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Abstract. Conventional robot control schemes are basically model-based methods. However, exact
modeling of robot dynamics poses considerable problems and faces various uncertainties in task
execution. This paper proposes a reinforcement learning control approach for overcoming such
drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied
stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a
two-link robot arm is simulated to verify the control design. The simulation results confirm that
even without information related to the robot dynamic model and environment states, operation
rules for simultaneous controlling force and velocity are achievable by repetitive exploration.
Hitherto, however, an acceptable performance has demanded many learning iterations and the
learning speed proved too slow for practical applications. The approach herein, therefore, improves
the tracking performance by combining a conventional controller with a reinforcement learning
strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link
direct-drive robot manipulator using the proposed method.
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1. Introduction

Industrial robots are extensively employed in factories for welding, painting and
for conveying materials. At present, attempts to apply them to more complex tasks
such as assembling, grinding and deburring are underway. It is desirable for a
robot manipulator to acquire skills and operate in an unstructured and uncertain
environment autonomously. In such applications, robots must react more closely
with the environment and the inclusion of learning and adaptation in robot motion
control is therefore necessary. Conventional robot dynamic control schemes are
basically model-based approaches [1, 11]. They assume the dynamic model of
the manipulator and the environment states (shape and stiffness) are either known
for the designer or can be estimated on-line, although during execution it is not
always practically possible. Such model-based control schemes share two com-
mon problems: 1) the uncertainties in the dynamic modeling of the manipulator
and 2) the uncertainties in the environment states.
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Recently, learning control of robot manipulators has been investigated by
many researchers [4, 9]. Learning control is a control method that can achieve
a desired level of control performance when a priori information concerning
the system is unknown or incompletely known. In this approach, performance
is improved by iterative practice. Miller et al. [9] presented a neural network
based learning control design for dynamic control of an industrial robot. Gulla-
palli et al. [4] applied reinforcement learning control for acquiring robot skills
and demonstrated its capacity to learn nonlinear control functions. Song and
Chu [11] employed reinforcement learning for force tracking with an industri-
al robot. Even with no information about the environment states available for
control design, satisfactory force tracking results were obtained. Their experi-
mental results demonstrated the controller’s learning capacity under environment
variations. But in that work, the learning controller was designed to deal with
the uncertainties in the contace environment alone. To extend a solution to the
problem, this study proposed a reinforcement learning control design that not
only deals with environment states but also the dynamics of a two-link robot
manipulator. Those uncertainties mentioned above will not occur in such cir-
cumstance. Moreover, since the applied stochastic reinforcement learning algo-
rithm can estimate the optimal action for rendering the desired response [7],
the performance of the robot control system will be optimized for a repetitive
trajectory. However, because the learning speed proved to be very slow, apply-
ing the reinforcement learning scheme to real-world problems was a problem.
For practical applications, an alternative strategy is proposed, which involves
combining a conventional PID controller with the reinforcement scheme to deal
with uncertainties and improve control performance under system-model vari-
ation. The rest of this paper is organized as follows. Section 2 introduces the
reinforcement learning control structure. Section 3 describes a controller design
for a two-link direct-drive manipulator. Section 4 presents the simulation results.
Practical experimental results, given in Section 5, demonstrate the feasibility of
reinforcement learning in real-world applications. Section 6 presents conclusion.

2. Reinforcement Learning

Figure 1 depicts the basic concepts of reinforcement learning. At time step t, the
controller receives a vector of state inputs x(t) from the environment X ⊆ Rn,
where R is the set of real numbers. The controller provides an output y(t) ∈
Y ⊆ Rm based on the current control law y(x). The critic evaluates the out-
put y(t) in the context of input x(t) and sends to the controller an evalua-
tion signal r(t) ∈ R. That signal is termed reinforcement. The reinforcement
r(t) is determined by the critic according to an external reinforcement function
r(x(t), y(t)) ∈ R. It is assumed that a unique function y∗(x) exists which opti-
mizes the reinforcement over the input space. That function y∗(x) is termed the
optimal law. Hence the objective of reinforcement learning is to learn an optimal
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Figure 1. Reinforcement learning control structure.

controller such that for each input x(t) an optimal performance evaluation r is
returned. Therefore, there are two main issues pertain to reinforcement learning:
the first to construct a critic that fits control purposes and contains adequate
information for performance evaluation, and the second to determine a method
of updating the controller to improve performance. For tasks such as playing
chess or devising an inverted pendulum, where the final results are influenced by
a multiple sequence of previous control actions, the first issue becomes how to
translate an overall performance evaluation of a series of control actions into an
immediate performance evaluation of particular control actions [3]. Sutton [15]
proposed an adaptive heuristic critic and temporal difference to solve this prob-
lem. In this study, however, because the controller is immediately provided with
a performance evaluation for each selected control action from the environment
and these evaluation signals are directly employed to improve the control per-
formance, the focus will be on the second problem.

To improve performance, it is necessary to determine the gradient of the
reinforcement function in terms of control actions for adjusting the controller’s
parameters. Since the reinforcement function is unknown to the controller, rein-
forcement learning algorithms are acquired for estimating the gradient of the
reinforcement value. Werbos [16] employed reinforcement learning algorithms
in two main approaches to find the gradient: 1) the indirect approach, where first
the environment is identified before utilizing it to train the controller, and 2) the
direct approach, which is the one selected for this study.

In the direct approach, the controller actively explores the control action space
to acquire gradient information about the reinforcement function by comparing
the reinforcement values in that space. This process is frequently termed stochas-
tic reinforcement learning. Earlier direct approaches, such as learning automata
[10] and the associative reward-penalty algorithm [4], provided the controller

JINT1393.tex; 21/01/1998; 9:37; v.7; p.3



224 K.-T. SONG AND W.-Y. SUN

with only discrete action space and were not satisfactory for many practical con-
trol applications requiring continuous control signals. Gullapalli [7] proposed a
stochastic reinforcement learning algorithm for a learning function with contin-
uous outputs. That algorithm is based on the stochastic real-valued (SRV) unit.
It is in two parts, unit 1 which is the learning element, producing an output
that is a real-value function of the inputs, and unit 2 which is the reinforcement
predictor, estimating the expected value of the reinforcement signal. Both parts
learn simultaneously in real-time. The algorithm is stochastic, requiring random
actions that might lead to improved performance to be tried. To enable such
exploration, the output of unit 1 µ is treated as a mean, and that of unit 2 σ
is the standard deviation, which can be interpreted as extent search for a better
action. These two parameters are adjusted in the learning process to increase the
probability of producing the optimal control action. The algorithm does this by
maintaining the mean of the output an estimate of the optimal control action,
such that it has the minimum reinforcement from the environment. The random
search is accomplished by taking the normal distribution N(µ, σ) for each input,
which yields a random variable a which is then mapped by an output function f
to the control output y.

3. Design for Robot Dynamic Control

Figure 2 illustrates a dynamic control design based-on stochastic reinforcement
learning of a two-link robot manipulator. Since the original SRV structure is for
a single output learning element, in this study two of them are placed parallel to
learn, respectively joint 1 and joint 2 torque. Because only single performance
evaluation is required, only one reinforcement predictor (unit 2) is employed.
The learning algorithms for both units are described below.

3.1. THE REINFORCEMENT PREDICTOR

Unit 2 predicts (tracks) the evaluation feedback. Typically an ANN can be used
for this purpose. The predicted critic can be expressed as:

r̂(k) = Ne[V, x(k)], (1)

where Ne represents the critic network, [x(k), r̂] is the input-output pair at time
instant k, and V the weight matrix of the ANN. The least mean square (LMS)
method [17] usually serves as the learning rule for adjusting the weight param-
eters. The cost function is:

E =
1
2

∑
k

[
r(k + 1)− r̂(k)

]2
. (2)

The updating rule is based on the gradient descent method:

v(k + 1) = v(k) + ∆v(k) (3)
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Figure 2. Robot dynamic control design using stochastic reinforcement learning.

and

∆v(k) = β
(
r(k + 1)− r̂(k)

)∂r̂(k)
∂v(k)

+ λ∆v(k − 1), (4)

where β is the learning rate, λ is the momentum constant added to speed-up
convergence, which are positive and less than one; v is an element of V .

3.2. THE LEARNING ELEMENT

Unit 1 is the learning element, whose function is controller in this study. Its
output, in general, can be expressed as:

y(k) = Nc
[
W,x(k)

]
, (5)

where Nc represents the controller network, and W the weight matrix. Since
the aim is to obtain optimal control actions in terms of the critic r, the weight
parameters are adjusted by:

ω(k + 1) = ω(k) + ∆ω(k) (6)

and

∆ω(k) = α
∂r(k + 1)

∂ω(k)
= α

∂r(k + 1)

∂µ(k)

∂µ(k)

∂ω(k)
, (7)

where α is the learning rate, and ω an element of W . Because the system model
is unobtainable, it is not possible to calculate the derivative of critic r relative
to the mean µ, (∂r(k + 1)/∂µ(k)). Gullapalli [7] proposed a random search
approach for this problem. Suppose the system critic is a value between 0 and 1,
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and it is assumed that a smaller value represents the better performance, this then
yields:

∂r(k + 1)

∂µ(k)
=
(
r̂(k)− r(k + 1)

)a(k) − µ(k)

σ(k)
. (8)

This implies that when the actual critic is smaller than the predicted critic, or
when r̂(k)−r(k+1) > 0, the direction of searching is correct, and therefore the
mean value µ(k) is adjusted toward a(k). Conversely, if the actual critic is larger
than the predicted critic, then µ(k) is adjusted away from a(k). As pointed out
in [7], the fraction in the above equation may be regarded as normalized noise.
If the noise causes the unit to receive a reinforcement signal that is less than
the expected reinforcement, then it will be desirable for the unit to have an
action closer to the current action. It should therefore update its mean action
in the direction of the noise. On the other hand, if the noise causes the unit to
receive a reinforcement signal that is more than the expected reinforcement, then
it should update its mean action in the opposite direction. Standard deviation σ
can be treated as search amount; when r̂ is smaller, then the system performance
improves, and the control action becomes closer to the ideal value, such that the
search amount should decrease. This implies the standard deviation σ becomes
smaller. This signifies the function s linking r̂ and σ should be a monotonically
decreasing function of r̂.

In practice, memory is an important element in learning control design. The
learning controller must remember the correct mapping of the input and output
variables via learning. However, the SRV unit solves only reinforcement learn-
ing problem, it is non-associative. Many structures for associative memory are
available, such as a boxes system [8], a cerebellar model articulation controller
(CMAC) [2], artificial neural networks (ANNs) and fuzzy-neural networks. In
these approaches, the boxes system and a CMAC require proper partition of the
input space, and a fuzzy-neural network structure requires setting up of the fuzzy
rules and membership functions [14]. ANNs have been utilized for associative
memory in many applications. If the hidden layer elements are adequate, any
nonlinear mapping can be accomplished by a three layered feedforward network.
Its generalization property makes ANN a popular choice, and it was thus applied
as the learning structure herein and trained by an error-backpropagation algo-
rithm [12]. Figure 3 illustrates the ANN structure in the proposed reinforcement
learning controller. One neural network is designed to work as the reinforcement
predictor, which gives the predicted critic. Another neural network is the con-
troller, which produces the control torques to the robot manipulator. The ANNs
possesss two hidden layers, each of which has twelve processing elements. There
are six inputs for the ANN: force error, velocity error, angular position of joint 1
and 2 (θ1 and θ2), angular velocity of joint 1 and 2 (θ̇1 and θ̇2). The control
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Figure 3. ANN structure for reinforcement learning.

actions are the torques for the two joint motors. The activation functions of
neuron f1 and neuron f2 are

f1(x) = f2(x) =
1

1 + e−2x . (9)

The activation functions f3 and f4 are

f3(x) =

(
1− 2

1 + e−x

)
× 6, (10)

f4(x) =

(
1− 2

1 + e−x

)
× 3. (11)

The functions s1 and s2 are linear function

s1(x) = s2(x) = 0.15x. (12)

4. Simulation Results

To verify the proposed design, computer simulations for force tracking control
of a two-link robot arm were carried out. The SCARA type robot manipulator
possesses two parallel links, the length and mass of each of which are: l1 = 0.4 m,
l2 = 0.3 m,m1 = 15 kg,m2 = 3 kg. The environment was modeled as a stiffness,
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which is to say that the normal force is proportional to the difference between
the environment surface position and the set-point position of the end-effector.
Under the condition of no prior information about neither the robot model nor
the environment, the controller was set to learn the relationship between the
dynamics of the robot arm and the stiffness of the environment. The dynamic
model employed in these simulations is described below. A robot manipulator
with two parallel-link (without gravity terms), yields:

τ = M(Θ)Θ̈ + V (Θ, Θ̇), (13)

where M(Θ) is the inertial term, and V (Θ, Θ̇) the nonlinear term:

M(Θ) =

[
l22m2 + 2l1l2m2 cos θ2 + l21(m1 +m2) l22m2 + l1l2m2 cos θ2

l22m2 + l1l2m2 cos θ2 l22m2

]
, (14)

V (Θ, Θ̇) =

[−m2l1l2θ̇
2
2 sin θ2 − 2m2l1l2θ̇1θ̇2 sin θ2

m2l1l2θ̇
2
1 sin θ2

]
. (15)

In a Cartesian coordinate system, the dynamics equation can be expressed as:

f = Mx(Θ) + Vx(Θ, Θ̇), (16)

where

f = J−T (Θ)τ,

Mx(Θ) = J−T (Θ)M(Θ)J−1(Θ),

Vx(Θ, Θ̇) = J−T (Θ)
(
V (Θ, Θ̇)−M(Θ)J−1(Θ)J̇(Θ)Θ̇

)
.

In the simulations, the desired contact force and velocity were: Fd = 1.0 N, Vd =
5 cm/s, respectively. In simulation of robot compliant motion, the performance
can be characterized by the actual contact force and the moving velocity of the
tool tip. Therefore, the reinforcement signal was designed by taking into account
the tracking errors of specified desired contact force and moving velocity:

r =
1
2

(
|Fd − F |+

∣∣∣∣Vd − V5

∣∣∣∣). (17)

If r exceeded 1, the failure signal would be recognized, preventing damage to the
tool, and the system would reset to the initial setting (θ1 = 45◦, θ2 = −45◦). The
stiffness of the contact environment was 100 N/m. The control design was tested
in two environmental configurations: 1) a 50 cm line path and 2) in a circular
path of 8 cm radius. Only the results for circular path, which is more difficult to
track, are presented here. Figure 4 illustrates the simulation results. Figure 4(a)
indicates the length of time the robot arm had moved before the failure occurred.
If a failure did not occur during the execution of the specified task, then the
robot was able to complete the circular path. Otherwise, it would return to the
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Figure 4. Simulation result of robot tracking control of a two-link robot manipulator:
(a) execution time before failure, (b) trajectory of reinforcement signal, (c) force response,
(d) velocity response.

initial position and start a new trial. Note that it took 9 seconds for the robot to
complete the circular path. We see from the figure that after about 6000 trials,
the robot was able to finish the task without failure. This means the dynamics of
the two-link robot manipulator as well as the contact environment dynamics was
learned by the proposed reinforcement learning controller. Figure 4(b) shows
the reinforcement signal trajectory. It is practically zero during the execution
of the final trial and this indicates the desired control optimization has been
achieved. Figures 4(c) and (d) depict force and velocity responses, respectively.
Figure 5 illustrates the trajectories of joint 1 and joint 2. Figure 6 shows the
output torques of each joint. The above simulation results confirm that the neural
network has learned the dynamic relationship between the robot manipulator and
the environment. However, the initial instability and slow learning speed are
great problems in practical applications.
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Figure 5. Simulation result of trajectories of each joint.

Figure 6. Simulation result of control torques of each joint.
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5. Experimental Results

To demonstrate the feasibility of reinforcement learning control scheme in real-
world applications, a new control scheme is proposed for applying reinforcement
learning to dynamic control of a robot manipulator. Figure 7 depicts the proposed
control system block diagram. Conventional PID controllers were implemented to
control the two-link robot arm for tracking the desired trajectory with preliminary
performance. Problems caused by nonlinearity and uncertainties in robot tracking
control are well recognized features, as is that load-disturbance may deteriorate
performance. The control scheme herein proposed improves the tracking per-
formance by adding an on-line learning controller. The inputs of reinforcement
learning controller were designed to include current position error e(k), position
error of the previous sampling instant e(k − 1), two-time-step previous position
error e(k − 2), the previous control output u(k − 1), joint angular position θ(k)
and joint angular velocity θ(k), where e(k), e(k − 1), e(k − 2) and u(k − 1)
were also the inputs of the PID controller. The tuned PID controller stabilizes the
system when the system is initialized. In the following successive control cycles,
the learning controller estimates the output of the PID controller and compen-
sates with an adaptive torque. When the system dynamics are learned through
repetitive practicing, the control will be taken over by the reinforcement learn-
ing controller. The training is based on SRV unit and the convergence theorem
applies [6]. Figure 8 depicts the experimental setup. A laboratory-made two-link
SCARA type manipulator was driven by two direct-drive motors. The maximum
torque of direct-drive motors are 60Nt −m and 15Nt − m, respectively. The
control scheme was implemented on a dSPACE DSP controller card. A PC/AT-
486 served as the host computer. Two experiments were conducted to justify the
control performance can be improved using the proposed control scheme.

5.1. TRACKING CONTROL OF ONE-LINK MANIPULATOR

In this experiment, only the second link of the manipulator was used. The tra-
jectory for this link is given below:

θ̇d =


180◦ × kT × 2, if kT < 0.5,
180◦, if 0.5 6 kT < 1.0,
180◦ − 180◦ × (kT − 1)× 2, if 1.0 6 kT < 1.5,
0◦, if 1.5 6 kT ,

(18)

θd = θod + θ̇dT, (19)

where T is the sampling period, which was 1 ms in the experiment; k repre-
sents the sample instant; θ̇d is the desired angular velocity; θod is the goal value
of previous time step. Since for these experiments only position tracking was
implemented, a simplified ANN structure was employed. The ANN possessed
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Figure 7. Block diagram of reinforcement learning control experiment.

Figure 8. Experimental set-up.
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Figure 9. Experimental result of one-link manipulator using PID controller alone.

Figure 10. Experimental result after learning.
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Figure 11. Comparison of error before (using PID controller alone) and after learning.

one hidden layer with ten processing elements. Since this was a trajectory track-
ing task, the critic was designed to be:

r =
|θd − θ|

1.5
. (20)

The PID controller was designed as follows:

U(s)

E(s)
= Kp +Ki

1
s

+Kds, (21)

U(k) = U(k − 1) +Kp
(
e(k) − e(k − 1)

)
+K ′ie(k) +

+K ′d
(
e(k) − 2e(k − 1) + e(k − 2)

)
, (22)

where K ′i = KiT , K ′d = Kd/T . A set of controller coefficients, Kp = 3.0,
K ′i = 0.005, K ′d = 1.5 were set to give preliminary performance. After tuning
the PID controller, a 3 kg load disturbance was added to the system. Figure 9
shows the experimental result using the PID controller alone. It can be seen that
there was a lag in the beginning and the arm oscillated. Figure 10 illustrates
the experimental results after 100 training iterations. It can be seen from the
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Figure 12. Experimental result of trajectory tracking after 180 learning iterations of the
two-link robot manipulator.

figure that the learning controller not only eliminated the disturbance but also
demonstrated enhanced rise time. Figure 11 illustrates the comparison of the
position error before and after learning.

5.2. TRACKING CONTROL OF TWO-LINK MANIPULATOR

In this experiment, the two-link manipulator was commanded to follow the
desired trajectory given below:

θd = −90◦ × cos(180◦kT ). (23)

In this case, the coefficient Ki = 0, therefore yielding

U(s)

E(s)
= Kp +Kds, (24)

U(k) = Kpe(k) +K ′d
(
e(k)− e(k − 1)

)
. (25)

The settings

Kp =

(
3
1

)
and K ′d =

(
1.5
0.5

)
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Figure 13. Convergence of average error in the experiment.

were intended to provide preliminary responses. In the experiments, during 0◦ <
θ1 < 15◦, a 20Nt−m noise torque was added to motor 1, and during 0◦ < θ2 <
15◦, a 5Nt−m noise torque added to motor 2. Figure 12 shows the experimental
results of tracking performance after 180 training iterations. Figure 13 gives the
experimental result of average error defined below:∑

k |θd(k)− θ1(k)|+ |θd(k) − θ2(k)|∑
k

, (26)

where k is the sampling numbers. Notably, the average error decays after repeti-
tive learning, decreasing from 5.4◦ before learning (using PID controllers alone)
to 3.5◦ after learning. As the experiments demonstrate, the learning controller
improves performance within 180 learning cycles.

6. Conclusion

In this paper a reinforcement learning control design has been presented for
dynamic control of a two-link robot manipulator. The advantage of the applied
stochastic reinforcement learning structure is that desired control actions can be
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found for a specific task by actively exploring the control space, without requir-
ing knowledge of system dynamics. The learning controller can achieve the
desired performance via repetitive learning. Simulation results show that robot
force and position tracking can be achieved simultaneously using the proposed
reinforcement learning method. The controller learned the two-link robot dynam-
ics and the contact-environment states. However, because the learning speed for
complex nonlinear characteristics was slow, for more practical, real-world appli-
cations, the reinforcement learning scheme was combined with a conventional
PID controller to enhance convergence speed and improve system performance.
Practical experiments on a two-link direct-drive robot demonstrated the capac-
ity of reinforcement learning to eliminate load disturbance applied to the robot
manipulator. Moreover, the improved performance using the proposed learning
control scheme was justified when compared with using a PID controller alone.
The need for a more efficient learning structure to expedite the convergence of
the learning phase remains a task for future investigation.
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