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DOUBLE DEGENERACY AND CHAOS IN A RATE
GYRO WITH FEEDBACK CONTROL
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The analysis of a single-axis rate gyro subjected to feedback control mounted on a space
vehicle that is spinning with uncertain angular velocity vZ about its spin of the gyro is
presented. For the autonomous case in which vZ is steady, we examine the dynamics of
the resulting system on the center manifold near the double-zero degenerate point by using
center manifold and normal form methods. There exist a few kinds of bifurcations in the
autonomous case such as pitchfork and Hopf bifurcations for local bifurcation analyses,
and a saddle-connection bifurcation for global analyses. As singular velocity vZ of the space
vehicle is harmonic, the Melnikov technique was used to give criteria for the existence of
chaos in the gyro motion. The numerical simulations are performed to verify the analytical
results in the form of phase portraits, bifurcation diagrams and Lyapunov exponents. In
addition, chaotic motions of this system can be changed into regular motions by a small
parametric perturbation with Lyapunov exponent calculations.
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1. INTRODUCTION

During the past few decades, chaotic dynamics of physical systems, which possess
non-linearity and external excitation, have been extensively investigated. In gyroscopic
systems, the dynamics of gyros also exhibit complex non-linear and chaotic behavior.
Single-axis rate gyros are often used for the measurement of angular velocity in spinning
space vehicles. The non-linear dynamics of a single-axis rate gyro mounted on a space
vehicle with a variety of motion was widely analyzed by Singh [1] and Ge and Chen [2, 3].
For example, the motion of a single-axis rate gyro has been examined for small rotation
u of the gimbal when the angular velocity of vehicle is spinning about its spin axis [1]. The
stability of a rate gyro mounted on a vehicle, which has a time-varying angular velocity
about its spin of the gyro, was studied by Ge and Chen [2] using the Lyapunov direct
method. The complex non-linear and chaotic motions of a rate gyro under harmonic
excitation about the vehicle input axis were observed in reference [3]. All of them are
two-dimensional systems. In this paper we will further study stability, double degeneracy
and chaos in a rate gyro with feedback control that is a three-dimensional feedback system.

Holmes [4] used center manifold and normal form methods to study doubly degenerate
local bifurcations of a single-degree-of-freedom system with non-linear stiffness, subjected
to linear feedback control. Yagasaki [5] studied chaotic dynamics of a pendulum subjected
to linear feedback control with periodic desired motion by applying Melnikov’s method
with the assistance of numerical computation. Li and Paidoussis [6] studied the chaotic
dynamics of planar motions of cantilevered pipes conveying fluid via center manifold
theory and the method of normal forms on the doubly degenerate point. The Melknikov
analysis [7, 8] was used to give specific criteria for chaotic behavior in the non-autonomous
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system. In practice, chaotic motions are often undesirable. Lima and Pettini [9] used
resonant parametric perturbations to change a chaotic regime into a regular one.

The stability and chaotic dynamics of a rate gyro system is shaded. A single-axis rate
gyro subjected to feedback control are mounted on a space vehicle with specific motions
and whether the spin axis of the rotor is parallel or opposite to the angular velocity of
the vehicle in the system is considered. For the autonomous case, local bifurcation analyses
reveal region of stability and bifurcation sequences with the associated phase portraits in
the parametric space in the neighborhood of the double degeneracy. For the
non-autonomous case, the dynamics are more complicated because the motions can be
chaotic. A version of the Melnikov method is used to obtain criteria for the existence of
chaotic motion for the reduced system. Finally, numerical results are presented to verify
the analytical results. Chaotic motions are observed by the bifurcation diagrams and
Lyapunov exponents and can be changed into regular motions by a small parameter
perturbation with Lyapunov exponent calculations.

2. EQUATIONS OF MOTION

The model of a single-rate gyro mounted on a space vehicle is considered, as shown in
Figure 1. The gimbal can turn about the outpux X-axis with rotational angle u. Motion
about this axis is resisted by damping torque defined by Cd u� . Using Lagrange’s equation,

Figure 1. A rate gyro with feedback control.
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the differential equation for the output deflection angle u of a rate gyro with feedback
control was derived [10]:

(A+Ag )u� +Cd u� +CnR (vY cos u+vZ sin u)+ (A+Bg −Cg ) (vY cos u

+vZ sin u) (vY sin u−vZ cos u)+ (A+Ag )v̇X =Tc , (1)

where

CnR =C(c� −vY sin u+vZ cos u)= const.,

and vX , vY and vZ denote the angular velocity components of the platform along output
axis X, input axis Y, and normal axis Z, respectively. A, A, C and Ag , Bg and Cg denote
the moments of inertia of rotor and gimbal, respectively, about the gimbal axes j, h and
z. Tc is the control-motor torque along the output axis of the system to balance the
corresponding gyroscopic torque. The torque and electric current of control-motor can be
modelled by the following relationship:

Tc =KT I, LI� +RI=Ka (ud − u)−K0 u� (2, 3)

where electromotive force proportional to the difference between the prescribed motion
u� d (t) and the rotational angle u, that is u=Ka (ud − u), is applied to the control-motor.
I, R, L and K0 are the current, resistance, inductance, and back-electromotive constant of
the control-motor; KT denotes the torque constant of the control-motor.

Equations (1)–(3) thus represent a feedback control system in which position feedback
is applied to the gyro motion. The prescribed motion of the gyro is desired to be fixed
at the origin, i.e., ud =0, in which the relationship of the output angle u proportional to
the input angular velocity vY is held.

We are interested in the non-linear behavior of dynamical motion when the vehicle
undergoes steady rotation about the X-axis, and the angular velocity about the input axis
OY is zero, i.e., v̇X =0 and vY =0. The uncertain angular velocity about the spin axis
of the gyro undergoes harmonic rotation with respect to the Z-axis, i.e.,
vZ = kvZ0 + n sin vt. Here, two configurations of a rate gyro will be considered. In Case
(a), the spin vector of the vehicle coincides with the spin vector of the gyro for u=0, when
k=1. In Case (b), the spin vector of the vehicle is opposite to the gyro spin for u=0,
when k=1. We assume that the angular velocity of the vehicle is slightly vibrating near
a constant angular velocity.

The feedback control system can now be written in the form

ẋ1 = x2,

ẋ2 =−D1 x2 +D2 x3 −D3 kvZ0 sin x1 +D4 v2
Z0 sin 2x1 /2+ n sin vt(−D3 k sin x1

+D4 vZ0 sin 2x1)+ (n sin vt)2D4 vZ0 sin 2x1 /2,

ẋ3 =−D5 x3 −D6 x1 −D7 x2, (4)

where

x1 = u, x2 = u� , x3 = I,

D1 =Cd /(A+Ag ), D2 =KT /(A+Ag ), D3 =CnR /(A+Ag ),

D4 = (A+Bg −Cg )/(A+Ag ), D5 =R/L, D6 =Ka /L, D7 =K0 /L,

and Di , i=1, 2, . . . , 7, are known positive constants; let x1 = x, x2 = y for plotting.



.-.   .-. 756

3. LOCAL BIFURCATION ANALYSIS

In this section, we will examine the qualitative behavior of this system in the
neighborhood of a fixed point. Therefore we can express the original system in the Taylor
series and keep the lowest-order non-linear terms to determine local phase portraits and
stability types. The approximate system is given by

ẋ1 = x2,

ẋ2 =−D1 x2 +D2 x3 + p1 x1 + p2 x3
1 + p3 x1 sin vt,

ẋ3 =−D5 x3 −D6 x1 −D7 x2, (5)

where

p1 =−D3 kvZ0 +D4 v2
Z0, p2 = (D3 kvZ0 −4D4 v2

Z0)/6, p3 = n(−D3 k+2D4 vZ0), n�1.

Here, consider a co-dimensional two bifurcation problem of the feedback system having
double zero eigenvalues. The main purpose is to find the loci in the parametric plane and
to observe the qualitative behaviors when the parameters are varied. Before proceeding
to non-linear analysis, it is necessary to study the linear behavior of the system in order
to determine critical parameter values from degenerate conditions. Linearizing at the fixed
point and neglecting the perturbation (n=0), we obtain the Jacobian matrix of the form

A= & 0
p1

−D6

1
−D1

−D7

0
D2

−D5'. (6)

Hence, according to the Routh–Hurwitz criterion [10], the necessary and sufficient
conditions are as follows

vZ1 QvZ0 QvZ2, (7)

where

vZ1 =
D3 −zD2

3 +4D4 pmin

2D4
, vZ2 =

D3 +zD2
3 +4D4 pmin

2D4
,

and

pmin =Min [cond1, cond2]

cond1= (D2
1 D5 +D1 D2 D7 +D1 D2

5 −D2 D6 +D2 D5 D7)/D1

cond2=D2 D6 /D5

and all the roots of the characteristic polynomial of the Jacobian matrix (6) have negative
real parts. This implies that the motion of the linearized autonomous system is
asymptotically stable at the fixed point. Alternatively, the system possesses critical
behavior when Jacobian matrix A contains the eigenvalues with zero real parts in the
following bifurcation surfaces.

p1 =D1 D5 D6 /(D6 −D5 D7): one eigenvalue is zero at the origin;

p1 = (D2
1 D5 +D1 D2 D7 +D1 D2

5 −D2 D6 +D2 D5 D7)/D1, D2 (D6 −D5 D7)qD1 D2
5 :

a pair of eigenvalues is pure imaginary at the origin.
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These two surfaces meet on the surface (i.e., vZ0 =vZ1 or vZ2, on stability boundary)

D2C =D1 D2
5 /(D6 −D5 D7), p1C =D1 D5 D6 /(D6 −D5 D7), (8)

where there is a doule-zero eigenvalue with the third eigenvalue being −(D1 +D5). We
consider a co-dimension two bifurcation problem. To transform the linear part of the
system into the Jordan canonical form, we use the similarity transformation matrix of
generalized eigenvectors of equation (6) as follows

T= & 1
0
a31

a12

1
0

a13

a23

1 ', (9)

where a12, a13, a23 and a31 are shown in Appendix A and its determinant is

D=det (T)=1− a13 a31 + a12 a23 a31.

We introduce the parameters D2 and p1 in the forms

D2 =D2C + o1 =D1 D2
5 /(D6 −D5 D7)+ o1 (10)

p1 = p1C + o2 =D1 D5 D6 /(D6 −D5 D7)+ o2 (11)

so that the unfolding of the critical system (o1 = o2 =0) will be included in our
parameterized normal form. Letting the co-ordinate transformation y=Tx, the system
equation becomes the standard form

ẏ=Ly+Lo y+Fy +By (t) (12)

where both the non-linear function Fy and the time-periodic perturbation By (t) are
evaluated at critical values; L, Lo , Fy and By (t) are shown in Appendix A.

In this case our goal is to study the system dynamics near this non-hyperbolic fixed point
with a double-zero eigenvalue. By center manifold theory [11] the study of the dynamics
can be reduced to the associated lower-dimensional center manifold to determine the key
qualitative dynamics behavior. When the Jacobian matrix A about a fixed point contains
a zero-double eigenvalue, the dimension of the center space is only two. Thus, if such a
center manifold can be made, the subsequent analysis could be much easier.

The center manifold will compute from the standard form of equation (12) at the critical
value (o1 = o2 =0) for n=0 (p3 =0). Thus, its computations will be confined to the
autonomous form. For the angular velocity which is slightly vibrating, i.e., n�1, excitation
terms can be computed by the similarity transformation T as mentioned above. In section
4, the effect of parametric excitation will be considered by the Melnikov technique which
can be used to detect the presence of homoclinic or heteroclinic orbits. Now we will begin
by considering the center manifold for this system. Equation (5) contains cubic symmetry
which implies that the center manifold will be given by an odd function y3 = h(y1, y2), i.e.,
y3 =O(=y3

i =). Thus the corresponding reduced system is

$ẏ1

ẏ2%=$00 1
0%$y1

y2%+$e11

e21

e12

e2%$y1

y2%+$fyc1

fyc2%+$byc1

byc2%+ h.o.t., (13)

where h.o.t. are of orders O(=y5
i =), O(=oi y3

i =), (=o2
i yi =), and O(=noi yi =) and the relevant

symbols are defined in Appendix A.
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To put equation (13) into a more convenient form we employ a linear change of
co-ordinates

$y1

y2%=$1+ e12

−e11

0
1%$u1

u2%, (14)

which yield the system

u̇1 = u2 + fu1 + bu1 + h.o.t.,

u̇2 = m1 u1 + m2 u2 + fu2 + bu2 + h.o.t., (15)

where m1, m2, fu1, fu2, bu1 and bu2 are defined in Appendix A.
At this stage, the method of normal forms is employed to simplify the reduced system

in which the qualitative dynamics are still reserved in the neighborhood of the origin. The
basic idea of normal forms is to use a near-identity co-ordinate transformation in which
all non-essential non-linear terms are eliminated. Thus, the truncated normal form is given
by

ż1 = z2 + (k1 z1 + k12 z2) sin vt,

ż2 = m1 z1 + m2 z2 + az3
1 + bz2

1 z2 + (k21 z1 + k22 z2) sin vt, (16)

where the relevant symbols are defined in Appendix A.
We directly deduce the dynamical behavior of the full system (12) on the center manifold

near the critical degenerate system. At this stage, the rescaling technique can be used to
reduce the number of cases. Letting z1:r1 z1, z2:r2 z2 and t:r3 t, we obtain

ż1 = z2 + (k'11 z1 + k'12 z2) sin v't,

ż2 = m'1 z1 + m'2 z2 + cz3
1 − z2

1 z2 + (k'21 z1 + k'22 z2) sin v't, (17)

where

m'1 = m1 r2
3 , m'2 = m2 r3, k'11 = k11 r3, k'12 = k12, k'21 = k21 r2

3 ,

k'22 = k22 r3, v'= r3 v, r1 = (a/c)1/2/b, r2 =−(a/c)3/2/b2, r3 =−(bc/a),

and c=+1 for aq 0, c=−1 for aQ 0. There are two distinct cases (c=21) to be
considered.

The autonomous system

ż1 = z2,

ż2 = m'1 z1 + m'2 z2 + cz3
1 − z2

1 z2, (18)

is considered, which is obtained by letting p3 =0. By local bifurcation analysis, the system
(18) has been studied quite extensively (Appendix B). We can consequently employ the
unfolding results of references [4, 8] directly to give the dynamical behavior of the full
system (5) on the center manifold near the critical degenerate.

4. THE MELNIKOV ANALYSIS

From the autonomous system as mentioned above, a pair of symmetric heteroclinic
orbits exist on the curve m'2 =−m'1 /5+O(m'21 ) for c=+1, and a pair of symmetric
homoclinic orbits exist on the curve m'2 =4m'1 /5+O(m'21 ) for c=−1. If the system has
perturbations, i.e., p3 $ 0, this system becomes non-autonomous, and these heteroclinic or
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homoclinic orbits may be broken. At this stage, we suspect the existence of transverse
heteroclinic or homoclinic orbits in this system.

For c=+1, using the rescaling z1 = ou, z2 = o2v1, m'1 =−o2, m'2 = o2n3 =−m'1 n3,
p3 = o3p, t:ot and neglecting higher order terms of o, the rescaled form of system (17) is
given by

u̇= v1,

v̇1 =−u+ u3 + e(n3 v1 − u2v1 + ku sin v̂t) (19)

where v̂= ev'.
For o=0, system (19), which has a center at (0, 0) and hyperbolic saddles at (21, 0),

is a Hamiltonian system with Hamiltonian function

H(u, v1)= v2
1 /2+ u2/2− u4/4. (20)

The Hamiltonian system has heteroclinic orbits that connect different saddle points. Hence
the hyperbolic periodic orbits of the Hamiltonian system are given by

q2
h (t)= (q2

1h , q2
2h )= (2tanh t, 2sec h2t/z2). (21)

We will compute the Melnikov function for q+
h (the computation for q−

h is identical). The
Melnikov function is given by [7]

M+(t0)=g
a

−a

f(q+
h (t))gg(q+

h (t), t+ t0) dt

=g
a

−a

q+
2h (t) [n3 q+

2h (t)− q+
1h (t)2q+

2h (t)+ kq+
1h (t) sin v̂(t+ t0)] dt

=
2
3

n3 −
2
15

−
kpv̂2

2z2
csc h0v̂2p

2 1 cos v̂t0. (22)

For c=−1, using the rescaling z1 = ou, z2 = o2v1, m'1 = o2, m'2 = o2n3 = m'1 n3,
p3 = o3p, t:ot, and neglecting higher order terms of o, the rescaled form of system (17)
is given by

u̇= v1,

v̇1 = u− u3 + o(n3 v1 − u2v1 + ku sin v̂t). (23)

For o=0, system (23), which has centers at (21, 0) and a hyperbolic saddle at (0, 0), is
a Hamiltonian system with Hamiltonian function

H(u, v1)= v2
1 /2− u2/2+ u4/4. (24)
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Figure 2. Bifurcation diagram near (D2C , p1C ): (a) Bifurcation set in (D2, p1) space; (b) the associated phase
portraits; H: Hopf bifurcation, SC: saddle connection bifurcation, P: saddle-node bifurcation of cycles, m'1 =0:
pitchfork bifurcation.
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Figure 3. Parametric diagram and the Melnikov criterion in (v− n) plane; p: the region of periodic motion,
c: the region of chaotic motion.

The Hamiltonian system has homoclinic orbits that connect a saddle point. Hence the
hyperbolic periodic orbits of the Hamiltonian system are given by

q2
h (t)= (q2

1h , q2
2h )= (2z2 sec ht, 3z2 sec ht tanh t). (25)

Figure 4. Bifurcation diagram for the pulsatile angular velocity; v=6·0.
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We will compute the Melnikov function for q+
h . The Melnikov function is given by

M+(t0)=g
a

−a

f(q+
h (t))gg(q+

h (t), t+ t0) dt

=g
a

−a

q+
2h (t) [n3 q+

2h (t)− q+
1h (t)2q+

2h (t)+ kq+
1h (t) sin v̂(t+ t0)] dt

=
4
3

n3 −
16
15

− pv̂2 csc h0v̂p

2 1 cos v̂t0. (26)

Suppose that M+(t0) has a simple zero, i.e., there exists a point t0 = t�0 such that

M+(t�0),
1M+

1t0
(t�0)$ 0. (27)

For c=+1, the stable and unstable perturbed manifolds that are close to heteroclinic
manifolds of the unperturbed system intersect transversely, and there exist transverse
heteroclinic orbits at certain parameter values and some t0. For c=−1, the stable and
unstable perturbed manifolds intersect transversely and there exist transverse homoclinic
orbits. It follows from the Melnikov theory that if the forcing amplitude

kqR1 (v̂)= b02
3

n3 −
2
151>$ pv̂2

2z2
csc 0pv̂2

2 1%b for c=+1, (28)

Figure 5. Lyapunov diagram for the pulsatile angular velocity; v=6·0.
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kqR2 (v̂)= b043 n3 −
16
151>$pv̂2 csc 0pv̂

2 1%b for c=−1, (29)

the manifolds of the equations (19) and (23) intersect and may yield horseshoe maps near
the saddle points. (Equation (29) is numerically computed at the specific values of gyro
parameters and the result is shown in Figure 3).

Fig. 6a–b. (Caption on p. 000.)
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Fig. 6(c–d).
Figure 6. Phase portraits, corresponding to the bifurcation diagram of Figure 5, showing (a) a periodic motion

for n=0·02, (b)–(d) chaotic motions for n=0·023, 0·035 and 0·04, respectively.

5. NUMERICAL DEMONSTRATIONS

In this section, examples are carried out to examine the vibration behavior by numerical
simulation technique for the double-zero degenerate case. The parameters of the cases are
shown in Appendix C.

We first examine the dynamics of the autonomous system (5) with n=0 on the center
manifold near the double-zero degenerate point (D2C , p1C )= (388·89, 3888·9). In Figure 2
we illustrate a bifurcation set in (D2, p1) space for equation (18), c=−1, with the
associated phase portraits which are topologically equivalent to the flow on the center
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manifold. The local bifurcation analyses for the full system (4) can be studied through
system (5), which keeps the lowest-order non-linear terms, by the center manifold and
normal form methods.

Later the dynamics of the non-autonomous system (5) are studied. For the parameters
near degenerate point (D2, p1)= (D2C + e1, p1C + e2)= (388·89, 4036·6), i.e.,
vZ0 =2002·016258, from the results of the Melnikov analysis of section 4, the function
n(v) is numerically computed as the solid curve in Figure 3. Figure 3 also shows the regions
of chaos enclosed between two dash–dot curves by numerical integration and the solid
curve gives a lower-bound on chaotic behavior by analytical means, but it is not a good
approximation for the case. It should be pointed out that the discussion of possible chaotic
motions in the full system is certainly not in agreement with the analysis of the
two-dimensional subsystems. Furthermore, the relationship of chaotic dynamics and
heteroclinic bifurcation (c=+1) or homoclinic bifurcation (c=−1) in higher
dimensional space is still imperfectly understood. Hence, we present the numerical results
to explore this difficult problem.

The bifurcation diagram in Figure 4 shows the long-term values of the rotational angle
at the fixed driving frequency v=6·0, by numerical integration from equation (4). The
largest Lyapunov exponents for each value of the driving amplitude n are also computed
corresponding to the bifurcation diagram to definitely show the existence of chaos as
shown in Figure 5. Obviously, the random-like distributions of points in the bifurcation
diagram which have positive exponents are indeed chaotic.

To further confirm the results in Figure 4, we examine phase portraits for some special
values of n. The phase portrait in Figure 6(a) is a period-T (T=2p/v) attractor for
n=0·02. Figure 5(b)–(d), which have positive Lyapunov exponents, show chaotic motions
in the phase portraits for n=0·023, 0·035 and 0·04, respectively. In Figure 6(b) and (c)
the chaotic motion occurs through a series of period-doubling bifurcations. There exists
a pair of chaotic attractors which have inverted onto the (x, y)-plane, i.e.,
(x, y)= (−x, −y) so that one of them can be reached depending on initial conditions.

Figure 7. The largest Lyapunov exponent as a function of V for D2 =D2C (1+ h sin Vt); v=6·0, n=0·04 and
h=0·1.
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Increasing the parameter n, conjunction of the two chaotic attractors, one of them as
shown in Figure 6(c) creates a larger chaotic attractor in Figure 6(d).

Physically, chaos may be desirable or undesirable, depending on the application. In
mechanical systems, chaos may lead to irregular motions, so it has to be reduced or
suppressed. In this case, we can use a small parametric perturbation with the assistance
of the Lyapunov exponent calculations to bring the system from a chaotic regime to a
regular one. Changing the parameter D2 as D2 (1+ h sin Vt), h=0·1, there is a spectrum
of the largest Lyapunov exponents lmax as the function of the frequency V in Figure 7. As
lmax Q 0 for the suitable frequency V, the system is periodic. On the other hand, increasing

Figure 8. A quasi-periodic attractor, as D2 =D2C (1+ h), v=6·0, n=0·04 and h=0·1, plotted in (a) phase
plane, (b) Poincaré maps.
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the gain D2 of this system as D2 (1+ h), h=0·1, the chaotic system becomes only
quasi-periodic as shown in Figure 8.

6. CONCLUSIONS

An analysis is presented of a single-axis rate gyro subjected to feedback control mounted
on a space vehicle that is spinning with uncertain angular velocity vZ about its spin of the
gyro. The dynamics of the system are investigated near doubly degenerate points by using
center manifold and normal form methods. These methods can reduce the dynamics to
a simpler form which still retains the essentials of dynamical behavior of the original
system.

In section 3, the autonomous system (steady angular velocity vZ ) reveals the existence
of saddle connection, pitchfork, and Hopf bifurcations near the double degeneracy by local
bifurcation analyses. A bifurcation set and the associated sequence of phase portraits on
the center manifold are presented. For the non-autonomous system, Melnikov analysis is
applied to the reduced system to show the existence of chaotic motion in section 4.

Finally, to confirm the analytical results of sections 4 and 5, simulations are presented
in section 6 with the full system for the autonomous and non-autonomous systems. The
occurrence of the chaotic motion of the full system is also detected by calculating
bifurcation diagrams and Lyapunov exponents. In addition, we consider a small
parametric perturbation to change a chaotic motion into a regular motion in this system
by computing Lyapunov exponents.
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APPENDIX A

a12 =−(−D6 +D5 D7)/(D5 D6),

a13 =D1 /D6 −D1 (D1 +D5)D7 /(D6 (−D6 + (D1 +D5)D7)),

a23 =D1 (D1 +D5)/(−D6 + (D1 +D5)D7), a31 =−D6 /D5.
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L= &000 1
0
0

0
0

−D1 −D5', Le = &e11

e21

e31

e12

e22

e32

e13

e23

e33', Fy =T−1F(Ty)= &fy1

fy2

fy3',
By (t)=T−1BTy= &by1

by2

by3',
e11 =−a12 (a31 e1 + e2)/D, e12 =−a2

12 e2 /D, e13 =−a12 (e1 + a13 e2)/D,

e21 = (1− a13 a31) (a31 e1 + e2)/D, e22 = a12 (1− a13 a31)e2 /D,

e23 = (1− a13 e31) (e1 + a13 e2)/D,

e31 = a12 a31 (a31 e1 + e2)/D, e32 = a2
12 a31 e2 /D, e33 = a12 a31 (e1 + a13 e2)/D,

fy0 = p2 (y1 + a12 y2 + a13 y3)3/D, fy1 =−a12 fy0, fy2 = (1− a13 a31)fy0,

fy3 = a12 a31 fy0,

by0 = p3 (y1 + a12 y2 + a13 y3) sin vt/D, by1 =−a12 by0, by2 = (1− a13 a31)by0,

by3 = a12 a31 by0.

fyc0 = p2 (y1 + a12 y2)3/D, fyc1 =−a12 fyc0, fyc2 = (1− a13 a31)fyc0,

byc0 = p3 (y1 + a12 y2) sin vt/D, byc1 =−a12 byc0, byc2 = (1− a13 a31)byc0.

m1 = e21 = [(1− a13 a31)a31 /D]e1 + [(1− a13 a31)/D]e2,

m2 = e11 + e22 =−(a12 a31 /D)e1 − (a12 a13 a31 /D )/e2,

fu0 = p2 (u1 + a12 u2)3/D, fu1 =−a12 fu0, fu2 = (1− a13 a31)fu0,

bu0 = p3 (u1 + a12 u2) sin vt/D, bu1 =−a12 bu0, bu2 = (1− a13 a31)bu0,

a= p2 (1− a13 a31)/D, b=−3p2 a12 a13 a31 /D,

k11 =−p3 a12 /D, k12 =−p3 a2
12 /D,

k21 = p3 (1− a13 a31)/D, k22 = p3 a12 (1− a13 a31)/D.

APPENDIX B

Here, only an outline of the basic information needed for our special purpose is given
by reference [7]. First, the system equilibrium points are determined as follows

c=+1: (0, 0), (2z−m'1 , 0), c=−1: (0, 0), (2zm'1 , 0),

By checking the linearized stability for these fixed points, the following bifurcation sets
occur.

c=+1: pitchfork on m'1 =0,

supercritical Poincaré–Andronov–Hopf on m'1 Q 0, m'2 =0.

c=−1: pitchfork on m'1 =0,

subcritical Poincaré–Andronov–Hopf on m'1 = m'2 , m'2 q 0.
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By using Bendixson’s criterion and index theory, equation (18) has no periodic orbits for

c=+1: m'1 q 0; m'1 Q 0, m'2 Q 0, m'2 q−m'1 /5, m'1 Q 0.

c=−1: m'2 Q 0.

The results above are shown in Figure 2 for c=−1.
In addition the pitchfork and Hopf bifurcations for local analyses, a saddle-connection

or homoclinic bifurcation for global analyses is considered below to complete the
bifurcation diagram.

For c=+1, using the rescaling z1 = eu, z2 = e2v1, m'1 =−e2, m'2 = e2n2 and t:et, the
rescaled form of system (18) is given by

u̇= v1,

v̇1 =−u+ u3 + e(n2 v1 − u2v1). (B1)

For e=0, the system (B1) is a Hamiltonian system with Hamiltonian function

H(u, v1)= v2
1 /2+ u2/2− u4/4. (B2)

By using the Melnikov theory, the autonomous system has a heteroclinic connection on

m'2 =−m'1 /5+O(m'21 ). (B3)

For c=−1, using the rescaling z1 = eu, z2 = e2v1, m'1 = e2, m'2 = e2n2 and t:et, the rescaled
form of system (18) is given by

u̇= v1, v̇1 = u− u3 + e(n2 v1 − u2v1). (B4)

For e=0, the system (B4) is a Hamiltonian system with Hamiltonian function

H(u, v1)= v2
1 /2− u2/2+ u4/4. (B5)

By using the Melnikov theory, the autonomous system has a homoclinic bifurcation on

m'2 =4m'1 /5+O(m'21 )

and a saddle-node bifurcation of cycles on m'2 = dm'1 + · · · , d1 0·752, on which the
periodic orbits coalesce.

APPENDIX C

The values of gyro parameters:

k=1,

(A+Ag )=54 dyne · cm · s2, CnR =10·8×104 dyne · cm · s,

Cd =7560 dyne · cm · rad−1 s,

D1 =
Cd

(A+Ag )
=140 rad−1 · s−1, D3 =

CnR

(A+Ag )
=2000 s−1, D4 =

(A+Bg −Cg )
(A+Ag )

=1,

D5 =R/L=25 sec−1, D6 =Ka /L=250 A · rad−1 · s−1, D7 =K0 /L=1 A · rad−1


