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Abstract: A new concept of asymmetric modula- 
tion indices has recently been proposed and 
applied to full response multi-H phase-coded 
modulations (MHPM) with linear phase pulse 
function, and improved error probability per- 
formance has been found. In the paper, the above 
concept is extended in two directions. The partial 
response performance is analysed and compared 
with full response systems, and the effect of differ- 
ent phase pulse functions on bandwidthlpower 
efficiency is discussed in detail. It is shown that 
not only is improved performance possible, but 
also a full range of design trade-offs, among band- 
width and power efficiencies and complexity, are 
available for system optimisation. 

1 Introduction 

Continuous phase modulation (CPM) [l ,  23 signalling 
schemes have gained much interest in recent years due to 
their attractive spectral properties. The approach of 
phase-coded modulation provides good potential for 
further improvements in power and bandwidth effi- 
ciencies at the price of increased complexity [3]. Multi-h 
phase-coded modulation (MHPM), described in detail by 
Anderson and Taylor [4], represents one trend in this 
area towards the development of efficient signalling 
schemes for the transmission of digital data as opposed 
to techniques such as minimum shift keying (MSK) or 
quaternary phase shift keying (QPSK) [S-91. In the 
MHPM schemes, cyclically varying modulation indices 
are used in a prescribed manner so that the transmitted 
signal has phase slope variation, changing from one 
symbol interval to the next in response to the data 
symbols being transmitted. Since the phase function is 
altered in such a manner that unequal phase changes can 
result from transmission of the same data symbol in dif- 
ferent contiguous intervals, the phase change that occurs 
in the first interval can not be undone during the second. 
The delays in the merging of neighbouring phase trellis 
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paths will thus result in longer minimum Euclidean dis- 
tances for MHPM schemes than those for MSK and 
hence provide the coding gain [lo]. 

In practice, the modulation indices for MHPM are 
always restricted to be multiples of l/q, where 4 is an 
integer, and a finite number of phase states can therefore 
be used to demodulate the data in the receiver. In con- 
ventional MHPM schemes, the phase states at the tran- 
sition times are all multiples of n/q, but not all possible 
phase states are used, i.e. only even or odd multiples of 
n/4 are used at any transition time t = nT. However, if 
all the phase states of multiples of n/q could be used, we 
could have more flexibility in finding interesting signal- 
ling schemes, even if the constraint length in which the 
neighbouring phase trellis paths merge remains 
unchanged. In a recent paper [ll] a new concept of using 
asymmetric modulation indices for bipolar data + 1 and 
-1 ,  as compared to the symmetric indices used in con- 
ventional MHPM schemes, was proposed. In this new 
approach, the modulation indices h + i  for the data + 1 
and h - i  for the data - 1 are not necessarily equal. More 
phase states and better flexibilities are therefore available 
for the designers to optimise the system performance. It 
was also shown [ l l ]  that essentially no bandwidth 
expansion and only a slight modification in implementa- 
tion will be the result of this approach. However, the 
analysis and results [11] are only for full response 
systems with linear phase pulse functions. In this paper, 
the above concept of asymmetric indices for MHPM is 
extended in two directions. The partial response per- 
formance is analysed and compared with full response 
systems, and the effect of different phase pulse functions 
on bandwidthlpower efficiency is discussed in detail. 

2 

The general form for an MHPM signal is 

MHPM w i t h  asymmetric modulation indices 

where E is the symbol energy, T is the duration of a 
symbol, o, = 2nh is the carrier angular frequency and do 
is an arbitrary carrier phase which, without loss of gener- 
ality, can be set to be zero. The information-carrying 
phase function d(t, a) can be expressed as 

m 

d(4 a) = 2~ ~ i h i q [ t  - (i - 1)T] -CO < t < CO 
i =  - m  

(2) 
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where z = {. .. , a - 2 ,  a- ,, a,, a,, a 2 ,  . . . }  represents the 
sequence of data symbols, hi is the cyclically varying 
modulation index corresponding to the ith symbol and 
4(t) is a phase pulse function. In practice, the modulation 
indices are often obtained from a set of rational values 
of the form {Io/q, lJq,  ..., IK-Jq} ,  where I i  q for 
0 < i < K - 1, Ii and q are all integers. These indices are 
used cyclically with period K so that 

h, ,+ ,=l , /q  O < j < K - 1  and n = 0 , 1 , 2  ,... 
The phase pulse function can be expressed as 

( 3 )  

where g ( t )  is a frequency pulse shape function with dura- 
tion LT,  i.e., it is zero for t < 0 and t > LT, where L is an 
integer, and nonzero otherwise. L = 1 yields a full 
response signal, whereas L > 1 corresponds to a partial 
response signal. In the previous paper [ l l ] ,  a full 
response linear phase pulse function is assumed, i.e. 

0 t < O  

112 t > T 
(4) 

For conventional binary MHPM schemes, the modula- 
tion index hi has only one value for the ith symbol no 
matter whether it is + 1 or - 1, such that the phase trellis 
of the binary MHPM are always symmetric. Let h + i  and 
ki represent the indices hi for the ith symbol being + 1 
and - 1 ,  respectively. Apparently, ki  = h+i  for all i in 
such a scheme. Assume two phase trajectories diverge 
from a given state at time t = 0. The phase difference at 
time t = T will be n(h+, + h - , )  = n(2h1) when a,’s are 
different, and q(2hi) will be an even number. In the pre- 
vious paper [l  13, a new concept of MHPM with asym- 
metric modulation indices corresponding to the bipolar 
data + 1 and - 1 was proposed, i.e. h+i  and h P i  are not 
necessarily equal. 

This new asymmetric MHPM concept can provide the 
designer with an additional degree of freedom in choos- 
ing indices with better performance, because the separa- 
tions among phase trajectories and the resulting 
minimum Euclidean distances depend on the values h + i ,  

h - and (h + + h - i ) .  For conventional MHPM, although 
q(h+i) and q ( k i )  could be any chosen number, q(h+i 
+ bpi) will always be an even number, and this con- 

straint will limit the possibilities of maximising the 
minimum Euclidean distance. In other words, if q(h+i  
+ ki) does not have to be an even number, more 

opportunities will be available for designers to achieve 
better performance. This is the basic idea of the asym- 
metric MHPM concept. Extensive numerical results have 
been obtained for full response systems with linear phase 
pulse function in the previous paper [ l  13,  and it has been 
shown that with this approach significant performance 
improvements can be achieved compared to the conven- 
tional MHPM schemes. 

3 Performance analysis approaches 

In this paper, we will first analyse the bandwidth/power 
performance for full response MHPM with asymmetric 
indices with different phase pulse functions. The phase 
pulse functions assumed include linear phase (LP), raised- 
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cosine (RC) and half-cycle sinusoid (HCS) functions : 

q(t) = 

0 t < 0 ;  LP, RC, HCS 
t / 2  T O < t < T ;  LP 
[ l  -COS (nt /T)] /4  O < t < T ;  HCS 
[ ( t /T)  - sin (2nt/T)/2n]/2 0 < t < T ;  RC 

y > T ;  LP, RC, HCS 1 / 2  I (5 )  

In the LP case, the frequency is held constant throughout 
the data interval, whereas with RC and HCS the instan- 
taneous frequency varies slowly and smoothly. However, 
when the partial response schemes are analysed, only the 
linear phase pulse function will be assumed, i.e. 

t < O  

q(t) = t/2LT 0 < t < LT 
{:/2 t > L T  

L = 1 yields a full response signal as in eqn. 4, whereas 
L > 1 corresponds to a partial response signal. The per- 
formance for conventional partial response multi4 
schemes with such linear phase pulse function and L = 2 
have been found to be very attractive for hi -= 1.0 [12]. 
Such a linear phase pulse function with duration 
LT = 2T will thus be used in all the following numerical 
results for partial response systems. 

It is difficult to analyse the error probability per- 
formance of a coherent receiver for MHPM schemes. 
One commonly used approach is that of calculating the 
minimum Euclidean distance over several symbol inter- 
vals for all possible cyclic shifts of hi values. In this paper, 
the minimum Euclidean distances will be used as an indi- 
cator of the power efficiency of MHPM schemes. The 
minimum Euclidean distance for minimum shift keying 
(MSK) is four. 

When considering the spectral behaviour of MHPM 
schemes, the evaluation of the power spectra of MHPM 
signals is quite involved, thus simple approximations are 
often used to estimate the bandwidth of mule-h signals, 
for example, the averaged modulation index h approach 
used by Wilson [13] .  In this approach, the average of the 
modulation indices hi over one cycle is calculated 

I K  

(7) 

Since the bandwidth of a const_ant-h signal is proportion- 
al to its modulation index h, h can be taken as an esti- 
mate for the bandwidth of an asymmetric MHPM signal 
ky considering a constant4 sign@ with modulation index 
h. In this paper, we also use h as an estimate for the 
bandwidth requirement of an MHPM signal with asym- 
metric indices, and h‘s are rounded to 0.01 in the numeri- 
cal results. 

4 Bandwidthlpower performance analysis for full 
response cases w i t h  different phase pulse 
functions 

Here we first analyse the bandwidth/power performance 
for full response cases with different phase pulse func- 
tions. The minimum Euclidean distances for the best 
combinations of modulation indices with K = 2, 3, and 4 
have been calculated. The maximum value of_ all the 
minimum Euclidean distances with the same h for all 
possible values of q being considered is taken as a 
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measure of the power efficiency and listed in Tables 1-3 
with the value of q for K = 2, 3 and 4, respectively. For 
2-h schemes, it is clear that the largest minimum Euclid- 
ean distance is 7.81 with h = 0.52 and q = 13 when the 
RC phase pulse function is used. Since the implementa- 
tion complexity of a multi4 system itcreases with q, RC 
phase 2-h schemes with q = 7 and h = 0.54 is a good 
choice when the system complexity is considered. 

Table 1 : Maximum value of all the minimum Euclidean dis- 
tances with the same averaged modulation index h for full 
resDonse asvmmetric MHPM with K = 2 

h Minimum Euclidean distance la) 

LP RC HCS 

0.34 4.18 (11) 4.81 (11) 4.59 (11) 
0.35 4.51 (12) 5.13 (12) 4.92 (12) 
0.36 4.49 (9) 5.16 (9) 4.94 (9) 
0.37 4.79 (13) 5.40 (13) 5.19 (13) 
0.38 4.85 (10) 5.53 (13) 5.28 (10) 
0.39 5.14 (11) 5.78 (11) 5.56 (11) 
0.40 5.60 (13) 6.19 (13) 5.99 (13) 
0.41 5.37 (8) 6.05 (8) 5.82 (8) 
0.42 5.66 (9) 6.30 (13) 6.08 (9) 
0.43 6.09 (11) 6.65 (11) 6.46 (11) 
0.44 6.39 (13) 6.88 (13) 6.71 (13) 
0.45 6.10 (11) 6.84 (11) 6.59 (11) 
0.46 6.45 (7) 7.05 (7) 6.85 (7) 
0.47 6.87 (10) 7.31 (10) 7.16 (10) 
0.48 7.12 (13) 7.46 (13) 7.35 (13) 
0.50 3.98 (13) 3.96 (13) 3.97 (13) 
0.52 7.70 (13) 7.81 (13) 7.77 (13) 
0.53 7.57 (9) 7.73 (9) 7.68 (9) 
0.54 7.49 (7) 7.66 (7) 7.59 (7) 
0.55 7.31 (11) 7.58 (11) 7.49 (11) 
0.56 7.23 (13) 7.62 (13) 7.49 (13) 
0.57 7.14 (11) 7.59 (11) 7.44 (11) 
0.58 7.06 (13) 7.58 (9) 7.40 (9) 
0.59 6.99 (8) 7.58 (8) 7.38 (8) 
0.60 6.97 (12) 7.62 (12) 7.41 (12) 
0.61 6.96 (11) 7.49 (11) 7.42 (11) 
0.62 6.95 (13) 7.28 (13) 7.40 (13) 
0.63 7.00 (13) 7.33 (10) 7.49 (13) 
0.64 7.01 (9) 7.10 (9) 7.34 (9) 
0.65 7.04 (12) 7.10 (12) 7.34 (12) 
0.66 7.07 (11) 6.11 (11) 6.45 (11) 
0.67 7.15 (12) 6.44 (12) 6.75 (12) 
0.68 6.85 (10) 6.25 (7) 6.25 (11) 
0.69 7.34 (12) 6.44 (12) 6.75 (12) 
0.70 7.15 (11) 6.11 (11) 6.45 (11) 
0.71 7.11 (13) 6.05 (13) 6.39 (13) 
0.72 6.85 (8) 5.70 (8) 6.07 (8) 
0.73 6.85 (10) 5.70 (10) 6.07 (10) 
0.75 0.58 (13) 5.33 (13) 5.74 (13) 

From Tables 1 and 2, it is interesting to find that 
the minimum Euclidean distance of the 2-h scheme with 
RC phase puls_e function is larger than those of 3 4  
schemes when h = 0.52. In other words, 2 4  schemes can 
be used to obtain the error probability performance of 
3-h schemes with less system complexity when h = 0.52. 
From these three tables, we find that the distances of 4-h 
schemes are always larger th3n those of 2 4  and 3-h 
schemes, if the same values of h are used. Furthermore, it 
is found that the minimtm Euclidean distance of the RC 
phase 4-h scheme with h = 0.41 is larger than all the dis- 
tances in Tables 1 and 2, which means asymmetric 4-h 
schemes can be used to obtain the error probability per- 
formance of 2-h and 3-h schemes with less bandwidth at 
the price of increased system complexity. Part of the 
optimum codes for 2-h schemes are listed in Table 4. 
From this table, y e  find that most of the optimum codes 
with the same h for different phase functions are the 
same. 

Table 2: The maximum value of all the minimum Euclidean 
distances with the same averaged modulation index h for 
full response asymmetric MHPM with K = 3 

h Minimum Euclidean distance (9) 

LP RC HCS 

0.31 4.18 (15) 4.57 (17) 4.40 (17) 
0.32 4.50 (16) 4.99 (16) 4.83 (16) 
0.33 4.27 (15) 4.76 (15) 4.60 (15) 
0.34 4.99 (15) 5.66 (16) 5.59 (16) 
0.35 5.28 (17) 5.89 (17) 5.71 (17) 
0.36 5.36 (16) 5.92 (13) 5.75 (13) 
0.37 5.64 (17) 6.27 (15) 6.15 (15) 
0.38 5.97 (17) 6.49 (14) 6.35 (11) 
0.39 6.08 (14) 6.94 (14) 6.77 (14) 
0.40 6.43 (17) 7.20 (17) 7.03 (17) 
0.41 6.56 (17) 7.20 (17) 7.03 (17) 
0.42 6.78 (17) 7.61 (13) 7.45 (13) 
0.43 7.24 (17) 7.75 (16) 7.59 (16) 
0.44 7.16 (15) 7.55 (17) 7.41 (17) 
0.45 7.54 (17) 7.89 (17) 7.86 (17) 
0.46 7.79 (16) 7.89 (17) 7.86 (17) 
0.47 7.72 (11) 7.97 (17) 7.87 (17) 
0.48 7.80 (11) 8.04 (14) 8.01 (11) 
0.49 7.90 (17) 8.03 (14) 8.13 (17) 
0.50 7.97 (16) 7.92 (17) 7.92 (14) 
0.51 7.94 (17) 7.69 (17) 7.75 (17) 
0.52 7.76 (17) 7.73 (17) 7.69 (17) 
0.53 7.68 (17) 7.86 (15) 7.79 (17) 
0.54 7.65 (14) 7.89 (17) 7.83 (15) 
0.55 7.70 (16) 7.89 (17) 7.86 (17) 
0.56 7.80 (17) 7.98 (16) 7.89 (16) 
0.57 7.80 (17) 8.07 (14) 7.95 (14) 
0.58 7.80 (17) 8.19 (12) 8.05 (12) 
0.59 7.97 (16) 8.48 (16) 8.31 (16) 
0.60 8.05 (15) 8.49 (16) 8.41 (15) 
0.61 8.15 (14) 8.51 (15) 8.62 (16) 
0.62 8.43 (17) 8.52 (14) 8.77 (15) 
0.63 8.58 (16) 8.61 (17) 8.78 (12) 
0.64 8.82 (14) 8.45 (16) 8.80 (17) 
0.65 8.97 (16) 8.49 (16) 8.81 (14) 
0.66 8.97 (16) 8.30 (17) 8.79 (17) 
0.67 5.86 (15) 5.59 (15) 5.67 (15) 
0.68 9.28 (15) 8.15 (15) 8.61 (17) 
0.69 9.28 (15) 8.05 (17) 8.55 (16) 
0.70 9.23 (17) 7.82 (15) 8.46 (15) 
0.71 9.23 (17) 7.77 (17) 8.42 (17) 
0.72 8.85 (16) 7.62 (16) 8.07 (16) 
0.73 8.46 (17) 7.24 (17) 7.64 (17) 
0.74 8.46 (17) 7.24 (17) 7.64 (17) 
0.75 7.99 (16) 6.72 (16) 7.14 (16) 
0.76 7.68 (17) 6.32 (17) 7.76 (17) 
0.77 7.52 (15) 6.14 (15) 6.59 (15) 
0.78 7.19 (16) 5.76 (16) 6.22 (16) 
0.79 6.96 (14) 5.49 (14) 5.97 (14) 
0.80 6.66 (15) 5.15 (15) 5.64 (15) 

The best minimum Euclidean distances against the 
average of modulation indices h are plotted in Figs. 1-3 
for comparison. From Fig. 1, we find that for 2-h schemes 
(K = 2) the minimum Euclidean distances of the RC 
phase pulse function _are larger than those for LP and 
HCS functions when h is smaller than 0.6. Note that the 
minimum Euclidean distances form a dsep notch with the 
minimum value less than 4.0 when h = 0.5 for all the 
three phase functions considered. This is- because for 2-h 
schemes the modulation index sets with h = 0.5 are weak 
index sets, i.e. the constraint length will be only 2, instead 
of K + 1 = 3 for these cases. We can also see that the 
highest power efficiency will be achieved at a mjnimum 
distance of 7.81 with a bandwidth parameter h = 0.52 
when the RC phase pulse function is used, which seems 
to be a very attractive design. Apparently a plot such as 
in Fig. 1 provides very useful bandwidth-power per- 
formance analysis for design trade-offs and system opti- 
misation. 
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Table 3: The maximum value of all the minimum Euclidean 
distances with the same averaged modulation index h for 
full response asymmetric MHPM with K = 4 

6 Minimum Euclidean distance (9) 

LP RC H CS 

0.31 5.32 (22) 5.77 (22) 5.59 (19) 
0.32 6.25 (22) 6.56 (22) 6.50 (22) 
0.33 6.27 (20) 6.45 (20) 6.39 (20) 
0.34 6.72 (21) 7.08 (21) 7.02 (21) 
0.35 6.89 (21) 7.21 (22) 7.04 (22) 
0.36 7.18 (21) 7.69 (21) 7.52 (21) 
0.37 7.18 (21) 7.69 (21) 7.52 (21) 
0.38 7.95 (22) 8.45 (22) 8.28 (22) 
0.39 8.36 (22) 8.77 (22) 8.67 (22) 
0.40 8.54 (22) 8.77 (22) 8.69 (22) 
0.41 9.23 (19) 9.59 (22) 9.50 (19) 
0.42 9.1 6 (21 ) 9.22 (21 ) 9.32 (21 ) 
0.43 8.90 (21) 8.79 (22) 8.72 (21) 
0.44 8.51 (21) 8.58 (22) 8.50 (20) 
0.45 8.76 (21) 8.45 (21) 8.56 (21) 
0.46 8.46 (20) 8.18 (20) 8.27 (20) 
0.47 8.19 (22) 8.33 (22) 8.24 (22) 
0.48 8.54 (22) 8.84 (20) 8.73 (20) 
0.49 8.90 (21) 9.33 (21) 9.18 (21) 
0.50 7.84 (21) 7.88 (22) 7.90 (22) 
0.51 9.23 (19) 9.63 (22) 9.50 (19) 
0.52 9.62 (22) 9.83 (20) 9.87 (20) 
0.53 10.01 (22) 9.59 (22) 9.75 (22) 
0.54 9.68 (21) 9.17 (21) 9.37 (21) 
0.55 9.62 (22) 8.92 (19) 9.11 (22) 
0.56 9.24 (18) 8.63 (22) 8.87 (18) 
0.57 8.84 (21) 8.49 (22) 8.46 (21) 
0.58 8.55 (17) 8.62 (20) 8.66 (22) 
0.59 8.74 (20) 9.02 (20) 8.93 (20) 
0.60 9.04 (18) 9.33 (21) 9.18 (21) 
0.61 9.50 (21) 9.63 (22) 9.50 (21) 
0.62 9.79 (22) 9.90 (18) 9.96 (22) 
0.63 9.95 (20) 10.02 (21 ) 10.1 9 (21 ) 
0.64 10.28 (22) 9.48 (17) 9.86 (21) 
0.65 10.12 (18) 9.70 (22) 9.96 (22) 
0.66 10.39 (21) 9.54 (20) 9.95 (20) 
0.67 10.39 (21) 9.17 (21) 9.57 (21) 
0.68 10.07 (21) 9.02 (19) 9.11 (22) 
0.69 9.96 (22) 8.70 (22) 9.11 (22) 
0.70 9.96 (22) 8.61 (22) 9.11 (22) 
0.71 9.96 (22) 8.31 (20) 8.91 (20) 
0.72 9.79 (19) 8.12 (21) 8.64 (18) 
0.73 9.77 (20) 7.80 (19) 8.44 (21) 
0.74 9.46 (21) 7.62 (17) 8.21 (17) 
0.75 7.98 (22) 7.44 (20) 7.90 (22) 
0.76 9.08 (22) 7.30 (22) 8.08 (22) 
0.77 8.54 (21) 7.11 (21) 7.58 (21) 
0.78 8.30 (19) 6.86 (19) 7.33 (19) 
0.79 7.96 (20) 6.48 (20) 6.96 (20) 
0.80 7.66 (21) 6.15 (21) 6.64 (21) 

In Fig. 2, it can be seen that for 3 4  schemes (K = 3), 
although the RC phase pulse function seems to be the 
most power efficient when h is less than 0.6, tke LP phase 
pulse function will be the best choice when h is allowed 
to exceed 0.65. In other words, LP can be used to achieve 
better error probability performance but at the price of a 
slight bandwidth expansion. It can also be s_een that for 
3-h schemes the modulation index sets with h = 0.67 will 
limit the constraint length to be 3 instead of K + 1 = 4, 
and this is why the minimum Euclidean distances form 
another deep notch there. On the other hand, LP phase 
pulse function with h = 0.68 can be used to achieve the 
largest dislance of 9.28 for 3-h schemes. It is clear that the 
choice of h value is very important for the system design 
of MHPM schemes. 

For 4-h schemes (_K = 4) in Fig. 3, the weak modula- 
tion index sets have h = 0.5, although the notch is not so 
deep as before. From this Figure, we find that the 
minimum Euclidean distances for RC phase pulse func- 
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Table 4: The maximum value of all the minimum Euclidean 
distances with the same averaged modulation index h for 
2-h schemes with q 

ti Minimum Euclidean distance (9 )  
(A,,  A21 

- 
0.54 

0.55 

0.56 

0.57 

0.58 

0.59 

0.60 

0.61 

0.62 

0.63 

0.64 

0.65 

LP RC HCS 
~ 

conv. asym. 

7.36 (12) 7.49 (7) 
(12. 14) (7. 8) 
7.25 (10) 7.31 (11) 
(10, 12) (11. 13) 
7.10 (8) 7.23 (13) 
(8. 10) (14. 15) 
6.65 (7) 7.14 (11) 
(6. 10) (1 2. 13) 
7.06 (13) 7.06 (13) 
(14, 16) (14, 16) 
6.98 (11) 6.99 (8) 
(12. 14) (9. 10) 
6.79 (10) 6.97 (12) 
(10, 14) (14, 15) 
6.92 (9) 6.96 (11) 
(10. 12) (13, 14) 
6.87 (13) 6.95 (13) 
(14, 18) (15, 17) 
6.95 (12) 7.00 (13) 
(14, 16) (16, 17) 
5.88 (11) 7.01 (9) 
(10.18) (11,12) 
6.58 (13) 7.04 (12) 
(14. 20) (15, 16) 

conv. asvm conv. asvm 

7.61 (12) 7.66 (7) 
(1 2. 14) (7. 8) 
7.54 (10) 7.58 (11) 
(10. 12) (11, 13) 
7.45 (8) 7.62 (13) 
(8, 10) (14. 15) 
6.34 (7) 7.59 (11) 
(6. 10) (1 2, 13) 
7.55 (13) 7.58 (9) 
(14, 16) (10, 11) 
7.49 (11) 7.58 (8) 
(1 2. 14) (9. 10) 
6.58 (10) 7.62 (12) 
(10. 14) (14, 15) 
7.10 (9) 7.49 (11) 
(10. 12) (13, 14) 
6.71 (13) 7.28 (13) 
(14, 18) (15, 17) 
7.10 (12) 7.33 (10) 
(14. 16) (12, 13) 
5.41 (7) 7.10 (9) 

5.69 (13) 7.10 (12) 
(16, 18) (15, 16) 

(8.10) (11.12) 

7.53 (12) 7.59 (7) 
(12. 14) (7. 8) 
7.45 (10) 7.49 (11) 
(10, 12) (11, 13) 
7.33 (8) 7.49 (13) 
(8, 10) (1 4, 15) 
6.66 (7) 7.44 (11) 
(6. 10) (12. 13) 
7.38 (13) 7.40 (9) 
(14, 16) (10, 11) 
7.35 (1 1 ) 7.38 (8) 
(1 2. 14) (9. 10) 
6.88 (10) 7.41 (12) 
(10, 14) (14, 15) 
7.34 (9) 7.42 (11) 
(10, 12) (13, 14) 
6.99 (13) 7.40 (13) 
(14, 18) (15, 17) 
7.34 (12) 7.49 (13) 
(14, 16) (16, 17) 
5.53 (7) 7.34 (9) 
(8.10) (11.12) 
5.76 (13) 7.34 (12) 
(16, 18) (15, 16) 

I 1 1 1 1 1 1 
0 3  0 4  0 5  06 0 7  08  

h 
- 

Minimum Euclidean distances against averaged modulation Fig. 1- 
index h for asymmetric MHPM with K = 2 
__ LP 

RC 
HCS 

_ _ _  
- _ _ _  

511 



41 
1 

I I I I I I 
0 3  0 4  05 0 6  0 7  08 

h 

Fig. 2- 
index hfor asymmetric MHPM with K = 3 
- LP 

RC 
HCS 

Minimum Euclidean distances against averaged modulation 

_ _ _ _  

I I I I I I I 
03 0 4  05  06  0 7  08 

T i  
Fig. 3- 
index h for asymmetric MHPM with K = 4 
- LP 

RC 
- _ - _  HCS 

512 

Minimum Euclidean distances against averaged modulation 

tion ace larger than those for LP and HCS functions 
when h is smaller than 0.41. The peak of 9.59 for the 
minimum Euclidean distance of RC phase MHPM 
scheme is the best choice when h is required to be less 
than 0.5. On the other ha_nd, LP phase pulse function will 
be the best choice when h is allowed to exceed 0.64. Also, 
it is clear that the minimum Euclidean-distances for-LP 
have two peaks of 10.01 and 10.39 for h = 0.53 and h = 
0.66, respectively. However, because the coding gain dif- 
ference is only 0.16 dB between these two peaks, but the 
bandwidth for h = 0.53 is apparently much small_er, thus 
the LP function with modulation index set with h = 0.53 
seems to be a very attractive choice when considering 
both the bandwidth and power efficiencies. 

By comparing Figs. 1-3, it is quite clear !hat the RC 
phase pulse function is the best choice when h is required 
to be less than 0.5. Also, the HCS phase pulse function is 
less power efficient than LP or RC phase pulse functions 
in general. Furthermore, a comparison of Figs. 2 and 3 
indicates that the distances of 4-h schemes with _h = 0.53 
can be larger than those of 3 4  schemes with h = 0.68. 
This means with 4 4  schemes better error probability per- 
formance can be achieved than with the best of 3-h 
schemes, even with significantly less bandwidth but at the 
price of increased complexity because complexity 
increases with K. It is thus quite clear that there exist 
many asymmetric MHPM schemes which can be chosen 
in system design when the trade-offs among bandwidth 
and power efficiencies and system complexity are con- 
sidered. 

5 

We now analyse the performance for partial response 
MHPM with asymmetric indices and linear phase pulse 
function as described in eqn. 6. The minimum Euclidean 
distances for the best combinations of modulation indices 
with K = 2, 3 and 4 have been calculated for linear phase 
partial response multi-h schemes. The results for full 
response MHPM systems are listed in columns 1 and 2 
of Tables 5-7, while those for partial response MHPM 

Performance analysis for partial response cases 

Table 5:  Minimum Euclidean distances for 2-h linear phase 
MHPM systems 

9 Minimum Euclidean distance (A,,A,) 

full response partial response 

conv. asvm. conv. asvm. 

4 5.58 7.11 4.36 8.41 

5 6.14 7.25 6.85 8.83 

6 6.90 7.36 7.39 8.69 

7 6.65 7.45 7.90 8.60 

8 7.10 7.51 8.41 9.03 

9 6.92 7.57 8.85 8.92 

10 7.25 7.61 8.83 8.83 

1 1  7.14 7.64 8.76 9.02 

12 7.36 7.67 8.69 9.03 

13 7.28 7.70 8.64 8.95 

(4. 6) (4. 5) (4,6) (6. 7) 

(6. 8) (5, 6) (6. 8) (8. 9) 

(6. 8) (6. 7) (8, 10) (9,ll) 

(6. 10) (7. 8) (10, 12) (11, 13) 

(8, 10) (8, 9) (12, 14) (13, 14) 

(10, 12) (9, 10) (14, 16) (15, 16) 

(10, 12) (10, 11) (16, 18) (16, 18) 

(10. 14) (11, 12) (18, 20) (18, 19) 

(12, 14) (12, 13) (18, 20) (20, 21) 

(12, 16) (13, 14) (20, 24) (22, 23) 

andA, = I+ ,  + I _ , ,  A,=I,,+I_, 
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can be used to obtain even better error probability per- 
formance, compared to conventional symmetric MHPM, 
but with less complexity. For example, for an asymmetric 
3-h scheme with q = 17, we can obtain a minimum 
Euclidean distance very close to that of the best conven- 
tional 4-h scheme with q = 20. 

In Fig. 4, the minimum Euclidean distances against 4 
are plotted with K = 2, 3 and 4 for both linear phase full 
response and partial response MHPM's with asymmetric 
modulation indices. It is easy to see in this Figure that, 

Table 6: Minimum Euclidean distances for 3-h linear phase 
MHPM systems 

q Minimum Euclidean distance (A , ,A , ,A , )  

full response partial response 

conv. asym. conv. asym. 

8 7.58 

9 5.52 

10 7.63 

11 7.46 

12 7.63 

13 8.34 

14 8.23 

15 7.76 

16 8.68 

17 8.46 

(8. 10. 12) 

(8. 12. 14) 

(10, 12, 14) 

(12, 14, 16) 

(12, 14, 16) 

(16, 18, 20) 

(16, 18, 20) 

(16, 18, 22) 

(20, 22, 24) 

(22, 24, 26) 

8.68 6.37 
(10, 11. 12) 
8.1 1 6.91 
(11. 12. 14) 
8.85 8.76 
(13, 14, 15) 
8.77 8.1 1 
(14. 15, 16) 
8.85 8.1 8 
(1 5. 16, 18) 
9.1 8 9.1 5 
(1 7. 18. 19) 
8.85 9.46 
(1 7, 19. 21 ) 
9.28 9.71 
(1 8, 21, 22) 
9.1 5 9.62 
(21, 22, 23) 
9.23 9.49 
(23. 24. 25) 

(10. 12, 14) 

(10, 12, 14) 

(12, 14, 16) 

(14, 16, 18) 

(1 6, 20, 22) 

(1 8, 20, 22) 

(20, 22, 24) 

(22, 24, 26) 

(24, 26, 28) 

(26, 28, 30) 

9.62 
(12, 13, 14) 
9.79 
(13, 14, 15) 
10.04 
(15, 16, 17) 
10.62 
(15, 16, 17) 
10.32 
(18, 19, 20) 
10.70 
(1 8, 1 9, 20) 
10.53 
(21, 22, 23) 
10.74 
(21, 22, 23) 
10.68 
(21, 25, 26) 
10.77 
(24, 25, 26) 

'3 r 

12 I 
L 11 

\ /  
X systems are listed in columns 3 and 4. From these tables, 

it is clear that the minimum Euclidean distances for 
asymmetric MHPM schemes are always larger than 
those of conventional symmetric MHPM, for all values 
of q for which the calculation has been performed. It is 
also revealed that the minimum Euclidean distances are 
much less dependent on the choice of q when asymmetric 
modulation indices are used. Furthermore, it is inter- 
esting to find that most of the best combinations of h 
used for partial/full response asymmetric MHPM 
systems are different. From Tables 6 and 7, we find that 
the distances of asymmetric MHPM with K = 3 are very 
close to those of conventional symmetric MHPM with 
K = 4. Since the implementation complexity of a multi-h 
system increases with K ,  this means asymmetric MHPM 

6 
5 10 15 20 

q 

Fig. 4 
and partial response M H P M  with asymmetric modulation indices 
~ Partial response - - - - - - - 
O K = 2  A K = 3  m K = 4  

Comparison of minimum Euclidean distances for full response 

Full response 

Table 7: Minimum Euclidean distances for 4-h linear phase MHPM 
systems 

4 Minimum Euclidean distance (A , , A , ,  A , ,  A,) 

full response partial response 

conv. asvtn. conv. asvm. 

9.29 
(1 6, 22, 20, 24) 
8.02 
(20. 22, 24, 28) 
8.1 2 
(1 8. 26, 20, 22) 
8.83 
(20, 28, 24, 26) 
9.55 
(28. 20, 30, 26) 
8.54 
(26.32, 34, 30) 
9.78 
(28. 30. 24. 32) 

16 

17 

18 

19 

20 

21 

22 

10.32 
(20, 23, 18, 24) 
10.21 
(21. 24, 20, 26) 
10.21 
(20, 26, 23, 27) 
10.13 
(24. 27. 22, 28) 
10.35 
(29,22, 30, 24) 
10.38 
(24. 32, 25, 30) 
10.31 
(28. 32, 25, 33) 

9.07 11.22 
(20. 24. 26. 22) 
9.43 11.21 
(22. 26, 28. 24) 
9.03 11.32 
(20, 28, 32, 22) 
10.61 11.38 

10.86 11.56 

9.90 11.32 
(30, 34. 36. 32) 
10.50 11.60 

(24, 23, 25, 26) 

(25, 24, 27, 28) 

(30, 28, 27, 29) 

(26. 30.32, 28) (25, 30. 31. 29) 

(28. 32,34, 30) (33, 31, 30. 32) 

(25, 35, 29, 33) 

(28,32. 38, 30) (35, 36, 34, 33) 

l+llq# 1 + 2 1 a  I+,/q. I+dq 
I - l /q*  1-2Iqs I-& 
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for asymmetric MHPM schemes, partial response pro- 
vides a better performance compared to full response for 
K varing from 2 to 4. Furthermore, it can be found that 
the Euclidean distances of linear phase partial response 
asymmetric MHPM with K = 2 and K = 3 are very 
close to those of full response asymmetric MHPM with 
K = 3 and K = 4, respectively. 

6 Conclusion 

In this paper the new concept of asymmetric indices 
recently proposed for MHPM is extended to partial 
response systems and different phase pulse functions. It is 
found that significant improvements in power efficiency 
are possible, and a full range of design trade-offs among 
bandwidth and power efficiencies and complexity are 
available for system optimisation. For full response 
MHPM systems, the RC phase pulse function turns out 
to be a very good choice when the bandwidth-power 
trade-off is considered for average indices less than 0.5. 
With asymmetric modulation indices, partial response is 
shown to give better performance than full response at 
the price of increased system complexity. 
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