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Optimal MISO Repetitive Control 
System Design Using Mixed 
Time and Frequency 
Domain Criteria 
This paper presents an optimal repetitive controller design approach when both 
frequency and time domain criteria are considered. These criteria include limited 
control force, convergence rate, and robustness. In particular, the design formulation 
is based on MISO (multiple-input-single-output) plants which aim at solving nodal 
point problems encountered inflexible dynamic systems. Nodal points represent physi
cal constraints for feedback control, especially when their frequencies are within 
the control bandwidth. If multiple control paths with distinct nodal frequencies are 
available, the proposed method is able to design controllers to compensate the effect 
and reach certain design objectives. The ellipsoid algorithm is used to calculate 
controllers' parameters. Experiments were conducted to demonstrate the proposed 
method. 

1 Introduction 
Repetitive control algorithms using internal model principle 

(Francis and Wonham, 1975) have been studied by many re
searchers (Tomizuka et al., 1988; Hara et al., 1988). Applica
tions such as noncircular cutting (Tsao and Tomizuka, 1988), 
disk drive tracking (Chew and Tomizuka, 1990), repeated mo
tion of robot manipulators (Sadegh et al., 1990), material test
ing (Shaw and Srinivasan, 1993), and active harmonic noise 
cancellation (Hu, 1995a) have been reported in literature. When 
a plant has unstable zeros near the unit circle, it has been shown 
that conventional design approaches such as adding zero-phase 
filters (Hu et al., 1995b) may not give satisfactory result. Fur
ther, several design issues need to be addressed when dealing 
with distributed systems or when the fundamental period of the 
disturbance is high: 

1 Robustness—especially around nodal points (those zeros 
close to the unit circle) where accurate identification is difficult 
due to a low SIN ratio. 

2 Convergent speed—closed-loop poles inevitably ap
proaching the unit circle due to a high fundamental period. 

3 Limited control force—system may become unstable 
when the control force is saturated. 

All these issues clearly indicate that an optimization scheme is 
necessary to select proper control parameters. 

Nodal points in distributed parameter systems are actually 
transmission zeros of the plant. Attempting to cancel distur
bances whose frequency contents are in the neighborhood of 
these zeros results in a very large control force. An obvious 
way to avoid this problem is to change transmission zeros' 
locations by properly placing actuators or sensors. Alternatively, 
for MIMO systems, it is possible to arrange actuators such that 
transmission zeros of all input paths are distinct. In this case, 
each controller should "give up" its control effort around its 
transmission zeros. These considerations represent various con
straints when performing optimization. 

This paper proposes an optimal design approach to an MISO 
(multiple-input-single-output) repetitive control problem. It is 
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motivated from an experimental observation of active noise 
control in ducts. When mounting control speakers on the side 
of a duct, there is a great chance that the generated sound wave 
of some particular frequencies will be self-destructed (transmis
sion zeros). These frequencies are closely related to the dimen
sions and boundary conditions of the duct (Hu, 1995). From 
the explanation in preceding paragraphs, the control system's 
performance is limited when some of these frequencies fall into 
the bandwidth of design. Intuitively, multiple speakers can be 
arranged such that each speaker's transmission zeros are differ
ent to others. For example, as shown in Fig. 1, speaker B will 
have different transmission zeros from A when an additional 
segment of duct is added. 

The organization of this paper is the following; Section 2 
describes the problem formulation; Section 3 presents the solu
tion procedures and Section 4 explains the experiments con
ducted to verify the design methods. 

2 MISO Repetitive Control System Design 

The block diagram of an m-input-1-output repetitive control 
system is depicted in Fig. 2. In Fig. 2, P, is the dynamic of 
each control path, C, is the compensator for each path and A^ 
represents multiplicative uncertainty, / = \,2, . . . , m. d repre
sents a periodic disturbance and M is the repetitive signal gener
ator. It is assumed that both /"j's and A,'s are stable dynamics. 
Let Pi = Pi{\ + A,) , / = 1, 2, . . . , OT, and the multiplicative 
uncertainty A, satisfy 

|A, (w) | = P, - Pi 

Pi 
a{io) Va;[0, TT]. 

and ;• = 1, 2 . . . , m 

where a(a;) is a conservative estimate of the uncertainty bound. 

0, 2.1 Stability and Robustness Analysis. When A 
the internal stability of Fig. 2 requires that 

-"c 
1 - z~"(l - PC) 

G RH„ (2.1) 

A sufficient condition to guarantee stability by using the small 
gain theorem is (P is assumed stable) 
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(a) (b) 

Fig. 1 (a) Same transmission zeros of A and B; (b) different transmission 
zeros 

(CI) 

(C2) 

''C e RH„ 

- P C L < 1 

(2.2) 

(2.3) 

Note that from Eq. (2,2), C is allowed to be non-causal. When 
A =jS: 0, other than these two conditions, an additional condition 
should be added. 

(C3) 
z-^PC 

1 - z - ' ' ( l - P C ) 
< 

1 
sup |Ai(w) 

Vw (2.4) 

At repetitive frequencies, i.e., uj = Ik'nlN, fe = 0, 1, . . . , NI2, 
we have. 

" P C 

1 - ^ - ' ' ( l - P C ) 
= 1 

From Eq. (2.4), the maximum allowable perturbation is also 1 
which limits the robust performance. Therefore, a filter is added 
to sacrifice disturbance rejection ability or tracking accuracy in 
order to gain robustness, i.e., the repetitive signal generator is 
changed into 

M = qz 
1 - qz-'' 

where q is the selected filter (Tsao and Tomizuka, 1988). By 
adding this filter, the stability and robustness conditions (CI) 
to (C3) are modified as 

(C4) z-'^qC e RHoo 

(C5) 111 - PC||„ < 1 

(C6) 
z-^qPC 

1 - z A ( l -PC) 
< 

1 

sup |Aj(w) | 

(2.5) 

(2.6) 

Vw (2.7) 

A more relaxed stability condition of (C5) should be ||^(1 -
PC||„ < 1 since | ? (w) | < 1. However, implementing (C5) in 
design will result in more robustness since when |^(a ; ) | is 
small. 

z-yc 
1 - z-^qil - P C ) 

« I^PCI <2\q\. (2.8) 

Thus, if q is selected as an FIR low-pass filter, more high-
frequency model uncertainty can be tolerated. In fact, an ideal 
selection of q should be 

q(oj) = I, w e n , and | ^ ( w ) | = 0 , w ^ 51. (2.9) 

where Q is the desired frequency range of disturbance rejection 
or tracking. 

2.2 Performance Analysis. Two different performance 
requirements are investigated in this section. The first one is the 
speed of convergence. Assuming the z-transform of a periodic 
disturbance d is (denoted as d) 

d = 
1 

F=fo+Az-' + ... +fN-iZ- (2.10) 

The error of the repetitive control system, with the filter q added, 
is derived as (Fig. 2) , 

(1 - qz-") F__ 

[1 - z - " ? ( l - P C ) ] (1 - z - " ) 
(2.11) 

When qie'^''^"') i=s 1 and N is large, it can be seen that the 
convergence of the error at repetitive frequencies depends on 
the closed-loop poles. To reduce the design complexity, the 
plant P is assumed to be stable and its poles are canceled di
rectly. Further, if q and PC are FIR filters (by restricting the 
structure of C (see Eq. (3.4) later)), the closed-loop character
istic equation is 

z"-""" + z % ( z ~ ' ) [ l - P (z - ' )C(z~ ' ) ] = 0 (2.12) 

where Np is the number of poles of ^ (z" ' )P(z~ ' )C(z^ ' ) at 
origin. Notice that ^ (z~ ' )P(z" ' )C(z~ ' ) may be noncausal. Let 
the characteristic roots be re-'", 0 < r < 1, by maximum modu
lus theorem, we have 

r"^^ = \z^q{z-'){\ - P ( z - ' ) C ( z - ' ) ] L . „ -

< Max | z ^ ? ( z - ' ) [ l - P ( z ^ ' ) C ( z - ' ) ] | , . , . -

^ | | 1 -P(z - ' )C(z - ' ) | | c„ (2.13) 

since z' 'p^(z^')P(z~')C(z~') is analytic inside the unit circle 
and q is low pass (Eq. (2.9)). As a resuh, a proper constraint 
to limit the close-loop spectral radius is then, 

111 - PCIU < <5 

If the performance range (i.e., f2 in Eq. (2.9)) is considered, a 
more detailed constraint can be constructed as 

(C7) s u p | l - P C | 

sup 11 PCI 

< 8 and 

< 1 (2.14) 

Second, to avoid control force saturation, it is necessary to 
constrain controllers' output levels according to their physical 
limits. An obvious choice is the A-norm minimization (or 1, 
minimization) (Vidyasagar, 1986; Dahleh and Pearson, 1988), 
i.e., from Fig. 2, 

lir„,JUMlU, i = 1,2, . . . , m , 

where T„^ = 
-Z-^Q 

1 - z -" ( l - PC) ' 

this leads to the following condition (with the filter q added): 

(C8) ||r„,JU^A, 7-̂  = 1 1 ]f' p^, 
1 - z q{\ - PC) 

for i=\,l,...,m. (2.15) 

where /0,||(i|U is less than the saturation limit of the actuator ;. 

3 Mixed Time and Frequency Domain Optimization 
As explained by the design conditions (C4-C8) , controllers 

can be calculated by optimizing various time and frequency 
domain criteria (Boyd et al., 1988; Helton and Sideris, 1988; 
Khargonekar and Rotea, 1991; Sznaier, 1994). For example, if 

Fig. 2 Biocl( diagram of an MISO repetitive control system (P = [P^ P2 
... P„], C = [C, C2 . . . C„y, A = dlag (A,, Aa A„) and u = [u, 
ui...u„y) 
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we want to minimize the control forces under the constraint of 
a designated convergence speed, we could select: 

min max||r„,JL, (3.1) 

subject to 111 - PC|U < 6, (5 < 1 (3.2) 

Similar problems of this type are in the area of convex optimiza
tion. Two commonly-used algorithms to solve these problems 
are the decent and nondecent methods. Non-decent methods such 
as the ellipsoid algorithm (Boyd and Barratt, 1991) are particu
larly suitable for nondifferentiable norms hke fto or Ij. To imple
ment the ellipsoid algorithm, it is necessary to calculate general
ized gradients of cost and constraint functions at each iteration 
(Boyd and Barratt, 1991; Clarke, 1975; Polak, 1987). In this 
paper, we present the solutions in finite dimensional space (i.e., 
suboptimal solutions). To realize the numerical calculation, it is 
necessary to formulate the cost function and constraints in vector 
notations as explained in the following sections. 

3.1 Vector Space Representations of the Control Sys
tem. The plant is represented as the following, 

P = [P, P2 . . . P„] , P,- =z-" .B , (z - ' )G, (z" ' ) , 

i = 1, . . . , / n (3.3) 

where rii is the delay steps of Pi, Gi is minimum phase, and B, 
contains all zeros outside the circle centered at origin with 
radius ,3 < 1. The selection of f3 is to avoid stable pole-zero 
cancellations close to the unit circle since those zeros may not 
be accurately identified due to poor S/N ratios (nodal points as 
explained before). Let n be the maximum order of Bi's, i = 1 
~ m, and 

Biiz"') = b'o + bL,z-' + ... + bL„z'" 

where some of the coefficients may be zero if the B,'s order is 
less than n. 
The structure of C is selected as 

C = [C, C2 . . . C„], C,. = z"'Di{z, z-')GT\z''), 

i=\,...,m (3.4) 

where 

A ( z , z"') = d\z' + rfi-iz'"' + . . . 

+ d'-MZ-'-*-' + dL,z-' (3.5) 

By using Eq. (3.5), we shall perform optimization in finite 
dimensional space. Further, the filter q is assumed to be 

q{z, z" ') = qrZ'' + qr-iz'"'^ + . . . + ^0 + • • • + q-rZ'". (3.6) 

The following formulae will be used in derivations later. 

(a) D , ( z , z - ' ) = [z' z '- ' ...z-']d„ 

where d, = [rfi d',-i ... d'-tV (3.7) 

(b) z-'^^"9(z, z-')Di(z, z - ' ) = [1 Z-' . . . z - ' ""^ ' ]Q4, 

O 

e R ( n + 2 ( + l ) X ( 2 ; + l ) 

d= \^f | e R ™ ( 2 ( + l ) X l ^ ^, ^ 

d\ 

d'l-i 

d'-, 

(' = 1 m, e = 
0,xl 

1 
0(„+()xl 

(3.9) 

(d) 9 ( 1 - I s , A ) 

_ r^'+r _ l+r - l -(/+n+r) ]Q(e - Bd), 

where Q =1 

O 
^Ir I g Jj(n+2(+2r+l)X(/!+2/+l) / g iQ-. 

3.2 Frequency Domain Design. The related functions in 
frequency domain are (C6) and (C7). Since the filter q can be 
shaped to gain robustness (Eq. (2.8) and (2.9)), we focus the 
discussion on (C7). Using the vector notations in Eqs. (3 .7 ) -
(3.10), we have 

1 - S S,A = Re {(©'^e - 0 ^ d ) * ( 0 ' ^ e - © 'Bd)) 

= (e - Bd)'^Re{©(e-^'^)0''(e^")}(e - Bd) (3.11) 

where 

&ien = le''"e y;u).j((-l)i. -j(;+n)ijl7-

Re {Qie-n&'Xe'")] 

Re Jiu ,J(l-l)iu [e"" e 

1 
cos ui 

COS 2u) 

cos (2/ + n)u 

y knowing that 

111 -

cos u 
1 

cos u 

cos (2/ + n -

PCII^ = 111 

l)w 

COS 2oj 
cos uj 

1 

m 

- I BiD,\\l 

cos(2/ + n)LO 

cos UJ 

1 

where Q = 

* ' - ^ . O 

O ^"-q-r, 

i ( 2 ; + 2 r + l ) X ( 2 / + l ) (3.8) 

= sup|l - I iB ,A | ?= . - , (3.12) 

the generalized gradient g for ||1 - PC| | i is derived by the 
maximum rule (Boyd and Barratt, 1991) as 

g = - 2 B ' ' R e {0(e-^'*'o)0'-(e>o)}(e - Bd) (3.13) 

where 

(c) 1 - £ BiDt = [z' z'"' . . . z~<'''"*](e - Bd), where 

B = [B, B2 . . . B„] G R(«+2'+l)x»,(2/+l) 

Journal of Dynamic Systems, Measurement, and Control 

Wo e {w G R\ 111 - PC||„ = |1 - PCU=,/"}. 

Equation (3.13) can be modified to include a weighting func
tion. Other than the infinity norm, the H2 norm is also a good 
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index for minimizing the magnitude of (1 - PC) (under certain 
smooth conditions), i.e., r, = 

VA 

111 - PCII^ = (e - Bd)^(e - Bd) (3.14) 

The corresponding generalized gradient can be easily derived 

g(d) = -2B^(e - Bd) (3.15) 

1 -z^'qil - lD,B,) 
1=1 

The optimization is now focused on WTIWA instead of ||r„,rf||̂ . 
Suppose {>',(^)} represent the impulse response of I) and 
{x(k)] an impulse input sequence, we have 

There is a great flexibility of using the idea of H2 norm in 
selecting the performance range (i.e., Q in Eq. (2.9)). For 
example, if we wish to improve convergence at cj £ [wi, W2] 
and gain robustness at w G [ws, W4], we could use the following 
formula 

y,ik) = ie --BdVQ' 

y,(k- N + I + r) 
y,{k - N + I + r - 1) 

yiik - N + I + r - n) 

where 

min{||W,(l -PC) | | 2 + ||W2PC||2] 

_ 1 Vol G [wi uj^] 
Wi{uj) = \ and 

0 otherwise 

(3.16) 

+ d fQ' 

x{k) 
x{k- 1) 

x{k - 11 - 2r) 

fc = 0, 1, 2, (3.21) 

W2(LO) = 
1 Vo) G [U>3 iU^] 

0 otherwise 

As a result, the representation of Eq. (3.16) in vector space are 

mm 

where 

| l - l B , A l ' r f w + | l B i A | ' r f w [ (3.17 

|1 - J^B,D,\'-duj+ l l B . A l ' r f c 

(e - Bd)'Wi(e - Bd) + d'B'WjBd (3.18) 

To minimize the computational load, / (length of the filter D,) 
and r (length of the filter q) are restricted to satisfy {I + r) < 
N/3. Under this restriction, the first N + I + r + \ terms of 
the impulse response, i.e., {3',(*:)}t'=o" '̂, are 

MO) yt{l) . . . >',(2/ + 2r)]^=Qd,- (3.22a) 

[>',(2/ + 2 r + 1 ) y,i2l + 2r + 2) ... y^iN - I - r - l)V 

— 0(Ai_3(_3r_i)xl (3.22b) 

[yi(N-l-r) y,{N-l-r+\) ... y^N + I + r)Y 

= Y,Q(e - Bd) (3.22c) 

where 

n{uj) = 

sin uj 
sin loj 

sm w 

w 

sin ui 

sin 2w 

2 
sin oj 

sin {21 + n)ijj sin (2/ + n — \)tjj 

21 + n 21 + n- I 

sin {21 + n)u) 

21 + n 

sin u> 

and 

Wi = Q.{LJ2) - n ( w , ) , W2 = rJ(W4) - f^(W3) 

The generalized gradient is therefore derived as, 

g = - 2 8 ^ ^ 1 ( 6 - Bd) + 2 B ^ 2 B d (3.19) 

3.3 Time Domain Design. In minimizing the A-norm in
dicated in (C8) (Eq. (2.15)), we limit the li norm of the impulse 
response from disturbance input to control forces. Since a 
closed-form representation of IT^.d lU is impossible due to infi
nite terms in the impulse response, a simplified approach is 
used. Observe first that (see Eqs. (2.15), (3.5), and (3.6)) 

Y = y.d) 
0 

y,(0) 0 
. . . 0\ 
. . . 0 

r.„ 

where 

- ( r+O qD,G-

z""?(l - I s , A ) 
1=1 

yy,(2/ + 2r) y,(2Z + r- \) ... yi{Q) 0 . . . 0/ 
g | » ( 2 ; + 2 / ' + l ) X ( n + 2 ( + 2 r + l ) 

Now the target function ||r,||^ is approximated as 
N+l+r 

r / ( d ) I U « I | y , ( * , d ) | (3.23) 

According to Sznaier (1994), the error of this approximation 
can be estimated. Assume that r, (z" ' ) is analytic for every |z | 
a 5, 0 < 5 < 1, we have 

^ l|r,IUIGr'IU (3.20) 
yi{k)\ = 1 ^ ^ui=,r,(z"')z'"Vz ||r,̂ IU.,6* (3.24) 

where 
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Duct'.s length; 0.5m Cross Section; 0,15m x 0,15m Ciit-ol'f Frequonuy; 115.̂  Hz 

Fig. 3 Experimental setup 

mi,s = sup|r,.(z '̂)|.=& -̂

Therefore, the approximation error can be derived as 

k=N+l+r + t 

lir.ii ,A<''+'+'-+i) 
|y,(fe)| ^ll^-ll-.f (3.25) 

1 — 0 

From Eq. (3.25), the error is small if N + I + r + 1 is large 
or 6 is small. Note that S is the spectral radius of the closed 
loop system. Using the sum rule (Boyd and Barratt, 1991), the 
generalized gradient for the approximated function (Eq. (3.23)) 
is, 

2/+2r+ l 

8i(d) = X sign (yi(k- l ) )v , 
k=l 

+ sign (y,(k + N - I - r - 1)) 

X [-BWy/k + XtQ(e - Bd)} (3.26) 

where 

0(i-l)(2/+l)x(2/+2r+l) 

Vj. is the k-th column vector of Q'̂  

_0(m-/)(2(+l)X(2;+2r + l) . 

Wj is the k-th column vector of Y f (see Eq. (3.22c)) 

and 

X* = [Vi Vt_ O: m (2/+1) X (n+2;+2<' +1 -* ) J 

4 Design Examples and Experiments 
Using the results derived in Sections 2 and 3, a design strategy 

was implemented. Experiments were conducted on a rectangular 
duct made of plastic glass. A DSP system based on TMS320c31 
was installed to calculate the control signals (Fig. 3) . The sam
pling rate was chosen as 4 kHz. The calibration value of the 
error microphone is 49 mV/Pascal. A noise speaker was in
stalled to simulate a noise source. Two control speakers were 

0 500 1000 1500 

Frequency (Hz) 

Fig. 4 Frequency response of plant Pi(z'') and Pi(z~'') 

2000 

Table 1 Unstable zeros of both plants (stability margin = 
0.98; *\ transmission zeros within the bandwidth) 

Bi d"') Bi (z-') 

zeros 1 
2 
3* 
4 
5 

-3.4127 
1.0302 

0.7336 ± 0.6598/' 
-0.4907 ± 0.8598/-
-0.1766 ± 0.975V 

1 
2 
3* 
4* 
5 

-2.0429 
1.0341 

0.9366 ± 0.3031; 
0.4463 ± 0.8816J 

-0.3009 ± 0.9545; 

mounted on the side of the duct. One of them included an 
additional duct segment to prevent identical nodal points for 
both control paths. It should be emphasized that the setup is 
not a 1-D problem because the length (0.5m) is too short to 
ignore evanescent modes (Morse and Ingard, 1968; Doak, 
1973). Hence, the behavior of nodal points is a 3-D phenome
non in this case. 

The plant Pi (speaker 1) and P2 (speaker 2) are identified 
using time-domain least square algorithms with frequency 
weighting (weighted band = 0 ~ 1 KHz). Numerical calcula
tions were carried out by the identification toolbox of MAT-
LAB. Their frequency response are depicted in Fig. 4, The total 
number of parameters for P^ and P2 are 56 (4 delay steps; 30 
poles; 26 zeros) and 52 (4 delay steps; 28 poles; 24 zeros), 
respectively. Other than 0 Hz, plant P, has a transmission zero 
around 470 Hz and P2 around 200 and 700 Hz. They are differ
ent because a small passage to the duct is added to speaker 2 
(Fig. 3). The zero at 0 Hz are common to both plants. This is 
the zero caused by AC-coupling of the power and microphone 
amplifier and is impossible to remove. As shown later, special 
treatment has to be done to prevent DC drift in control signals. 
To avoid stable pole-zero cancellation near the unit circle, the 
stability margin is selected to be 0.98. As a result, the non-
minimum phase parts of both plants are listed in Table 1 (see 
Eq. (3.3)). 

Figure 5 shows the spectrum of the periodic noise tested. Its 
fundamental period is 245 samples (Â  = 245; fundamental 
frequency is 16.32 Hz under 4 kHz sampUng). From Fig. 5, it 
can be seen that the noise signal is mostly within 500 Hz. 
Therefore, a zero-phase low-pass filter with cut-off frequency 
666.7 Hz is selected for the filter q, i.e., 

q{z, z" ') = 0.0019Z'' - 0.0029z'* - 0.0067z' + O.OOSSz" 

+ 0.0261z= - 0.0182Z'' - 0.0784z' 

+ 0.0266z' + 0.3080Z + 0.4698 + 0.3080z"' 

+ 0.0266Z-' - 0.0784z~^ - 0.0182z-'' 

+ 0.0261Z-' 4- O.OOSSz '̂ - 0.0067z~' 

80 

40 

r'''iMi 

0 200 400 600 800 1000 

Frequency (Hz) 

Fig. 5 Spectrum of the liarmonic noise (recorded from a four cylinder 
engine) 
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0 200 400 600 800 1000 

Frequency (Hz) 

Fig. 6 Frequency responses of B,'s (Eq. (3.3)) with added filters to give 
up control around nodal points 

0.1 

0,08 

0.06 

0.04 

0.02 

0 

-0.02 

-0.04 

-0.06 

-0.08 

i | 
, , . . . . . : . . J l . , . . . j , . . i . . ^ . : . t . . . , . . , : . . A . . i . : . . . ; ^ . . A . 

'• • V- \ : i - r r i i ' 1-r r t - • i V i v - • -M IT 

. . . r . i ...;..,.!J...u:.l...I...^'...,...•..>.,... ..v'..i.i..i.)... 

...'/...•....:.f,,.li...r.•,..i'...Ij...v...t(...-V.i.V..«.....;...v.,.i(... 

0.02 0.04 0.06 

time (sec) 

0.1 

Fig. 8 Steady-state noise signal before and after cancellation 

- 0.0029Z-* + 0.0019Z-' (4.1) 

Within this bandwidth, the transmission zero of plant P^ is close 
to the 29th harmonic frequency of the noise (473.47 Hz) and 
Pj to the twelfth (195.91 Hz) and 43rd (702.04 Hz) harmonic 
frequency. Like the dc component, controller for each plant has 
to give up cancellation at the corresponding frequencies. 

Base on observations from plant identification, several design 
principles are listed as the following: 

• Give up cancellation of noise around dc and nodal points; 
• Enhance high-frequency robustness property; 
• Improve convergence speed and noise rejection ability 

within the bandwidth; 
• Keep control forces as small as possible. 

To give up cancellation of noise around dc and nodal points, 
the corresponding internal models are added to the numerator 
of the signal generator M knowing that the controllers' internal 
states will not diverge if the error signal pass through the numer
ator first. In design stage, this means adding a series of filters 
to the plants. As a result, the frequency responses of Sj's (Eq. 
(3.3)) are plotted in Fig. 6. Further, two frequency segments 

of the open loop gain (| PC | or 11 - X ^ . A-1) are selected to 

satisfy: 

• Unit magnitude and zero phase at frequency range 6.7 ~ 
600 Hz; 

• Magnitude as small as possible at frequency range 720 
~ 2000 Hz. 

which represent disturbance rejection and robustness require
ments, respectively. 

The optimization problem is then proposed as 

min {(e - B d ) ^ i ( e - Bd) + d 'B'WaBd) (4.2) 

Subject to 

sup 
lly,(d)||il|Gr 

sup(e - Bd)^Re {0(e-^^'*')0^(e-'")}(e - Bd) I < 1 

(4.3) 

where W, = n(0.37r) - n(7r/300), Wj = n(7r) - Q(0.367r) 
and c is the maximum saturation level for the actuators. The 
length of D] and D2 were chosen to be 37 (see Eqs. (3.4) 
and (3.7)) and the problem was solved by using the ellipsoid 
algorithm (Boyd and Barratt, 1991). Detailed iterative proce
dure is shown in the appendix but lengthy numerical results are 
not shown here (see Yu, 1995). The shaped loop gains are 
depicted in Fig. 7. From Fig. 7, the design objective was satis
fied since each control path gave up control effort around corre
sponding nodal points and the overall loop gain was shaped to 
have good convergence property within the bandwidth. 

Figure 8 shows the error versus noise signal measured at the 
feedback microphone while Fig. 9 shows their spectrum. Figure 
9 indicates that the controller effectively cancel noise under the 
bandwidth limited by the filter q (Eq. (4.1)). Within 1 kHz, 
an average of 12.7 dB noise reduction was achieved. To see if 
each control path gave up its effort around nodal points, the 
spectrum of steady-state speaker input signals are plotted in 

0 2000 500 1000 1500 

Frequency (Hz) 

Fig. 7 Open-loop gains for individual and overall control paths 
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Fig. 9 Spectrum of noise before and after cancellation 
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Fig. 10 Spectrum of the steady-state control signals 

Fig. 10. Around 200 and 700 Hz, speaker 2 generated no control 
signals. Speaker 1 essentially gave up control at high frequency 
range including its nodal point (470 Hz). 

5 Conclusion 
In this paper, we present a new approach to design repetitive 

controllers. Comprehensive design goals involving robustness 
and performance are formulated as frequency-response or im
pulse-response constraints on some system functions. In order 
to solve this mixed frequency-domain and time-domain prob
lem, the controller's structure is restricted to be finite dimen
sional. An interesting application of repetitive control is active 
harmonic noise cancellation (see Hu et al., 1995b). Because of 
the geometric constraint in wave propagation, one-loudspeaker 
ANC (Active Noise Control) system has some performance 
limits due to nodal points. Therefore, we designed a MISO 
repetitive ANC system and the proposed optimization tech
niques were applied. Experiments was conducted to demon
strate the effectiveness of this design approach. 

Hu, Jwu-Sheng, Yu, Shiang-Hwua and Hsieh, Cheng-Shiang, 1995b, "On the 
Design of Digital Repetitive Controllers Using I2 and H» Optimal Criteria with 
Application to active harmonic noise cancellation in ducts," in Proc. 1995 ACC. 

Khargonekar, P. P., and Rotea, M. A., 1991, "Mixed Hj /H . Control: A Convex 
Optimization Approach," Automatica, Vol. 36, No. 7, pp. 824-837. 

Morse, P. M., and Ingard, K. U., 1968, Theoretical Acoustics, Princeton Univer
sity Press. 

Polak, E., 1987, "On the mathematical foundations of non-differentiable opti
mization in engineering design," Society for Industrial and Applied Math. Review, 
Vol. 29, No. 1, pp. 21-89. 

Polak, E. and Salcudean, S. E., 1988, "On the Design of Linear Multivariable 
Feedback Systems Via Constrained Non-Differentiable Optimization in H«," 
IEEE Transaction on Automatic Control, Vol. 34, No. 3, pp. 268-276. 

Sadegh, N., Horowitz, R., Kao, W. W., and Tomizuka, M., 1990, "A Unified 
Approach to Design of Adaptive And Repetitive Controllers for Robot Manipula
tors," Trans, of the ASME. Vol. 112, pp. 618-629. 

Shaw, F. R., and Srinivasan, K., 1993, "Discrete-Time Repetitive Control Sys
tems Design Using The Regeneration Spectrum," ASME JOURNAL OF DYNAMIC 
SYSTEMS, MEASUREMENT, AND CONTROL, Vol. 115, pp. 228-237. 

Sideris, A. and Rotstein, 1993, "Single Input-Single Output H« Control with 
Time Domain Constraints," Automatica, Vol. 29, pp. 969-984. 

Sznaier, Mario, 1994, "Mixed li/H„ Controllers for SISO Discrete Time Sys
tems," Systems & Control Letters, Vol. 23, pp. 179-186. 

Tomizuka, M., Tsao, T. C , and Chew, K. K., 1988, "Analysis and Synthesis 
of Discrete-Time Repetitive Controllers," American Control Conference, Atlanta. 

Tsao, T. C , and Tomizuka, M., 1988, "Adaptive and Repetitive Digital Control 
Algorithms for Non-circular Machining," in Proceedings 1988 American Control 
Conference, Atlanta, pp. 115-120. 

Vidyasagar, M., 1986, "Optimal Rejection of Persistent Bounded Distur
bances," IEEE Transactions on Automatic Control, Vol. AC-31, No. 6, June, pp. 
527-534. 

Yu, Shiang-Hwua, 1995, "Design of Active Noise Controllers Using Time and 
Frequency Domain Optimization Techniques," master Thesis, National Chiao-
Tung University, Hsinchu, Taiwan. 

A P P E N D I X 

Iterative Procedures to Solve Eqs. (4.2) and (4.3) 

Step 1. Let fc = 0 and make an initial guess of d(o) ^nd A(o) 
G R", A(o) > 0, where n = 2(2/ + 1). 

Step 2. Calculate the values of the constraint functions: 

^2(d(t)) = imax||>',||,||Gr'||A- 1 (A.l) 
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(/(i(d(,t)) = max (e - Bd(*))'W(w) 

(e - Bd«,) - 1 (A.2) 

iA(d(t,) = max {lAiCdfi)), ip2{A^t))}. (A.3) 

If i/'2(d(4)) is the maximum of Eq. (A.3), the general
ized gradient for i/'(d«:)) is 

| | ^ - l | | 2l+2r+[ 
,,(fc)=EiLJU ^ {s ign(y,(^- l ) )v . 

c .=1 

+ sign (yi(s -^- N - I - r - I)) 

X [ - B ^ Q % , + X,Q(e-Bd(,))]} 

where IIG,"'||A and y, = {y,- (0}S'^' ' achieve the maxi
mum of Eq. (A. 1), v„ Wj, X, are defined in Eq. (3.26) 
and Q is defined in Eq. (3.8). 
Otherwise (i.e. i/'i(d(*)) makes the maximum), 

ft(4, = -2B^(u;o)(e - Bd,^,) 

where UJQ is the frequency achieving the maximum of 
Eq. (A.2). 

Step 3. Check if i/'(d(t)) is less than zero. If yes, jump to Step 
6, otherwise continue. 

Step 4. Check if the following inequality is true. 

If yes, stop iteration and re-initialize the guesses of 
A(o) and d(o) or examine if the constraint functions are 
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too stringent (it means that the ellipsoid established Step 6. Calculate the value of the cost function 
by A(0) and d(o) does not satisfy the constraint). , , , . , , DjxT^.r / DJN , j r o r i i f u j i 

Steps. Calculate the following values: <A(d(„) = {(e - Bd)-W,(e - Bd) + dTi-W.Bd}, 

and its generalized gradient 

g(t) = -2B'AVi(e - Bd) + 2B'AV2Bd. 

Step 7. Calculate the following values: 

a = 4'iA<.k))lw\n^^r>hiM), 

h(k) — h(^i,)/yh^k)A(^ii-)h^i,-i, 

1 + ""^ A . h„ 8 = 8»)lhV)'A»)8ik), 
1 + n (kVHk)^ 

- ( 1 - a ^ ) ( A ( „ 
1 „2 

d(*:+l) = d(;i) - A(f,gl{n + 1) , 

and 

2 

(1 + n ) ( l + a) Step 8. Check if the following inequalities are satisfied, 

and iA(d(i)) =s e, and ig[k)A^k)gik) ^ £2 

j^ = ŷ  _j_ J where ei and £2 are pre-specified tolerance levels. If 
yes, stop iteration and d̂  is the answer. Otherwise let 

Go back to Step 2. fe = fc + 1 and go back to Step 2. 
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