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Abstract. The photodissociation probability of a diatomic molecule is usually very small even
under a strong field due to its anharmonicity. However, the progress in laser technology provides
a chirped laser pulse to lower the threshold of the dissociation intensity. We investigate the
quantum dynamics of a diatomic molecule under such a kind of pulse. It is found that there
is a significant dissociation probability at moderate intensity for a diatomic molecule under a
chirped pulse. The quantum dissociation probability is found to be suppressed with respect to
the classical one for intensities above the dissociation threshold. Therefore the chirped pulse
can efficiently dissociate a diatomic molecule.

Photodissociation of molecules has been an interesting area for both theoretical and
experimental physicists since the initial era of quantum mechanics (Bloembergen and
Yablonovitch 1978). Among various kinds of molecules, the diatomic molecules usually
serve as the paradigm of this subject for their simplicity. Recent studies (Bloembergen
and Zewail 1984, Goggin and Milonni 1988, Chelkowski and Bandrauk 1990) show that
diatomic molecules are resistant to dissociation even under intense lasers due to their
anharmonicity and nonlinear interaction with the field. On the other hand, as the intensity
goes beyond 1013 W cm−2, the ionization processes dominate the dissociation ones. So for
moderate laser intensities, it seems difficult to have a significant dissociation probability.
There have been several methods proposed to excite the molecules to highly excited states
efficiently and to control the molecular dissociation probability. Theoretically, Chelkowski
et al (1990) designed a kind of stepwiseπ -pulse that fulfils the population inversion between
successive energy levels by theπ -pulse criterion (Allen and Eberly 1975). This ladder-
climbing mechanism is rather efficient in molecular vibrational excitations. A chirped,
ultra-short pulse was used to selectively excite the molecular wavepacket motion (Bardeen
et al 1995). Gúerin (1997) analysed the complete dissociation of a Morse oscillator under a
chirped pulse by the adiabatic Floquet theory. Liuet al (1995) and Yuan and Liu (1997) used
a linear chirped pulse and employed a Morse oscillator as a model NO molecule to study the
dissociation. The Chirikov nonlinear resonance theory (Chirikov 1979) and bucket dynamics
(Hsuet al 1994) are used to explore the dissociation process. Although the stepwise chirped
π -pulse is slightly more efficient to excite the molecules than the linear chirped pulse, it is
actually not easy to construct in practice. Also, the relationship between the dissociation
mechanism and the field parameters remains to be explored. Experimentally, the chirped
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pulses which could be used to climb the vibrational ladders are currently available from
free-electron lasers (Vrijenet al 1997). In this letter, we will use the linear and quadratic
chirped pulses to study the dissociation process and its associated dynamical mechanism.
We find that the quantum dissociation is suppressed with respect to the classical dissociation
for field intensity which goes above the dissociation threshold. The phenomenon resembles
that found in microwave ionization of hydrogenic Rydberg states. The dependence of the
dissociation probability on the chirp constants, the initial excitation frequency, and the pulse
duration are investigated. We found that the chirp pulse can efficiently dissociate a diatomic
molecule under a moderate intensity.

This letter is organized as follows. First, we describe our numerical method. An
adaptive grid method was developed to avoid the boundary reflection problem and to save
computing time. Then, we present our results and discussion. Finally, a summary is given.

We will briefly describe our method of calculation here, readers are referred to some
references (Feitet al 1982, Kosloff and Kosloff 1983, Feit and Fleck 1984) for more details.
The time-dependent Schrödinger equation for the interaction of a diatomic molecule with
an external field can be written as

ih̄
∂

∂t
|ψ〉 =

{
(p̂ − qeA(t))

2

2m
+ V̂ (r)

}
|ψ〉 (1)

where the vector potentialA(t) = − ∫ t0 E(t ′) dt ′ and E(t) = EmU(t) sin[�(t) t ] is the
electric field with chirping frequency�(t), where

�(t) = �0

[
1− αn

(
t

T0

)n]
. (2)

The pulse duration isT0 and the peak field isEm. We define the parameterαn as the
chirping constant of the linear (quadratic) chirped pulse forn = 1 (2). In our calculation,
we choose�0 to be 1.1ω01 andω01, whereω01 is the resonance frequency between the
unperturbed ground state and the first excited state. The optical cycle is defined as 2π/�0.
Since the energy level spacings of a Morse oscillator decrease from lower to high states.
The blue to red chirping will provide a climbing ladder for the pumping process. Besides,
there is an AC Stark shift for each level, and theπ -pulse based upon unperturbed states
may not assume exact population inversion between two states. Thus we use the linear and
quadratic chirping as given by equation (2). TheU(t) is a slowly varying envelope function
given by

U(t) =


t/t0 for t 6 t0
1.0 for t0 < t 6 T0− t0
(T0− t)/t0 for T0− t0 < t 6 T0.

(3)

The rising time and switching-off timet0 is set to 10 cycles. For simplicity we consider
only the vibrational excitation of the ground electronic state. The Morse potential is

V (r) = De{1− exp[−α(r − r0)]}2. (4)

We fit the potential parameters to the HF molecular vibrational spectrum such that
De = 0.225, α = 1.1741, equilibrium nuclei separationr0 = 1.7329, reduced mass
m = 1744.8423 and effective chargeqe = 0.31 (atomic units are used unless otherwise
stated). There are 24 bound vibrational levels for the HF molecule.
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The time-dependent Schrödinger equation is propagated by the split-operator algorithm,

ψ(p, t +1) = exp

{
− i

[p̂2− 2qeαA(t +1)p̂]1

4m

}
exp[−iV̂ (r)1]

× exp

{
− i

[p̂2− 2qeαA(t +1)p̂]1

4m

}
ψ(p, t)+O(13) (5)

whereαA(t +1) =
∫ t+1
t

A(t ′) dt ′. The state function is transformed alternatively between
the coordinate and momentum spaces. The calculation is performed using a fast-Fourier
transform (FFT) (Jiang and Chu 1992). Generally speaking, the wavefunction is localized
in the momentum space but spreads in the coordinate space with time. When the system is
excited to higher or continuum states, the wavefunction will eventually hit the coordinate
grid boundary. The aliased boundary reflection will contaminate the correct wavefunction.
However, the moving apart velocity of the system is finite, so under the duration of a short
pulse, the extent of wavefunction travelling is controllable. Here we used the adaptive grid
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Figure 1. State populations and dissociation probability versus time with�0 = 1.1ω01 and
α1 = 0.5. (a) I = 1013 W cm−2; (b) I = 1012 W cm−2. Note that the pulse duration in (b) is
much longer than that in (a) in order to have noticeable dissociation probability.
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method. Instead of using a large grid throughout the calculation, we start with a smaller
grid and double the grid number whenever the wavefunction arrives at the outer boundary
of coordinate grids. The initial coordinate range is set to 15.7 au in a mesh of 256 evenly
spaced grids. As an example of the adaptive grid, in the case ofα1 = 0.5, �0 = 1.1ω01

and intensity of 1013 W cm−2, the number of grids changed fromN = 256 to 2048 at the
end of a chirped pulse consisting of 120 cycles.
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Figure 2. State populationsPn versus time at different field intensities with�0 = 1.1ω01,
α1 = 0.5 and T0 = 120 cycles. (a) I = 1012 W cm−2; (b) I = 3 × 1012 W cm−2; (c)
I = 5× 1012 W cm−2 and (d) I = 1013 W cm−2.
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The dissociation probabilityPD is defined as

PD(t) ≡ 1−
23∑
ν=0

Pν(t) (6)

with Pν(t) = |〈φν |ψ(t)〉|2 as the population of theνth bound stateφν of the Morse oscillator
at time t .

It is instructive to compare the quantum results with the classical ones that had revealed
the bucket dynamics and dynamical barrier scenarios (Brown and Wyatt 1986). The classical
dissociation probability is defined from those trajectories that have total energy greater than
zero after the field is turned off. In our calculation, we use an ensemble of 1000 points
(r, p) as the initial values satisfying some specified energy value. These trajectories are
calculated from the Hamiltonian–Jacobi equation:

∂r

∂t
= p − qeA(t)

m

∂p

∂t
= −∂V (r)

∂r
. (7)

In this study, we use the frequency chirping form as described in equation (2). Our
system is initially prepared in the ground state. The laser intensity runs from 1012 to
1013 W cm−2. The ionization processes are not important within this field range. From the
corresponding ponderomotive potentialUp and dissociation energyIp of HF, the Keldysh
parameterγ = √Ip/Up� 1, so we expect that the multiphoton process strongly dominates
the tunnelling one in our calculation. During the multiphoton process, the dissociation
occurs only when the system has been pumped up to someνth excited states such that
Eν + h̄�(t) > 0. It means that, during the interaction time, once the system has been
pumped to the state with energy greater than−h̄�0, it probably dissociates. From theπ -
pulse criterion (Allen and Eberly 1975), the stepwise transition amplitude depends on the
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Figure 3. The dissociation probability versus field strengthEm. Full squares represent the
quantum results and open circles represent the classical simulation. The pulse durationT0 is
120 cycles. Above the onset of threshold, quantum dissociation suppresses the classical result.
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field strengthEm, the dipole moment between neighbouring statesMν,ν+1 = 〈φν+1|r|φν〉,
and the chirping constantαn. On the other hand, for a successful dissociation, the timeTex

required to pump the ground state into the describedνth state should be less than the pulse
durationT0, where

Tex =
i=ν∑
i=0

Ti with
∫ Tν+1

Tν

U(t) dt = π/EmMν,ν+1. (8)

In fact, Tex is only an estimate due to (i) the shift of the energy levels in the presence of
an electromagnetic field; (ii) the necessity of a larger area to compensate the approximation
of the derivation of this formula and the nonresonance effects of a continuously chirped
pulse (Chelkowskiet al 1990); (iii) the importance of the non-negligible hopping dipole
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Figure 4. State populationPn versus time for different chirpings at field intensityI =
1013 W cm−2, �0 = 1.1ω01 and pulse durationT0 = 120 cycles, for (a) α1 = 0.0, (b)
α1 = 0.1, (c) α1 = 0.3, (d) α1 = 0.5.
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transition with momentMν,ν ′ 6=ν+1, especially when the system is in highly excited states
and (iv) the decay rates among states. In the case ofI = 1013 W cm−2, α1 = 0.5 and the
total pulse duration contains 120 cycles, theoretically the pulse can excite the ground state
up to the 22th state according to equation (8). However, in the numerical experiment, the
actual highest bound state reached is the 20th. Also for HF we haveE17+ h̄�(t) > 0. So
there is a finite probability to dissociate for a system which has been pumped up over the
20th. Our calculation shows that a dissociation probability of 0.4 is achieved in this case,
which is just slightly less than that of Chelkowskiet al (1990) where a complicated chirped
pulse was used. For a lower field, e.g.I = 1012 W cm−2, a much longer time is necessary
to arrive at the dissociation limit as mentioned above. The dissociation probabilities of the
two cases are shown in figures 1(a) and (b).

Figure 2 shows the population history of some states under a chirped pulse of
duration 120 cycles,�0 = 1.1ω0,1 and α1 = 0.5. The field intensities are 1, 3, 5 and
10× 1012 W cm−2, respectively. The different field intensity will excite the ground state
to different highest possible bound states during the pulse. The highest states arrived at
for the corresponding fields are the 4th, 8th, 12th and 22nd, respectively. Thus, with
this pulse duration, noticeable dissociation is possible only if the field strength goes above
5× 1012 W cm−2. Also, the time spent in populating from the ground state into the first
excited state reduces as the field strength increases. Similar situations occur for populating
other higher states. This agrees with the population flip equation (8).

In figure 3, we show both the quantum and classical dissociation probability versus
the peak field atα1 = 0.5 and�0 = 1.1ω0,1. It is interesting to note that above the
onset of the classical dissociation threshold, the quantum results are suppressed with respect
to the classical ones. The results are consistent with the study of microwave ionization
of the hydrogenic (MIH) Rydberg state. The MIH experiments confirmed that for field
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dissociation probability for�0 = ω01 is negligible and not drawn.
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frequencies higher than the neighbouring level spacing of the initial state, the suppression
does happen (Galvezet al 1988, Bayfieldet al 1989). Theoretically, the classical motion of
an integrable system is restricted to invariant tori. The Kolmogorov–Arnold–Moser theorem
(Tabor 1989) stated that some tori will survive when the system is perturbed, but when the
external perturbation exceeds a critical value, the last persistent torus is destroyed and the
remnant consists of a Cantor set. The classical orbits nearby will eventually diverge from
them; while quantum transport inhibits the escaping of the phase area with value larger than
h̄ (MacKay and Meiss 1988).

To find the optimal condition for dissociation, we investigate the change of dissociation
probability with the field parameters. First, we vary the linear chirping constantα1 from 0
to 0.5 with fixed field intensityI = 1013 W cm−2 and frequency�0 = 1.1ω01. Figure 4
depicts the time history of the populated states. Without chirping, almost no excited state
can be populated in a pulse of 120 cycles duration. The larger theα1, the higher the
state populated. The onset of dissociation occurs at aboutα1 = 0.35. Figure 5 shows the
dependence of the dissociation probability onα1 for both classical and quantum results.
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Figure 6. Dissociation probability versus quadratic chirpingα2 at T0 = 120 cycles and
I = 1013 W cm−2 for (a) �0 = ω01, (b) �0 = 1.1ω01. Full squares denote the quantum
results and open circles denote the classical simulations.
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The dissociation probability corresponding to the case of�0 = ω01 is negligible and is not
plotted. We can see from the results that the dissociation probability increases with the
value of α1. Second, we study the effect of the initial field frequency and the quadratic
chirping constant on the dissociation. Figure 6(a) shows the results of a chirped pulse at
I = 1013 W cm−2 for initial frequency�0 = ω01 in a time duration of 120 cycles. The
dissociation probability for the�0 = ω01 case is rather small in the linear chirping case. But
in the corresponding case of quadratic chirping, the dissociation probability is important.
Figure 6(b) shows the dissociation probability for�0 = 1.1ω01. Comparing with the linear
chirping case in figure 5, we can see that the dissociation threshold of quadratic chirping is
lowered, and the dissociation probabilities are larger. Above threshold, the dissociation rises
rapidly and fluctuates around some value higher than the linear one. Note that even in the
resonant case of initial frequency�0 = ω01, there is a significant dissociation probability.
Since the chirp is from blue to red, one may question how the first step of the quantum
ladder was climbed. However, as shown by Vrijenet al (1997), the field intensity used to
achieve significant transfer has already distorted the unperturbed bound levels, and the initial
resonance frequency between the ground state and the first excited state is no longer the
dominant role in the excitation process. The results also show that the method of chirping
is important to the dissociation and that quadratic chirping is more efficient than linear
chirping.

In summary, we have studied diatomic molecules under the chirped pulse and its related
dynamics. We find that the chirp significantly enhances the dissociation probability even
under moderate field intensity. Besides the population mechanism, we find that the quantum
dissociation probability is suppressed with respect to the classical one when the field strength
is stronger than the classical dissociation threshold. The corresponding phenomenon has
been of much interest in connection with the microwave ionization of hydrogenic Rydberg
states. The dissociation probability is also found to increase with increasing value of the
chirping constant. Also, the resonance of the initial field frequency with the unperturbed
ground and the first excited states no longer plays the decisive role in vibrational ladder
climbing. For simplicity, this letter only deals with the vibrational states of the Morse
oscillator. The coupling of the rotational levels and the higher electronic states is now
under investigation and will be reported elsewhere.

This work is supported by the National Research Council of Taiwan under contract
no NSC87-2112-M009-018. We thank Professors J M Yuan and W K Liu forsending
us their work before publication. Careful reading of the manuscript by Professor J J Lin is
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