal r(t) is two-valued,
r(t) E {-I, O}, such that r(t) = 0 means a success and
r(t) = -1 means a failure. We also assume that r(t) is
the reinforcement signal available at time step t and is
caused by the inputs and actions chosen at earlier time
steps (i.e. at time steps t - I, t - 2, ...). The goal of
learning is to maximize a function of this reinforcement
signal.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

238 c.-T. Lin et al.

n h

v[l, I + I] = Lbj[I]Xj[1 + 11+L cdlJydl, I + I], (3)
j=1 ;=1

y;[I, I + 1] = g(t aij [11.\j [I + 11) , (I)
J=I

I and I + I are successive time steps, and aij is the weight
from the jth input node to the ith hidden node. The
output node of the critic network receives inputs from
the nodes in the hidden layer (i.e. y;) and directly from
the nodes in the input layer (i.e..\):

(2)
I

g(s) = I +e-s'

internal reinforcement signal. The internal reinforce­
ment signal from the critic network enables both the
action network and the critic network to learn at each
time step without waiting for the arrival of an external
reinforcement signal, greatly accelerating the learning of
both networks. The structures and functions of the critic
network and the action network are described in the
following subsections.

where

3.1. The critic network

The critic network constantly predicts the reinforce­
ment associated with different input states, and thus
equivalently evaluates the goodness of the control
actions determined by the action network. The only
information received by the critic network is the state
of the environment in terms of state variables and
whether or not a failure has occurred. The critic network
is a standard two-layer feed forward network with sig­
moids everywhere except in the output layer. The input
to the critic network is the state of the plant, and the
output is an evaluation of the state, denoted by v. This
value is suitably discounted and combined with the
external failure signal to produce the internal reinforce­
ment signal r(I).

Figure 2 shows the structure of the critic network. It
includes h hidden nodes and n input nodes, including a
bias node (i.e. XI, X2,"" xn) . In this network each
hidden node receives n inputs and has n weights, and
each output node receives n + h inputs and has n + h
weights. The output of the node in the hidden layer is
given by

where v is the prediction of the external reinforcement
value, b, is the weight from the jth input node to output
node, and c, is the weight from the ith hidden node to
output node. In (I) and (3) double time dependencies are
used to avoid instabilities in updating weights
(Anderson 1987, Berenji and Khedkar 1992).

External
Reinforcement

. : Critic Network:
V r Signal

t r
~emporal Difference Method: Internal

Reinforcement
Stnte Signal

IGeneticAlgorithm'
X

• Siring

INeuralNetworkBuilderI
• Weights

:Action Network:
f I I

I
Plant

I

Figure 2. The structure of the critic network and the action
network in the GRNN.

Figure I. The proposed genetic reinforcement neural network
(GRNN).

To resolve reinforcement learning problems, a system
called thc GRNN is proposed. As Fig. I shows, the
GRNN consists of two neural networks; one acts as
the action network and thc other as the critic network.
Each network has exactly the same structure as that
shown in Fig. 2. The G RNN is basically in the form
of thc actor-critic architecture (Sutton 1984). As we
want to solve the reinforcement learning problems in
which the cxtcrnal reinforcement signal is available
only after a long sequence of actions have been passed
onto thc environment, we need a multistep critic net­
work to predict the external reinforcement signal. In
the GRNN, the critic network models the environment
such that it can perform a multistep prediction of the
cxternal reinforcement signal that will eventually be
obtained from the environment for the current action
chosen by the action network. With the multistep pre­
diction, the critic network can provide a more informa­
tivc internal reinforcement signal to the action network.
The act ion net work can then determine a better action
to impose onto the environment in the next time step
according to the current environment state and the

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

GA-based reinforcement learning for neural networks 239

The critic network evaluates the action recommended
by the action network and represents the evaluated
result as the internal reinforcement signal. The internal
reinforcement signal is a function of the external failure
signal and the change in state evaluation based on the
state of the system at time t + I:

{

0, start state,

r(t + I) = r[t + I] - vlt, t], failure state,

r[t + II + '"'fv[t, t + I] - vlt, t]' otherwise,

(4)

where 0:::: '"'f:::: I is the discount rate. In other words, the
change in the value of I' plus the value of the external
reinforcement signal constitutes the heuristic or internal
reinforcement signal r(t) where the future values of v are
discounted more, the further they are from the current
state of the system.

The learning algorithm for the critic network is com­
posed of Sutton's AHC algorithm (Sutton 1984) for the
output node and the backpropagation algorithm for the
hidden nodes. The AHC algori thm is a temporal differ­
ence prediction technique proposed by Sutton (1988).
We shall go into the details of this learning algorithm
in the next section.

3.2. The action network

The action network is to determine a proper action
acting on the environment (plant) according to the cur­
rent environment state. The structure of the action net­
work is exactly the same as that of the critic network
shown in Fig. 2. The only information received by the
action network is the state of the environment in terms
of state variables and the internal reinforcement signal
from the critic network. As we want to use the GA to
train the action network for control applications, we
encode the weights of the action network as a real­
valued string. More clearly, each connection weight is
viewed as a separate parameter and each real-valued
string is simply the concatenated weight parameters of
an action network. Initially, the GA generates a popula­
tion of real-valued strings randomly, each of which
represents one set of connection weights for an action
network. After a new real-valued string is created, an
interpreter uses this string to set the connection weights
of the action network. The action network then runs in a
feedforward fashion to produce control actions acting
on the environment according to (I) and (3). At the
same time, the critic network constantly predicts the
reinforcement associated with changing environment
states under the control of the current action network.
After a fixed time period, the internal reinforcement
signal from the critic network will indicate the fitness
of the current action network. This evaluation process

continues for each string (action network) in the popula­
tion. When each string in the population has been eval­
uated and given a fitness value, the GA can look for a
better set of weights (better strings) and apply genetic
operators on them to form a new population as the next
generation. Better actions can thus be chosen by the
action network in the next generation. After a fixed
number of generations, or when the desired control per­
formance is achieved, the whole evolution process stops,
and the string with the largest fitness value in the last
generation is selected and decoded into the final action
network. The detailed learning scheme for the action
network will be discussed in the next section.

4. GA-based reinforcement learning algorithm

Associated with the GRNN is a GA-based reinforce­
ment learning algorithm to determine the proper weights
of the GRNN. All the learning is performed on both the
action network and the critic network simultaneously,
and only conducted by a reinforcement signal feedback
from the environment. The key concept of the GA­
based reinforcement learning algorithm is to formulate
the internal reinforcement signal from the critic network
as the fitness function of the GA for the action network.
This learning scheme is in fact a novel hybrid GA, which
consists of the temporal difference and gradient descent
methods for the critic network learning, and the GA for
the action network learning. This algorithm possesses an
advantage of all hybrid GAs: hybridizing a GA with
algorithms currently in use can produce an algorithm
better than the GA and the current algorithms. It will
be observed that the proposed reinforcement learning
algorithm is superior to the normal reinforcement
learning schemes without using GAs in the global opti­
mization capability, and superior to the normal GAs
without using temporal difference prediction technique
in learning efficiency. The flowchart of the GA-based
reinforcement learning algorithm is shown in Fig. 3. In
the following subsections we first consider the reinforce­
ment learning scheme for the critic network of the
GRNN, and then introduce the GA-based reinforce­
ment learning scheme for the action network of the
GRNN.

4.1. Learning algorithm for the critic network

When both the reinforcement signal and input pat­
terns from the environment depend arbitrarily on the
past history of the action network outputs and the
action network only receives a reinforcement signal
after a long sequence of outputs, the credit assignment
problem becomes severe. This temporal credit assign­
ment problem occurs because we need to assign credit
or blame to each step individually in long sequences

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

240 c.-T. Lin et al.

which increases (decreases) its contribution to the total
sum. The weights on the links connecting the nodes in
the input layer directly to the nodes in the output layer
are updated according to the following rule:

Note that the sign of a hidden node's output weight is
used, rather than its value. The variation is based on
Anderson's empirical study (Anderson 1987) that the
algorithm is more robust if the sign of the weight is
used, rather than its value.

where 7) > 0 is the learning rate and r[1 + II IS the
internal reinforcement signal at time I + I.

Similarly, for the weights on the links between the
hidden layer and the output layer, we have the following
weight update rule:

cdl + I] = C;[I] + 7)1'[1 + 11.1';[1 + II. (6)

The weight update rule for the hidden layer is based on a
modified version of the error backpropagation algo­
rithm (Rumelhart et al. 1986). As no direct error meas­
urement is possible (i.e. knowledge of correct action is
not available), rplays the role of an error measure in the
update of the output node weights; if r is positive, the
weights are altered to increase the output v for positive
input, and vice versa. Therefore, the equation for
updating the hidden weights is

aij[1 + I] = aijlt] + 1/1'[1 + ILI';[I, 1](1 - Y;[I, l])sgn(c;[I].\j[I].

(7)

4.2. Learning algorithm for the action network

The GA is used to train the action network by using
the internal reinforcement signal from the critic network
as the fitness function. Fig. 4 shows the flowchart of the
GA-based learning scheme for the action network.
Initially, the GA randomly generates a population of
real-valued strings, each of which represents one set of
connection weights for the action network. Hence, each
connection weight is viewed as a separate parameter and
each real-valued string is simply the concatenated con­
nection weight parameters for the action network. The
real-value encoding scheme instead of the normal binary
encoding scheme in GAs is used here, so recombination
can only occur between weights. As there are
(n X h + n + 17) links in the action network (see Fig. 2),
each string used by the genetic search includes
(n x 17 + n + 17) real values concatenated together. A
small population is used in our learning scheme. The
use of a small population reduces the exploration of
the multiple (representationally dissimilar) solutions
for the same network.

After a new real-valued string has been created, an
interpreter takes this real-valued string and uses it to

(5)b;[1 + I] = h;[I] + 7)1'[1 + I]x;it]'

I input Training Data I

Forward Signal Propagation

(Critic Network) (Action Network)

Temporal Difference Prediction Determine the Best Action

GA·BasedReinforcement Learning Algorithm

(CriticNetwork) (ActionNetwork)

Gradient Descent Learning Algorithm Genetic Algorithms

Figure 3. Flowchart of the proposed GA-based reinforcement
leurning algorithm for the G RNN.

leading up to cvcntuul successes or failures. Thus, to
handle this class of reinforcement learning problems
we need to solve the temporal credit assignment prob­
Icm, along with solving the original structural credit
assignment problem concerning attribution of network
errors to different connections or weights. The solution
to thc tcmporal credit assignment problem in GRNN is
to usc a multistep critic network that predicts the rein­
Iorccmcnt signal at each time step in the period without
any external reinforcement signal from the environment.
This can ensure that both the critic network and the
action network can update their parameters during the
period without any evaluative feedback from the envir­
onmcnt. To train the multistep critic network, we use a
technique based on the temporal difference method,
which is often closely related to the dynamic program­
ming techniques (Barto et al. 1983, Sutton 1988, Werbos
1990). Unlike the single-step prediction and the super­
vised learning methods which assign credit according to
thc difference between the predicted and actual outputs,
thc temporal difference methods assign credit according
to thc difference between temporally successive predic­
tions. Note that thc term multistep prediction used here
means that the critic network can predict a value that
will be available several time steps later, although it
makes such a prediction at each time step to improve
its prediction accuracy.

The goal of training the multistep critic network is to
minimize thc prediction error, i.e. to minimize the
internal reinforcement signal 1'(1). It is similar to a
reward/punishment scheme for the weights updating in
thc critic network. If positive (negative) interval rein­
forccmcnt is observed, thc values of the weights are
rewarded (punished) by being changed in the direction

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

GA-based reinforcement learning for neural networks 241

(9)

Figure 4. Flowchart of the proposed hybrid GA for the action
network.

set the connection weights in the action network. The
action network then runs in a feedforward fashion to
control the environment (plant) for a fixed time period
(determined by the constant TIME in Fig. 4) or until a
failure occurs. At the same time, the critic network
predicts the external reinforcement signal from the
controlled environment and provides an internal rein­
forcement signal to indicate the fitness of the action net­
work. In this way, according to a defined fitness
function, a fitness value is assigned to each string in
the population where high fitness values mean good
fit. The fitness function FIT can be any nonlinear,
non-differentiable, discontinuous, positive function,
because the GA only needs a fitness value assigned to
each string. In this paper we use the internal reinforce­
ment signal from the critic network to define the fitness
function. Two fitness functions are defined and used in
the G RNN. The first fitness function is defined by

I
FIT(I) = Ir(I)I' (8)

which reflects the fact that small internal reinforcement
values (i.e. small prediction errors of the critic network)

mean higher fitness of the action network. The second
fitness function that we define is

I I

FlT(I) = Ir(I)1 x TIME'

where I is the current time step, I :::::: I :::::: TIME, and the
constant TIME is a fixed time period during which
the performance of the action network is evaluated by
the critic network. The added IITIME in (9) reflects the
credibility or strength of the term 1/11'(1)1 in (8); if an
action network receives a failure signal from the envir­
onment before the time limit (i.e. I :::::: TIM E), then the
action network that can keep the desired control goal
longer before failure occurs will obtain higher fitness
value. The above two fitness functions are different
from that defined by Whitley et al. (1993). Their relative
measure of fitness takes the form of an accumulator that
determines how long the experiment is still success.
Hence, a string (action network) cannot be assigned a
fitness value until an external reinforcement signal
arrives to indicate the final success or failure of the
current action network.

When each string in the population has been evalu­
ated and given a fitness value, the GA then looks for a
better set of weights (better strings) to form a new popu­
lation as the next generation by using genetic operators
introduced in section 2 (i.e. the reproduction, crossover
and mutation operators). In basic GA operators, the
crossover operation can be generalized to multipoint
crossover in which the number of crossover point
(N c) is defined. With Nc set to I, generalized cross­
over reduces to simple crossover. The multipoint cross­
over can solve one major problem of the simple
crossover; one-point crossover cannot combine certain
combinations of features encoded on chromosomes. In
the proposed GA-based reinforcement learning algo­
rithm, we choose Nc = 2. For the mutation operator,
because we use the real-value encoding scheme, we use
a higher mutation probability in our algorithm. This is
different from the traditional GAs that use the binary
encoding scheme. The latter are largely driven by recom­
bination, not mutation. The above learning process con­
tinues to new generations until the number of
generations meets a predetermined generation size (G
in Fig. 4). After a fixed number of generations G, the
whole evolution process stops, and the string with the
largest fitness value in the last generation is selected and
decoded into the final action network.

The major feature of the proposed hybrid GA
learning scheme is that we formulate the internal rein­
forcement signal as the fitness function for the GA based
on the actor-eritic architecture (GRNN). In this way,
the GA can evaluate the candidate solutions (the
weights of the action network) regularly during the
period without external reinforcement feedback from

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

242 c-T. Lin et al.

system fails and receives a penalty signal of -I when
the pole falls past a certain angle (± 12° was used) or the
cart runs into the bounds of its track (the distance is
2.4m from the centre to both bounds of the track).
The goal of this control problem is to train the
G RNN to determine a sequence of forces applied to
the cart to balance the pole.

The model and the corresponding parameters of the
cart-pole balancing system for our computer simula­
tions are adopted from Anderson (1986, 1987) with
the consideration of friction effects. The equations of
motion that we used are

I • • I
, X ,

Figure 5. The cart-pole balancing system.

the environment. The GA can thus proceed to new gen­
erations in fixed time steps (specified by the constant
TIM E in (9)) without waiting for the arrival of the
external reinforcement signal. In other words, we can e(1 + I) = e(l) + ~e(I), (10)

. 2 I), (Ill + III)e(l)
(Ill + IIlp)g sin e(l) - cos e(l)[f(l) + IIlple(l) sin e(l) -JLcsgn (.Y(I))] - p p

. . III /
O(I+I)=e(I)+~ p (II)

(4/3) (Ill + IIlp) / - lIl/cos2 e(l)

In the first set of simulations, we use the fitness func­
tion defined in (8), i.e. FlT(I) = I/lr(I)I, to train the
GRNN, where r(l) is the internal reinforcement signal
from the critic network. The used critic network and

X(I + I) = X(I) + ~.Y(I), (12)

f(l) + IIlpl[e(I)2 sin e(l)
.(1)- .() A -O(I)eose(I)]-I),csgn(.Y(I))
XI+ -XI +u ()

III + IIlp

(13)

where g = 9.8 m/s2 is the acceleration due to the gravity,
III = I kg is the mass of the cart, IIlp = 0.1 kg is the mass
of the pole, / = 0.5 m is the half-pole length, JLc = 0.0005
is the coefficient of friction of the cart on the track,
JLp = 0.000002 is the coefficient of friction of the pole
on the cart, and ~ = 0.02 is the sampling interval.

The constraints on the variables are _12° ::; e::; 12°,
-2.4 m ::; x ::; 2.4 m. In designing the controller, the
equations of motions of the cart-pole balancing
system are assumed to be unknown to the controller.
A more challenging part of this problem is that the
only available feedback is a failure signal that notifies
the controller only when a failure occurs; that is, either
101 > 12° or [x] > 2.4 m. As no exact teaching informa­
tion is available, this is a typical reinforcement learning
problem and the feedback failure signal serves as the
reinforcement signal. As a reinforcement signal may
only be available after a long sequence of time steps in
this failure avoidance task, a multistep critic network
with temporal difference prediction capability is used
in the GRNN. The (external) reinforcement signal in
this problem is defined as

keep the time steps TIME to evaluate each string
(action network) and the generation size G fixed in our
learning algorithm (see the flowchart in Fig. 4), because
the critic network can give predicted reward/penalty
information to a string without waiting for the final
success or failure. This can usually accelerate the GA
learning because an external reinforcement signal may
only be available at a time long after a sequence of
actions has occurred in the reinforcement learning pro­
blems. This is similar to the fact that we usually evaluate
a person according to his/her potential or performance
during a period, not after he/she has done something
really good or bad.

S. Control of the cart-pole system

A general-purpose simulator for the GRNN model with
the multistep critic network has been written in the C
language and runs on an 80486-DX-based personal
computer. Using this simulator, one typical example,
the cart-pole balancing system (Anderson 1987), is pre­
scnted in this section to show the performance of the
proposed model.

The cart-pole balancing problem involves learning
how to balance an upright pole as shown in Fig. 5.
The bottom of the pole is hinged to a cart that travels
along a finite-length track to its right or its left. Both the
cart and pole can move only in the vertical plane; that is,
each has only one degree of freedom. There are four
input state variables in this system: e, the angle of the
pole from an upright position (deg); e, the angular velo­
city of the pole (dcgjs); x, the horizontal position of the
cart's centre (m); and .Y, the velocity of the cart (m/s).
Thc only control action is f, which is the amount of
force (N) applied to the cart to move it left or right.
This control action f is a discrete value, ± 10N. The

{

- I
r(l) = '

0,

ifle(I)I> 12°orlx(I)1 > 2.4m,

otherwise.
(14)

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

GA-based reinforcement learning for neural networks 243

4780
2912

Mean

3026
2601

Median

14446
11893

Worst

129
312

Best

100
200

Pop Size

Table I. Performance indices of Whitley's system on the cart­
pole balancing problem

work. Whitley et al. (1993) used a normal GA to
update the action network according to their fitness
function. Like the use of GRNN in the cart-pole
problem, a bang-pole problem, a bang-bang control
scheme is used in their system; the control output also
has only two possible values, ± ION. The constraints on
the state variables are also _12° ::; 0 ::; 12°, -2.4m ::;
x ::; 2.4 m. The only available feedback is a failure
signal that notifies the controller only when a failure
occurs. The time steps from the beginning to the occur­
rence of a failure signal indicate the fitness of a string
(action network); a string is assigned a higher fitness
value if it can balance the pole longer.

The simulation results of using Whitley's system on
the cart-pole system for two different population sizes
are shown in Table I. The first row of Table I shows the
performance indexes when the population size is set as
POP = 100. We observe that Whitley's system learned
to balance the pole at the 4780th generation on average.
Whitley's system balanced the pole at the 129th genera­
tion in the best case and at the 14446th generation in the
worst case. The median number of generations required
to produce the first good action network (the network
that is able to balance the pole for 100000 time steps) is
3026. The second row of Table I shows the performance
indexes when the population size is set as POP = 200.
The results show that Whitley's system learned to bal­
ance the pole at the 2912th generation on average. In the
best case, it took 312 generations to learn to balance the
pole, and in the worst case it took II 893 generations to
learn the task. The median number of generations
required to produce the first good action network is
260 I. From Table I we observe that the mean genera­
tion number needed by Whitley's system to obtain a
good action network is more than 2500 generations.
As compared to our system, the GRNN needs only
TIME = 100 and G = 50 to learn a good action net­
work.

From the point of view of CPU time, we compare the
learning speed required by the GRNN to that by
Whitley's system. A control strategy was deemed suc­
cessful if it could balance a pole for 120000 time steps.
When 120000 pole balance steps were completed, then
the CPU times expended were measured and averaged
over 50 simulations. The CPU times should be treated as

40353010 15 20 25
Time (second)

Figure 6. Angular deviation of the pole resulted by a trained
GRNN with F1T(t) = I/lf(t)l.

5

4

3

2

$ "".ir° "0

-1

-2

-3

...
-5

0 5

action network both have five input nodes, five hidden
nodes and one output node. Hence, there are 35 weights
in each network. A bias node fixed at 0.5 is used as the
fifth input to the network; a weight from the bias node
to a hidden node (or to the output node) in effect
changes the threshold behaviour of that node. The
learning parameters used to train the GRNN are the
learning rate 1] = 0.1, the population sizes POP = 200,
the time limit TIME = 100, and the generation sizes
G = 50. Initially, we set all the weights in the critic net­
work and action network to random values between
-2.5 and 2.5. Mutation of a string is carried out by
adding a random value to each substring (weight) in
the range ± IO. The action network determines two poss­
ible actions ± ION to act on the cart according to the
system state. When the GA learning stops, we choose
the best string in the population at the 50th generation
and test it on the cart-pole system. Fig. 6 shows the pole
position (angular deviation of the pole) when the cart­
pole system was controlled by a well-trained GRNN
starting at the initial state: 0(0) = 0, 1i(0) = 0,
x(O) = 0, .\'(0) = O.

The same cart-pole balancing control problem was
also simulated by Whitley et al. (1993) using the pure
GA approach. Whitley and his colleagues defined a fit­
ness function different from ours. Their relative measure
of fitness takes the form of an accumulator that deter­
mines how long the pole stays up and how long the cart
avoids the end of the track. Hence, a string (action net­
work) cannot be assigned a fitness value before a failure
really occurs (i.e. either 101 > 12° or [x] > 2.4 m). As the
fitness function was defined directly by the external rein­
forcement signal, Whitley's system used the action net­
work only. Their structure is different from our GRNN,
which consists of an action network and a critic net-

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

c.- T. Lin et al.

Angular deviation of the pole resulted by a trained
Whitley system.

3

2

4

5;r--~-~-~----'--~-~-~--'

·2

.,

-3

-5;L-_~-~--~-~-~-~~-~--
o 5 10 15 20 25 30 35 40

Time (second)

Figure 8. Angular deviation of the pole resulted by a trained
CRNN with 1'1'1'(1) = I!Ii(I) I after a disturbance is given,

403530

'" "'" ..,, "'r' u "P'

15 20 25
Time(second)

10

Figure 7.

244

5

4

3

2

~o ."0

·1

·2

-3

...
-5

0 5

Table 2. The learning speed in CI'U seconds of C RNN and
GENITOR

Table 3. Moriarty's results

Learning speed (in CPU TIM E (s)

Learning speed (in CPU '1'1 ME) (s)

Method

GRNN
GENITOR

mean

7.94
31.18

best

1.10
10.38

worst

25.11
323.8

Method mean best worst

one-layer AHC 130.6 17 3017
two-layer AHC 99.1 17 863
Q-Iearning 19.8 5 99
GENITOR 9,5 4 45
SANE 5.9 4 8

rough estimates because they arc sensitive to the imple­
mentation details. However, the CPU time differences
found arc large enough to indicate real differences in
Iraining time on both methods. The results are shown
in Table 2. It is noted that the time needed to evaluate a
string in Whitley's system (called GENITOR in the
table) is about three to four times as long as ours, as
our time steps arc bounded by the time limit TIME and
by the arrival time of a failure signal, but the time steps
for Whitley's system are bounded only by the arrival
time of the failure signal. Hence, on average, the pro­
posed hybrid GA is superior to the pure GA in learning
speed in solving the reinforcement learning problems.'
Fig. 7 shows the pole position (angular deviation of
the pole) when the cart-pole system was controlled by
a well-trained Whitley system starting at the initial state:
0(0) = 0, 0(0) = 0, x(O) = 0, .\'(0) = O. These angular
deviations arc slightly bigger than those produced by
the trained GRNN.

For more complete performance comparisons, we
consider several other learning schemes. Moriarty and
Miikkulainen (1996) proposed a new reinforcement
learning method called SANE (symbiotic adaptive
ncuro-cvolution), which evolves a population of neurons
through GAs to form a neural network capable of per-

forming a task. SANE achieves efficient learning
through symbiotic evolution, where each individual in
the population represents only a partial solution to the
problem; complete solutions are formed by combining
several individuals. According to their results, SANE is
faster, more efficient and more consistent than the ear­
lier AHC approaches (Barto et al. 1983, Anderson 1987)
and Whitley's system (Whitley et al. 1993) (as shown in
Table 3). From the table we found that the proposed
GRNN is superior to the normal reinforcement learning
schemes without using GAs for global optimization,
such as the single-layer AHC (Barto et al. 1983) and
two-layer AHC (Anderson 1987), and superior to the
normal GAs without using temporal difference tech­
nique (the GENITOR) in learning efficiency for rein­
forcement learning problems.

Similarly to the simulations of Berenji and Khedkar
(1992), the adaptation capability of the proposed
GRNN was tested. To demonstrate the disturbance
rejection capability of the trained GRNN, we applied
a disturbance f = 20 N to the cart at the IOth second.
the curve of angular deviations in Fig. 8 indicates that
the G RNN system brought the pole back to the centre

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

GA-hased reinforcement learning for neural networks 245

5,----~-~-~-~--~-~-~-, 5,----~-~-~-~-_~-~-~-,

4 4

3 3

2

1

~ ~ .,.,~i~ ~ _. ''''';)'' .""..t .. "lO" ·r.", """ ."""
-1

-2

-3 -3

"" ""
353015 20 25

Time(second)
105

.5,0
L--~-~--~---:'=----:;----::-------:-::------:40

353015 20 25
Time (second)

105
-5,

0
L--~-~---'::-----:''------,':----::-------:-::------:40

Figure 9. Angular deviation of the pole resulted by a traiued
GRNN with FlT(I) = 1/1i"(t)1 when the half-length of the
pole is reduced from 0.5 m to 0.25 m,

Figure II. Angular deviation of the pole resulted by a trained
GRNN with FlT(I) = I/lr(I)1 x IITIME.

5r--~-~--~-~--~-~-~------,

4

3

2

trained GRNN when the controlled system parameters
are changed in the ways mentioned. The results show the
good control and adaptation capabilities of the trained
GRNN in the cart-pole balancing system.

In another set of simulations we use the second fitness
function defined in (9), i.e.

I I
FlT(t) = Ir(I)1 x TIME'......".,~ o.}.-........--------'r"'"'...---w~

~

-1

-3

-2

""

to train the GRNN. The goal of GA learning in the
action network is to maximize this fitness function.
The same learning parameters are used to train the
GRNN in this case; the learning rate 1) = 0.1, the popu­
lation sizes POP = 200, the time limit TIME = 100, and
the generation size G = 50. Fig. \1 shows the pole posi­
tion when the cart-pole system was controlled by a well­
trained GRNN system starting at the initial state:
0(0) = 0, e(O) = 0, x(O) = 0, .x-(O) = O. We also test the
adaptation capability of the trained GRNN with the
second fitness function. The curve of angular deviations
in Fig. 12 shows that the G RNN brought the pole back
to the centre position quickly after the disturbance
f = 20 N was given at the 10th second. Figs 13 and 14
show, respectively, the simulation results produced by
the trained GRNN when we reduced the pole length
to I = 0.25 m, and doubled the mass of the cart to
/11 = 2 kg. The results also show the good control and
adaptation capabilities of the trained G RNN with the
second fitness function in (9) in the cart-pole balancing
system. Comparing Fig. 13 to Fig. 9, we find that the
GRNN trained by using the second fitness function in
(9) is more robust than that by using the first fitness
function in (8).

In other simulations we tried to reduce the time limit
TI M E to 50 from 100 and kept the other learning para-

403530105
-5L--~-~=__-c'::_-__=------:~--=--___:=_______:

o 15 20 25
Time(second)

Figure 10. Angular deviation of the pole resulted by a trained
GRNN with FlT(I) = I/lr(I)1 when cart mass is doubled
from I kg to 2 kg.

position quickly after the disturbance was given. In this
test, the G RNN required no further trials for re­
learning. We also changed the parameters of the cart­
pole system to test the robustness of the GRNN. We
first reduced the pole length I from 0.5 m to 0.25 m.
Fig. 9 shows the simulation results produced by the
GRNN. It is observed that the trained GRNN can
still balance the pole without any re-Iearning. In another
test, we doubled the mass of the cart m to 2 kg from I kg.
Fig. 10 shows the simulation results produced by the
GRNN. Again, the results show that the GRNN can
keep the angular deviations within the range [_12°,
+ 12°] without any re-learning. These robustness tests
show that no further trials are required to re-Iearn a

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

246 C» T. Lin et al.

5'r--~-~--~-~-~----'--~--'

< <

3 3

2

,
~ 0 ~ .I.,.,~...... ...g ,'" .~

.,

2

1

~ o,k<_'VI.-.."..,....."."""...."...""".....".'VIA~"""-v\.-'......"AV"""""''''''VY\'''''''''''''
III

-1

·2 -2

..
·3

..

Figure 12. Angular deviation of the pole resulted by a trained
GRNN with FlT(t) = I/li(t)1 x tlTlME after a distur­
bance is given,

3530105

-5L-_~__~_~__~_~__~_~~_.J
o 15 20 25

Time (18COl'Id)

Figure 14. Angular deviation of the pole resulted by a trained
GRNN with F1T(t) = I/li(t)1 x tl TlMl: when cart mass is
doubled from I kg to 2 kg.

353015 20 25
Time (second)

105

.,
-2

2

References
ADLER, D., 1993, Genetic algorithms and simulated annealing: a mar­

riage proposal. Proceedings of the IEEE International Conference OIl

Neural Networks, Vol. II. San Francisco, CA, pp. 1104-1109.
ANDERSON, C. W., 1986, Learning and problem solving with multilayer

connectionist systems. PhD thesis, University of Massachusetts;
1987, Strategy learning with multilayer connectionist repre­
sentations. Proceedings of the Fourth International Workshop on
Machine Learning, Irvine, CA, pp, 103-114.

BARTO, A. G., and ANANDAN, P., 1985, Pattern-recognizing stochastic
learning automata. IEEE Transactions on Systems. Man and Cyber­
netics. 15. 360-375.

the GA-based reinforcement learning algorithm was
derived for the GRNN. This learning algorithm pos­
sesses the advantage of other hybrid GAs; hybridizing
a GA with algorithms currently in use can produce an
algorithm better than the GA and the current algo­
rithms. The proposed reinforcement learning algorithm
is superior to the normal reinforcement learning
schemes without using GAs in the global optimization
capability, and superior to the normal GAs without
using temporal difference technique in learning efficiency
for reinforcement learning problems. Using the pro­
posed connectionist structure and learning algorithm,
a neural network controller that controls a plant and a
neural network predictor that models the plant can be
set up according to a simple reinforcement signal. The
proposed GRNN makes the design of neural network
controllers more practical for real-world applications,
because it greatly lessens the quality and quantity
requirements of the teaching signals, and reduces the
long training time of a pure GA approach. Computer
simulations of the cart-pole balancing problem
satisfactorily verified the validity and performance of
the proposed GRNN.

<0353015 20 25
Time (second)

105
-5L...-_-,--~-~--~-~-~--~_.J

o

Figure 13. Angular deviation of the pole resulted by a trained
GRNN with FIT(t) = I/li(t)1 x tlTlME when the half­
length of the pole is reduced from 0.5 m to 0.25m.

5r---'---'--~~-'---'-----'--~--'

..

<

3

6. Conclusion

This paper describes a genetic reinforcement neural net­
work (GRNN) to solve various reinforcement learning
problems, By combining the temporal difference tech­
niquc, thc gradient descent method and genetic algo­
rithms (GAs), a novel hybrid genetic algorithm called

meters unchanged. After computer simulations, the
results also show the good control and adaptation cap­
abilities of the trained G RNN in the cart-pole balancing
system. However, on average, the learned best action
network is not so good in angular deviation as those
in the above simulations using TIME = 100.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

GA-hased reinforcement learning for neural networks 247

BARTO, A. G .. and JORDAN, M. I., 1987, Gradient following without
backpropagution in layered network. Proceedings of the lnterna­
tional Joint Conference on Neural Networks, San Diego, CA, Vol.

II, pp. 629-636.
BARTO, A. G .. SUTTON, R. S., and ANDERSON, C. W., 1983, Neuron­

like adaptive elements that can solve difficult learning control pro­
blem.IEEE Transactions on Svstcrns. Alan ond Cybemetics, 13,834­
847.

BERENJI, H. R., and KHEDKAR, p .. 1992, Learning and tuning fuzzy
logic controllers through reinforcements. IEEE Transactions on
Neural Networks, 3, 724-740.

DAVIS, L., 1991. Handbook: of Genetic Algorithms (New York: Van

Nostrand Reinhold).
GOLDBERG. D. E.. 1989. Genetic Algorithms in Search, Optimization

ami Machine Leurning (Reading, MA: Addison-Wesley).
HARP, S., SAMAD, T., and GUHA, A., 1990, Designing application­

specific neural networks using the genetic algorithm. Neural
In/ormation Processing Systems. Vol. 2 (San Mateo, CA: Morgan
Kaufman),

HOLLAND,J. H., 1962, outline for a logical theory of adaptive systems.
Journal of the Association for Computing Machinery, 3, 297-314;
1975. Adaptation in Natural and Artificial System (Ann Arbor, MI:

University of Michigan).
LAWLER, E. L., 1976. Combinatorial Optimization: Networks and

Matroids (New York: Holt, Rinehart and Winston).
LUENBERGER, D. G., 1976, Linear lind Nonlinear Programming (Read­

ing, MA: Addison-Wesley).
MICHALEWICZ, Z" and KRAWEZYK, J. B., 1992, A modified genetic

algorithm for optimal control problems. Computers and Mathema­
tical Applications. 23, 83-94.

MONTANA, D., and DAVIS, L., 1989, Training feedforward neural net­
works using genetic algorithms. Proceedings of the International
Joint Conference on Artificial Intelligence. pp. 762-767.

MORIARTY, D. E., and MIIKKULAINEN, R., 1996, Efficient reinforce­
ment learning through symbiotic evolution. Machine Learning. 22,
11-32.

PETRIDIS, V., KAZARLlS, S., PAPAIKONOMOU, A., and FILELlS, A.,
1992, A hybrid genetic algorithm for training neural networks. Arti­
ficial Neural Networks 2. edited by I. Aleksander and J. Taylor,
(North-Holland), pp. 953-956.

RUMELHART, D., HINTO, G., and WILLIAMS, R. J.. 1986, Learning
internal representation by error propagation. Parallel Distributed
Processing, edited by Rumelhart, D., and McClelland (Cambridge,
MA: MIT Press), pp. 318-362.

SCHAFFER, J. D., CARUANA, R. A., and ESHELMAN, L. J" 1990, Using
genetic search to exploit the emergent behavior of neural networks.
Physico D, 42, 244-248.

SUTTON, R. S., 1984, Temporal credit assignment in reinforcement
learning. PhD thesis, University of Massachusetts, Amherst, MA,
USA; 1988, Learning to predict by the methods of temporal differ­
ence. Machine Learning, 3, 9-44.

TSINAS, L. and DACHWALD, B., 1994, A combined neural and genetic
learning algorithm. Proceedings of the IEEE International Confer­
ence on Neural Networks, vol. I, pp. 770-774.

WERBOS, P. J., 1990. A menu of design for reinforcement learning over
time. Neural Networks for Control, edited by W. T. Miller, III, R. S.
Sutton, and P. J. Werbos (Cambridge: MIT Press), Chapter 3.

WHITLEY, D., DOMtNIC, S., DAs, R., and ANDERSON, C. W" 1993,
Genetic reinforcement learning for neurocontrol problems. Machine
Learning, 13, 259-284.

WHITLEY, D" STARKWEATHER, T" and BOGART, c., 1990, Genetic
algorithm and neural networks: optimizing connections and connec­
tivity. Parallel Computing, 14,347-361.

WILLIAMS, R, 1., 1987, A class of gradient-estimating algorithms for
reinforcement learning in neural networks. Proceedings of the
International Joint Conference on Neural Networks, San Diego.
CA, Vol. II, pp. 601-608.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

5:
01

 2
8

A
pr

il
20

14

