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Abstract. We show that it is convenient to use "gauge" transformations (sometimes 
called explicit B/icklund transformations) to generate new solutions for the KP  
hierarchy. Two particular kinds of gauge transformation operators, constructed 
out of the initial wave functions, are of fundamental importance in this approach. 
Through such gauge transformations, a very simple formula for the tau-function is 
obtained, encompassing and unifying all kinds of existing solutions. The corres- 
ponding free fermion representation and Baker functions for the new z function can 
also be constructed. 

1. Introduction 

There are several different ways to formulate the mathematical problem of the KP  
hierarchy equations. For our purpose it is most convenient to adopt the pseudo- 
differential operator formalism developed by Sato and his school [-1-5]. By the KP  
hierarchy we mean a particular infinite set of coupled nonlinear equations for ui 
(i = 2, 3 . . . .  ), where each ul = u i (x l ,  x2, x3, �9 �9 .) depends on one "spatial" vari- 
able xl and infinitely many "time" variables x2, x3 . . . . .  These coupled equations 
are to be generated in the following way [2]. 

Let A denote the pseudo-differential operator 

A =_ ~ + u2~ -1 + u3 c~-2 + u4~? -3 + . . . .  (1.1) 

where ~ = ~?/OXx, and ~?-1 is a suitable inverse of 8, obeying the generalized Leibniz 
rule 

(n  + 1 - 1)! 
#-"o f (x1 )  = ~, ( - l) / T ! ~  -----1)i f ( l ) ( X l ) a - n - l '  (n > 0).  (1.2) 

/ = 0  

For  an operator multiplication we put a "o" in between, e.g., 0 of=_ # f + f 3  o. Now 
let 

B, =- [ A " ] + ,  (1.3) 
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where the symbol [~2]+ denotes the differential operator part of a pseudo- 
differential operator f2. Later on we will often symbolically represent B, as 

B , =  ~ b,i0 j with b , , =  1, b, ,-1 = 0 ,  (1.4) 
j=0  

where each b,y is a specific functional of u2, u3, �9 �9 �9 u,_j and their spatial derivat- 
ives. 

Now we impose a generalized Lax equation on A: 

0A 
- [B , ,  A ] ,  (n = 2, 3 . . . .  ) ,  (l .5) 

0Xn 

which, upon expansion into Laurent series in 0-1, gives rise to an infinite set of 
equations of the form [3] 

0ui a functional of u2, Uz . . . . .  ui+,-1 and their 
0x, - spatial derivatives, (i, n = 2, 3 , . . .  ) (1.6) 

This infinite set of equations is called the KP hierarchy. 
However, it is easy to derive from (1.3) and (1.5) the following infinite set of 

operator equations: 

0Bm 0B, 
- -  + [B , , ,B , ]  = 0 (m,n = 2,3 . . . .  ) ,  (1.7) 

Ox, OXm 

which is called the Zakharov-Shabat  (ZS) equation [6]. Although (1.7) is a conse- 
quence of (1.5), it turns out [2, 4] that the whole set of equations in (1.7) is exactly 
equivalent to the whole set of equations in (1.6). Hence the KP hierarchy can be 
alternatively represented by the ZS equation (1.7). 

If we can find a set of functions {U2, ~/3 . . . .  } and hence a corresponding set of 
differential operators {B2,  B 3 . . . .  } satisfying (1.7), then we have a solution to the 
KP hierarchy. But it has been shown (see, for example, ref. 3) that any such set of 
{Uz, U3 , . . . }  can be generated from a single function z(x), the so-called tau- 
function, such that 

9 2 
u2 = ~ logz , (1.8a) 

1 [  0 2 0 3 ] 
u 3 = 2  Ox~x2 ~x~ lo g z ,  (1.8b) 

etc. Thus we will alternatively represent a solution to the KP hierarchy by its 
corresponding tau-function. 

The purpose of this paper is to carefully study the ZS Eq. (1.7) as well as its 
associated linear system 

0 
- -  4 ) ( x l ,  x2 . . . .  ) = B , ( ~ ( X l ,  x2 . . . .  ) ,  (n = 2, 3 . . . .  ) ,  (1.9) 
OXn 

aiming at the establishment of a general constructive procedure for generating 
a new solution to the KP hierarchy. In contrast to some other existing approaches 
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[2, 3], our method in the following will need not concern the Lax Eq. (1.5) itself, 
[and consequently nor its associated eigenvalue equation 

Aw(x; 2) = 2w(x; 2)] . (1.10) 

What we call the eigenfunction, w(x, 2), is commonly called the Baker function [7]. 
The reason to concentrate solely on the ZS equation is that it represents a zero- 
curvature condition, which enables us to make a direct extension to the present 
case of a gauge transformation method [8-11] that has been successfully applied to 
a broad class of 1 + 1 dimensional nonlinear evolution equations. 

The basic idea of the gauge transformation method is the following. Suppose 
{B~ ~ n = 2, 3, . . . } already satisfies (1.7). Let 

OTo T -a (1.11) B(~ 1) = T o Be. ~ o T -  1 + ~ 

where T = T(x l ,  x2 . . . .  ) is any reasonable pseudo-differential operator. Then 
{B(~ 1)} will necessarily satisfy (1.7) also. Note that although B (~ are differential 
operators, the right-hand side of Eq. (1.11) will in general not be a purely differen- 
tial operator. But {B~, 1)} represents a valid new solution to the KP hierarchy only if 
all B~, 1), as defined by (1.11), happen to be purely differential operators. Through 
some educated guesses we have managed to find two particular constructions of 
the desired operator T that will make all B~, 1) of(1.11) purely differential operators. 
[Some special cases of these transformations have been considered in ref. 4 and for 
the KdV system in ref. 11.] By repeatedly applying these two kinds of gauge 
transformations on any given input solution, one can generate all sorts of new 
solutions to the KP hierarchy. 

Such a procedure is very elementary both conceptually and computationally, 
yet is powerful enough to encompass all kinds of solutions that have been known 
so far. For  example, both the Wronskian solutions [12-14] and the Nakamura 
determinant solutions [15, 16] can now be derived in a completely unified fashion, 
while originally they were separately discovered through some kind of conjectures. 
See Sect. IV. 

In the next section, we describe how these two kinds of gauge transformation 
operators are constructed. In Sect. III, we analyze the results of successive applica- 
tions of such gauge transformations and obtain an exceedingly simple formula for 
the tau-function of a general new solution, which represents the main achievement 
of our work. Comparisons with some other methods are discussed in Sect. IV. In 
Sect. V, we discuss some relations to the Baker function and give an interpretation 
in terms of free fermion representations. 

II. Gauge  Transformat ion  Operators  

Suppose r is a known wave function for {B~,~ i.e., a known solution to the 
equation 

~3q~(~ - B~~ (~ (n = 2, 3,.  . . ) . (2.1) 
~Xn 

Now let 

To = ~ - r162 (2.2) 
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which can also be written as 

~ o  - 4(O~o a o 4~o~- ~ . (2.3) 

[This  opera to r  was called C r u m  t rans format ion  in ref. 11.] Then, by using (2.1), it is 
easy to show that  the r ight-hand side of (1.11) is indeed a differential operator .  So 
{B(, ~) } will also satisfy the ZS equat ion (1.7) and represent  a new solution to the K P  
hierarchy. 

Fur thermore ,  for the lowest few n, we find explicitly 

B(21) = 82 + 2[u(2 ~ + (log qS(~ 

= 82 + 2u(z 1) , (2.4) 1 

, (0) B~3~) = ~ + 3[u~ ~ + (log r 1 7 6  + 3[u~3 ~ + - ~  

+ (fi(0)(9(02/~)(0)2-- ~(x~ (0)3] + 3[u~~ + (log,0(~ 

___ ~3 -t- 3u(21)0 + 3u(31) + 3U~'x ) , (2.5) 

etc., which means,  

u~ 1) = u~ ~ + (log qS(~ , 

'-F -< 
U(31) = U(3 O) q- 2LOx10x2 

(2.6a) 

Ox 3 log q5 (~ , (2.6b) 

etc. Compar ing  with Eqs. (1.8), we see that  under  the gauge t ransformat ion  

B(O) ~~ B(1) (2.7) 

where ~ o  is given by (2.2), the tau-function is t ransformed according to 

r (~ , z (1) = ~b(~ (~ . (2.8) 

In  addition, the wave function q5 (1) for the new solution {B(, 1) } can be taken simply 
as  

q S m =  ~DOS~ ~ , (2.9) 

where ~b] ~ is an  arbi t rary  wave function for {B(, ~ } different f rom q5 (~ because then 

8x, 8x, 8x, 

\~ , -x ,  7j~1 + 7~D~176176 kr ~ 7JDq~i~ = B('a)~b(1) ' (2.10) 

Having  described our first construct ion of the gauge t ransformat ion  operator ,  
(2.2), we now turn to our second construction.  This however  will call for a "conju- 
gate" linear system, to be discussed in the following. 

0f  
1 TO be economic with notations, we will use the abbreviations f~ for - -  
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F rom  a given {B,}, Eq. (1.4), we define its conjugate {/J,} by 

/~,--  ~ ( - 1 ) J + ~ a J o b , j ,  (2.11) 
j = o  

and call the following equat ion the conjugate linear system: 

0~  
-B,,~b, (n = 2,3 . . . .  ) .  (2.12) 

Ox, 

q~ is then called the conjugate wave function. It can be directly verified that the ZS 
Eq. (1.7) can be equivalently replaced by 

+ [ B , , , B , ] = O  ( m , n = 2 , 3  . . . .  ) .  (2.13) 
~Xn OXm 

Now the construct ion of our  second gauge t ransformation operator:  let 

~71 ~ ( ~  .~_ q~(O)/q~(O))- 1 , (2.14) 

which can also be written as 

(~.t I = ( ( ~ ( 0 ) -  1 o 0 o ( ~ ( 0 ) ) -  1 = ( ~ ( 0 ) -  1 o ~ - 1 o (]~(0) . (2.15) 

Now define B(, 1) by 

B(ni )=_  ~r.t I r)(o) ~ 1 1  0( / ' t l  o o n ,  o + ~  g [ 1 .  (2.16) 

Again we can show that the right-hand side of (2.16) is in fact a purely differential 
operator,  which hence represents another  new solution to the K P  hierarchy. 

F rom  (2.14) and (2.16), we find explicitly 

B(21) = ~2 + 2u(2O) + 2(log ~(~ (2.17) 

that is, 

z (~ , T a) = 4~(~ (~ . (2.18) 

Fur thermore ,  the new wave function ~b a) corresponding to {B,(, 1)} of (2.16) can be 
taken to be 

~b (1) ~-- ItYlq~(~ = ((~ -[- (]~(xO)/(~(O))- 1 ~ (0) . (2.19) 

It can be shown that the r ight-hand side of (2.19) evaluates to 

where C is some arbi t rary function of xz ,  x3,  �9 �9 satisfying the following bound-  
ary conditions [15] at xz = xc (xc is any fixed constant): 

0C 
- -  = [-~b(x~ ( ~  q~(~176 , (2.21a) 
Ox2 

~C 
- -  = [~b~2q~ ( ~  qS(x~ ) + ~b(~ + 3U(z~176176 , (2.21b) 
~x3 
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etc. These boundary conditions follow from the requirement that the new wave 
function ~b (a) of (2.19) must satisfy 

~qY~) - B~,l)q5 (1) (n = 2, 3 . . . .  ) .  (2.22) 
0Xn 

In particular, if we choose x~ = oo and assume that q5 (~ 6(~ "u.c~ and all their 
spatial derivatives vanish at x~ = oo, then C can be taken to be any numerical 
constant. We will on some future occasions choose specialized values for such 
constants, and write, for example, 

c~ + Oj / 0 '  = au + x 6yO, dxa , (2.23) 

where {qSl,~b2 . . . .  } is a prechosen set of wave functions for {B~.~ and { 6  
1, 62 . . . .  } another prechosen set of conjugate wave functions for {/~o)}. How- 
ever, in the following and throughout the paper, we will generally denote 

1 Cu + i O i 6 j d x l  simply as ~ I q~6~ (2.24) 
~ i  Xc 

for notational simplicity. 
To summarize, we have found two particular kinds of gauge transformation 

operators (called from now on the differential type ~D and the integral type ~P:,) 
which seem to be of fundamental importance for generating new solutions to the 
KP hierarchy. 

Naturally, the gauge transformation operation can be repeatedly applied, and 
will be schematically represented as 

R(O) , R(  1 ) > R( 2 ) > ) B (N) ~ n  ~ n  ~ n  - - �9 

$ $ $ $ 

(0) 6 (1) 6(2)  6(N) 

T(O) T( 1 ) 27( 2 ) 27(N) 

where the wave functions at each stage satisfy 

(2.25) 

c~ff)(1) - - B(,i) O('), 06~i) - B(,i) 6(i) , (2.26) 
0x, 0x, 

~ ( i ) =  ~.t(1)(~(i-1), 6 ( 0 =  }F(i) 6 ( I - 1 )  , (2.27) 

and each 7 j") can be of either differential or integral type (g~) or ~(/0). When 7 ~") is 
constructed out of a particular wave function ~b~- l) (or 6}~- 1)), then 

"c(i) = qS}~-l)z (i-i) (or z(i)= 6~-l)z(i-1)). (2.28) 

Also, if ~ " ) =  Y'D[~b~-I)], then 77") = 7J~[qS~-l)], and if 7 ~") = ~,[6~-1)] ,  then 

Note.  The symbol ~b (I-1) [ 6  (i-i)] actually denotes any one of infinitely many 
possible (i - 1) th stage (conjugate) wave functions. The q~(~- 1) [ 6 " -  1)] used in (2.27) 
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can be any such wave "function except q~-  ~) [ q ~ - u ] ,  since the latter will make q5 ") 
[4S ")] vanish identically. 

II1. Successive Applications of Gauge Transformations 

Let us examine the net results of successive applications of such gauge transforma- 
tions in a specific example. This will eventually enable us to write down a very neat 
general formula of the final tau-function z ~N) when the gauge transformation 
operation has been applied N times on the initial solution z (~ For the discussion in 
this section, we adopt the following special notations to reduce some possible 
confusions. {q~1,4~2,... } will denote the wave functions for B (~ and {q~l, 
4~2 . . . .  } the corresponding conjugate wave functions. After successive gauge 

n(o) u(,) __. B~2) {cq, c~j} transformations o ,  ~ ,_,, -* . . .  , will denote the (conjugate) wave 
functions for B,(J); {fli,/Ti} for B,(,2); {7,, fj} for ,,(3) o ,  , etc. We exhibit a calculation 
with three ~'D and one ~ transformations as an illustration. 

(~2 ~3 ~1 

~b3 ~1 

After the first gauge transformation, 

i;(0) ....r Z-(1) ~ ~l-f (0) , 

and the wave function cq is given by [see (2.9)] 

491((ai'~ ( i =  2,3), c < , -  ' / - ' o (4 , , ) 4 , ,  = t,4,/x 

while the conjugate wave function ~1 is given by [see (2.19) and (2.24)] 

After the second gauge transformation, 

27(i) ._> @2) = 0~2,.C(1) , 

/~3 - ~'D(~2)"s = ~2 \"2/~ ' 

1 i ~z~a �9 fll ~ ~//I (0~2) al ~2 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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After the third gauge transformation, 

75(2) _q. 75(3) ~ fl375(2) 

1 i f i3f i  1 

After the fourth gauge transformation, 

75(3) _q, @4) ~1 75(3) , 

Using (3.1)-(3.7), we have 

75(2)= ~2~175(0)= (r x -- ~b2r 

= w ( r  r 

and 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

:33 
It can be verified by separate computations that the following three different 
orderings of the three To and one Tx transformations all lead to the same 

.75(o). (3.15) 

Finally, we obtain 

75~4) (DDDI)  = Y l  f13 0~2 r 1 75(0) 
X x 

ff (~1(~1 ~ ~2(~1 

z ~3~ = /h~24 '175  ~~ (~2~3x - ~3~2x)r  ~~ 

= ( r 1 6 2  - 4 ) 2 r 1 6 2  - ~ 3 r 1 6 2  

-- ~l~i)3x~)2xx q- (p3(91xO2xx q- ~)2~)3x~)lxx)'C (0) 

~- W(q~l, q~2, (,b3) @0). (3.11) 

We have used the notation W(r q52 . . . . .  ~bN) to denote the Wronksian of 
q~l, 4~z . . . . .  CN. Substituting (3.2) and (3.3) into (3.6) and using integration by 
parts, we get 

' 

Similarly, from (3.5), (3.6), and (3.8), we have 

~1 ; N I ~2~1 - I ~3a ,  , (3.13) 

which can be further reduced to 

(~3 q~2 x __ q~2 (~1 ] 
71 fl3~2 

-- ~bl (~ )x  [(~13) i ~l(ffl -- i ~D3 (ffl 1 } . (3.14) 
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expression for the final ~(4) as given by (3.15): 

~g,('2~) (a,) 
B(O ) v.(r B(1) v,r ) ~.(L)) B(~ ) > B.  

B(O, ~.(r B(1 ) v',(~,l> B(2) ~~ B(2 ) v~(~ B(ff, 

> ~'~('/3) (j.) 
B(. ~ ~'(r B(. l) v"(~) B(n 2) 7'~(~I B(n 3) > B . .  

Thus z (4) (DDDI)  = z (4) (DDID)  = z(4)(DIDD) = z (4) ( IDDD) = (3.15). This prop- 
erty of ordering-independence is completely general, and exactly corresponds to 
the well-known permutability [17, 18] of B/icklund transformations for the 1 + 1 
dimensional integrable nonlinear equations. We note that results such as (3.10) and 
(3.11) are well known for the KdV system [11], but the expression like (3.15) seems 
to be completely new. 

In general, consider the N-step transformation 

R ( 0 ) ~  R(1) ) B(2) ) .>onD(N) (3.16) 

It can be shown by straightforward computat ion that if among the N gauge 
transformation operators T r T ( 2 ) , . . . ,  T (N), s of them are of TD type and 
r( = N - s) of them are of T:  type relative to the linear system (as opposed to the 
conjugate linear system), then the final tau-function v (N) is given by the following 
formula: 

(i) if s __> r, 

z(N) : 

X x x 

~ r  ~ r  . . .  ~ r  

. . .  

r r �9 . . ~s 

r r  . . .  es~ 
r  r  . . .  r  

�9 z (~ , (3.17a) 

(ii) if r > s, 

~(N) = 

X x X 

~1r ~&r . . .  ~ r  

. . .  

r r  "" �9 e r xx  

�9 z (~ , (3.17b) 
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where {q51, (J~2, - �9 - , 4 ) s }  is an arbitrarily chosen set of wave functions correspond- 
ing to the initial solution B~, ~ and {~bt, 4152 . . . . .  q~r} is another arbitrarily chosen 
set of conjugate wave functions corresponding to the same initial solution, while 
the symbol 5~b~q~j has been explained in (2.20), (2.21), and (2.24). 

IV. Comparisons with Results from Some Other Methods 

To recapitulate, starting from a given solution { B~, ~ } of the KP hierarchy, we first 
solve for its wave functions {q~,} and its conjugate wave functions {q~,}. Then the 
net result of applying N successive transformations on z {~ is the expression z {m 
given by (3.17). Several interesting particular cases will be discussed in this section. 

IV .a .  T h e  W r o n s k i a n  Solu t ions .  When r = 0 (N = s), 

~.(s) = m ( q ~ l ,  q~2 . . . .  ~bs)  T(0 )  , 

and when s = 0 (N = r), 

(4.1) 

T(r) = W ( ( ~ I ,  4/52 . . . .  ( ~ s ) T ( o )  . ( 4 . 2 )  

These are the well-known Wronskian solutions [12, 13] for the KP hierarchy. Our 
result here has effectively provided a simple derivation of the Wronskian solutions. 
When u," (o) = 0 (n = 2, 3, . . .  ) is taken, solutions of various types can be obtained 
[14] straightforwardly from the Wronskain formula (4.1). Here we will note only 
the familiar (exponential type) N-soliton solution and P6ppe's rational solutions 
[19]. 

Since u," co) = 0, we have o,R ~~ = ~" and we may choose z {~ = 1. The most general 
wave function qSi(x) can then be expressed as 

(oi(x) = ~ dk  W i ( k ) e  r k) , (4.3) 

where 

~ ( X ,  k) =- x l k +  x2 k2 + x3 k3 + . . . , (4.4) 

and W~(k) is an arbitrary function (or distribution) of k, while the path of integra- 
tion in the complex k-plane is also arbitrary, as long as the right=hand side of (4.3) 
produces a well-defined function $ i (x ) .  As an example, the choice 

qS(x)= S d s e  r (4.5)" 
- o o  

would lead to a solution generalizing the Airy function solution [20, 21] of the KP 
equation. 

To derive the N-soliton solution through the Wronskian formula, we may take 

W~(k) = 6 ( k  - qi) + d , 5 ( k  - Pi), (i = 1, 2 . . . .  N )  (4.6) 

and hence 

4)i(x) = e r + die ~(x'p~) , (4.7) 
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where q~ 4: pj for all i and j, and q~ 4: q~ for i 4= j. We will just  compute  v(2) as an 
illustration, 

"C(2) = W ( q ~ l ,  r  = e r162176 1 + d~e r 1 + d2e r (4.8) 
Iql + dlPa er q2 + d2p2e r ' 

where 

~i -= ~(X, Pi )  - -  ~ ( X ,  q i )  . 

Equat ion  (4.8) can be rewrit ten as 

with 

and 

(4.9) 

z(2) = er -- ql)" [1 + a l e  r + a2 er + C12ala2 er162 (4.10) 

(P~q~ --q2--q2) ( P 2 - - q ~ )  a t  = d l \ - - / ,  a 2 = d 2  q 2 -  ' (4.11) 

( P l - - P 2 ) ( q a - - q 2 )  
C12 = (Pl - q2)(ql - P2) 

(4.12) 

Thus  up to an allowable factor e r162 ( q2  - -  q l ) ,  this tau-function coincides 
with the s tandard  tau-function of the 2-soliton solution as given in ref. 2. Obvious ly  
this procedure  will also work  for higher N-sol i ton solutions. 

Some algebraic type solutions of the K P  hierarchy can also be easily obta ined 
th rough  the Wronsk ian  formula  if r  are appropr ia te ly  chosen. For  example,  we 
may  choose 

W~(k) = - e"'k ,~'(k --  qi) (4.13) 

for the weighting function in (4.3), where ql is an arb i t ra ry  constant.  Then we have 

[eCtx, q,)+~,q, ] r  = 

= (rh + x l  + 2qlx2 + 3q~x3 + . . .)e r . (4.14) 

Again, we compute  z Cz) as an illustration. 

= exp[~(x ,  ql)  + ~(x, q2) + t/lql + t /2q2] ' (q2 -- ql)  

�9 1 - - 1  ( ) x l  + 2 q l x 2 +  . . .  + th q2 ql q l - - q 2  

1 ( ,) 
x ~ + 2 q 2 x 2 +  . . .  + r / 2 + - -  

q2 -- ql q2 ql 

(4.15) 

Thus  up to an al lowable factor  exp[~(x ,  q~) + ~(x, q2) + thq~ + r/2q2] "(q2 - ql), 
this tau-function is the same as that  for the N = 2 case of P6ppe ' s  rat ional  solutions 
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[19], which are generally given by 

with 

z = det(Fij)N • N, 

Fij = { X1 + 2qix2 + 3q2x3-1, + "'" + tl}' ii#j=j, 

ql qj 

(4.16) 

(4.17) 

IV.b. The Nakamura Determinant Solutions. Now,  we come back to the general 
formula  (3.17) and consider the special cases in which r = s (N = 2s). Then we have 

z (2S) = det(hij)~ • ~" z (~ , (4.18) 

where 
x x 

hij = ~ 4)ic~j = Cij + ~ 4)i()jdXl . (4.19) 
X c  

This is exactly the N a k a m u r a  de terminant  solution 1-15]. In part icular,  if we choose 
xc = oo and Ci~ = - 6~j, then z (2s) of  (4.t8) coincides, as shown in refs. 16 and 20, 
with the tau-function that  would be obta ined  via the dressing me thod  I-9], i.e., by 
solving the G e l ' f a n d - L e v i t a n - M a r c h e n k o  equat ion 

K(x, z) + F(x, .z) + S K(x, s)f(s, z)ds = 0 ,  (4.20) 
x 

with 

F(x, z)=- ~ 4)i(x)d?i(z). (4.21) 
i = 1  

I V.c. The Character Polynomials. I t  is also s t ra ightforward to make  a connect ion 
between our  formula  (3.17) and the character  polynomials  Zr(X), which have been 
shown [23 to be tau-functions for the K P  hierarchy. Start ing f rom u," (o) = 0 and 
z (~ = 1, we Taylor  expand the wave function e r a round  k = 0, 

e ~x'k) =- ~" pl(x)k t , (4.22) 
/ = 0  

and pick the l th coefficient as the wave function qSz, 

Oz(x) = p~(x) . (4.23) 

We note that  

p o = l ,  p l = x l ,  p 2 = ~ - + X z ,  p3=~+X1X2+X3, 
etc., and the relation 

(4.24) 

Oxl p' = P~-I (l > 1). (4.25) 

Similarly, we Taylor  expand the conjugate  wave function e r -k) a round  k = 0, 

e r  ~ qt(x)U, (4.26) 
l = O  
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and pick the lth coefficient as the conjugate wave function ~z, 

6 (x) = q , (x ) .  

We note that 

qo = 1, 

etc., and 

Now  we compute  
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(4.27) 

Cij + J p i ( x ) q j ( x )  d x l  , (4.31) 
o 

where C~j are polynomials  in x2, x3 . . . . .  so chosen as to satisfy the boundary  
conditions (2.21) at xc = 0. The result of this computa t ion  is that 

Cij + i p i ( x ) q j ( x ) d x l  = Z- ( j+  1) , i (X)  , (4.32) 
0 

where Z-~s+~),~ is the character  polynomial  Zr(x) with the Young diagram 
Y = (i + 1, 1, 1 . . . .  1); see ref. 2 for more  details about  Zr(x) .  

k. ) 

J 

More  generally, let us reassign 

and get 

01 - P,, (i = 1, 2 . . . .  s), ni > 0 ,  (4.33) 

~ = q - m j - 1  ( / = 1 , 2  . . . .  r), m j > 0 ,  (4.34) 

Ci j  q- i ( g i ( x ) ~ J  (X )dX1  = Zmjnl (X)  ( 4 . 3 5 )  
0 

~(N) = 

according to the formula (4.32). Then Eq. (3.17) becomes, using (4.25) and (4.29), 
(i) if s _-> r, 

Zmlnl Zmln2 �9 �9 �9 Zrnlns 

Z,,,r,1 Z,,r,,2 �9 �9 �9 Z,,r, ,  

Pnl--s+r+ i Pn2--s+r+ l �9 �9 �9 P n s - s+r+  l 

(4.36a) 

t 3 x l q l = q l - 1  (1>  1),  (4.29) 

q , (x )  = ( - 1)'p,( - x ) .  (4.30) 

ql  = x l ,  q2 = ~ -- x2 ,  q3 = ~ -- x l x 2  + x3 , (4.28) 
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(ii) if r > s, 

T(N) = 

~ m l n l  Z m 2 n l  �9 �9 �9 ~ m r n l  

Z r n l n s  Z m 2 n s  �9 �9 �9 Z m r n s  

q - m 1 - 1  q - m 2 - 1  �9 �9 �9 q - m ~ -  i 

q - m a - r + s  q - m 2 - r + s  �9 �9 �9 q - m ~ - r + s  

(4.36b) 

These expressions of z (N) are identical (up to a sign) to those of gy(x) with 
a general Young diagram Y obtained by DKJM 1-2] via a Fock space approach. 

V. Free Fermion Representations of the New z Functions and 
Relations to Baker Functions 

Now we wish to make some remarks on the relevance of the eigenvalue Eq. (1.10) in 
our approach. The full linear system corresponding to the Lax Eq. (1.5) is given by 

Aw(x, 2) = 2w(x, 2) ,  (5.1) 

- -  w(x, 2) = B,w(x, 2) .  (5.2) 
OXn 

We also call the Baker function w(x, 2) the eigenfunction of the KP hierarchy, 
which is uniquely determined up to a normalization factor f(2). In this paper we 
reserve the terminology "wave function" solely for the solution ~b(x) of Eq. (1.9), 
which is the same as (5.2). Therefore, q~(x) and w(x, 2) are generally related to each 
other by 

4)(x) = ~ g(2)w(x, 4) d2, (5.3) 
F 

where g(2) is an arbitrary distribution and F an arbitrary path of integration. 
Under the gauge transformation 7/ that  we have been considering, the pseudo- 

differential operator A of (5.1) simply transforms as 

A(O)__~ A(1 )  __ (/t o A (0) o t/t - 1 , (5.4) 

and our B (1) in (1.11) are still correctly given by (1.3), i.e., 

B(, 1) = [A(1)"]+ (n = 2, 3 . . . .  ) .  (5.5) 

However, as far as solution-generation is concerned, we have not found it necessary 
to use the eigenfunction w(x, 4). Though our approach for solving the KP hier- 
archy has been based entirely on the Z-S equations, without directly referring to the 
eigenvalue equation (5.1), our method gives automatically new solutions for 
w(x, 4). From a new tau-function r(1)(x) by the gauge transformation method, the 
corresponding eigenfunction w(a)(x, 4) is automatically given by [2, 3] 

Z'(1)(X/ - -  1 - 1 2 - l )  e r (5.6) 
W(1)(X,  2 )  = ,t.(1)(X ) 
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where ~(x, 2) has been defined in (4.4). 
Finally, we shall reexpress the main result of this paper in the free fermion 

language. As is well known [2], every tau function in this language is a vacuum 
expectation value of the form 

z(~ = ( vaclemX) g(~ , (5.7) 

where 

n = l  l = - m  

and g(O) is some chosen element of the Clifford group generated by the free fermion 
operators Oz and ~ .  Our result, Eq. (2.8), states that once a known tau function 
z(~ and a corresponding wave function q~(~ have been given, then a new tau 
function ~(~)(x) can be simply taken to be 

~.(1) = q~(o)~(o).  

In particular, we may choose for the present discussion q~(o) to be the Baker 
function w(~ 2). Through the relation between the Baker function and the tau 
function, viz., 

z(~ - l -  12-;) e r ~) , (5.9) w~~ 2) = ~(O)(x ) 

we have 

z(1)(x, 2) = z(~ - 1 -12-1)e  r 

as the new tau function, which can also be expressed as 

"C (1) (X, 2 )  = e r ~) e - r '~) ( vac [ en(X) g(~ vac ) , 

with 

(5.10) 

(5.11) 

( ~ , 1  ~ 1 ~ ) 

- ~?xl 2 (?x2' 3 Ox3 . . . . .  

A simple calculation [2] shows that (5.11) can be written as 

z(1)(x, 2) = ( 1 lemX)~,(2)g(~ (5.12) 
clo n where 0 ( 2 ) - - ~ , = _ ~  ~ , 2 ,  and ( 1 [ -  (vac[O].  In other words, the effect of our 

differential type ~o(w(~  2)) gauge transformation on a tau function z(~ 
is equivalent to inserting a fermion operator ~(2) in front of g~O) in the vacuum 
expectation value and simultaneously changing the bra state from (vac[ to the next 
highest weight state (1 [. For an independent check, one can directly verify that 
(5.12) is indeed a tau function by using the bilinear identity given in ref. [2]. 

Similarly, for integral type ~/(#(~ 2)) gauge transformation (2.18), we find 

"~(1)(X, 2 )  = ( - -  l leH(X)tl/*(2)g(~ , (5.13) 

where 

0 * ( 2 ) -  ~ 4 " 2 - n  
n =  --ct3 



278 

a n d  

L.-L. Chau, J.C. Shaw and H.C. Yen 

- 11 ~- ( v a c l O _ l  . 

Acknowledgements. We thank Professor A. Schwarz for enlightening discussions and for pointing 
out the connections of our new z functions to the free fermion representations. This work is partly 
supported by the US Department of Energy. 

R e f e r e n c e s  

1. Sato, M.: RIMS Kokyuroku 439, 30 (1981) 
2. Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Nonlinear Integrable Systems-Classical 

Theory and Quantum Theory. Jimbo, M., Miwa, T. (eds.) p. 39, Singapore: World Scientific 
1983 

3. Ohta, Y., Satzuma, J., Takahashi, D., Tokihiro, T.: Progr. Theor. Phys. [-Suppl.] 94, 210 (1988) 
4. Mulase, M.: Adv. Math. 54, 57 (1984) 
5. Shiota, T.: Invent. Math. 83, 333 (1986) 
6. Zakharov, V.E., Shabat, A.B.: Funct. Anal. Appl. 8, 226 (1974) 
7. Baker, H.F.: Note on the foregoing paper: Commutative ordinary differential operators. 

Burchnall, J.L., Chaundy, T.W. (eds.) Proc. R. Soc. London (A) 118, 584 593 (1928); Segal, G., 
Wilson, G.: Publ. Math. IHES 61, 5 (1985) 

8. Zakharov, V.E., Mikhailov, A.V.: Sov. Phys. JETP 47, 1017 (1978) 
9. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons New York: 

Consultants Bureau 1984 
10. Chau, L.-L., Shaw, J.C., Yen, H.C.: J. Math. Phys. 32, 1737 (1991) 
11. Adler, M., Moser, J.: Commun. Math. Phys. 61, 1 (1978) 
12. Satsuma, J.: Phys. Soc. Jpn Lett. 46, 359 (1979) 
13. Freeman, N.C., Nimmo, J.J.C.: Phys. Lett. 95A, 1 (1983) 
14. Hirota, R., Ohta, Y., Satsuma, J.: Progr. Theor. Phys. [Suppl.] 94, 59 (1988) 
15. Nakamura, A.: J. Phys. Soc. Jpn 58, 412 (1989) 
16. Miyake, S., Ohta, Y., Satsuma, J.: J. Phys. Soc. Jpn 59, 48 (1990) 
17. See, for example, B/icklund Transformations. Lecture Notes in Math. vol. 51fi, Miura, R.M. 

(ed.) Berlin, Heidelberg, New York: Springer 1976 
18. See, for example, Rogers, C., Shadwick, W.F.: B/icklund transformations and their applica- 

tions. New York: Academic Press 1982 
19. P6ppe, C.: Inverse Problems 5, 613 (1989) 
20. Johnson, R.S., Thompson, S.: Phys. Lett. 66A, 279 (1978) 
21. Nakamura, A.: J. Phys. Soc. Jpn 51, 19 (1982) 

Communicated by S.-T. Yau 


