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Abstract: A variety of soft-decision decoding 
metrics for slow frequency-hopped, differential 
phase shift keyed spread-spectrum systems are 
studied. The computational cut-off rates in the 
presence of partial band noise jamming for these 
metrics are analysed. The usefulness of various 
degrees of side information, the effectiveness of 
limiting and quantisation when side information is 
not available, and the importance of a judicious 
choice of the quantisation step size are demon- 
strated. Monte-Carlo type simulations for the 
system encoded by Odenwalder’s (7, 1/2) code are 
conducted, the resulting BERs reveal that close 
approximations can be attained by estimations 
calculated from a known closed-form formula. 

1 introduction 

Because of their simplicity and robustness, frequency- 
hopped (FH) differential phase shift keyed (DPSK) 
spread-spectrum systems have been proposed by many 
authors [ 1-81 to combat intentional interferences. An FH 
system is called fast FH if its hopping rate is greater than 
one hop per channel symbol, otherwise it is called a slow 
FH system. Because of the difficulty of maintaining the 
phase coherency among different hops, fast FH/DPSK 
systems remain only a theoretical interest, at least for the 
time being. 

Antijam (AJ) capabilities for 2- and 4-ary slow 
FH/DPSK systems were analysed by Houston [l]. 
Cooper and Nettleton [2] proposed a Hadamard-coded 
fast FH/DPSK system to provide a mobile radio service; 
both linear and nonlinear receivers had been considered 
[2, 31. Hard-decision decoded FH/DPSK performance in 
partial band noise jamming (PBNJ) can be found in Ref- 
erence 4. Lee and Miller [SI derived the uncoded bit 
error rate (BER) for a fast FH/DPSK system, also in 
PBNJ. Simon [6] generalised Houston’s analysis to 
M-ary FH/DPSK in partial band multitone jamming 
(PBMTJ) and in PBNJ [7]. Taking the entropy of an FH 
carrier as a design parameter to be optimised, Lindsey et 
al. [SI recently obtained new results on M-ary slow 
FH/DPSK in PBMTJ. Each of these investigations has 
considered only either the uncoded or hard-decision 
decoded system behaviours, and many of them have 
assumed zero thermal noise in their analysis. Simulation 
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results for soft-decision performance of coded FH/DPSK 
in the presence of PBNJ or Rayleigh fading was recently 
reported by Yost [17]. However, Yost concentrated his 
efforts on comparison of various demodulator structures 
rather than metric design, and did not give any analytical 
results. It is the purpose of this paper to analyse the 
effects of side information and a variety of soft-decision 
decoding metrics on the performance of a slow 
FH/DPSK receiver in the presence of PBNJ, taking 
thermal noise into consideration. The following Section 
provides a description of the FH/DPSK system and 
defines the basic system parameters. A variety of 
decoding metrics and their cut-off rates are examined in 
subsequent Sections. The decoding metrics are divided 
into two categories according to their operation sce- 
narios; those with perfect side information and those 
with no or imperfect side information. As an application 
example, the BER performance of a (7, 1/2) 
convolutional-encoded system is evaluated and it is 
demonstrated therein that the analysis yields a very close 
approximation to the simulation results. 

2 System description and assumptions 

The slow FH/DPSK receiver to be considered here is 
depicted in Fig. 1. Other implementations of DPSK 
demodulation that yield the same statistics are possible 
[17]. The received waveform is dehopped and then mixed 
in both I and Q channels. The down-converted signals 
are filtered by the integrate-and-dump detectors and 
delayed by a chip time T, (which is equal to a code 
symbol time T, because of the slow hop assumption). In 
both I and Q channels, the sum and difference of two 
adjacent bits separated by the chip time are squared and 
the corresponding terms are added. The difference of 
these two outputs is then passed through an N (=23  
level quantiser. Unless the code used in the system has 
burst error correcting capability, a deinterleaver must be 
inserted between the quantiser output and the decoder 
input to put the interleaved coded data back in order and 
at the same time to randomise possible burst demodu- 
lation errors. In the subsequent analysis, perfect 
interleaving/deinterleaving will be assumed so that the 
‘channel’ between the encoder output and the decoder 
input becomes memoryless. Moreover, although a finite- 
bit quantisation is always necessary in practice, it will be 
assumed that infinite-bit precision is possible so that the 
following two cases are to be separately discussed : 
N = 00 (no quantisation) and N e 00 (finite-bit quantisa- 
tion. 

BER or cut-off rate performance is usually measured 
with respect to the required E b / N O ,  where N o  = one- 
sided thermal noise power spectral density, Eb = SIR,, 
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S = received signal power, and R, = information bit rate. 
The PBNJ jamming effect is maximised if its total avail- 
able power J can be concentrated on a band of pW Hz, 

where y is the decoder input, x’ and x are different 
encoder outputs (which in the case of binary channels 
may be represented by 1 or - l), and z stands for side 

dehopper 3 3  

2 
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Fig. 1 Block diagram of soft-decision decoded FHIDPSK receiver 

where 0 -= p < 1 is called the fraction of the band 
jammed and W is the total hopping bandwidth. There- 
fore, if a communication link is hit by a PBNJ (which 
occurs with probability p) and if a random hopping 
pattern is assumed, then the signal is corrupted by an 
equivalent thermal noise with power spectrum level 
equals to Nj. 4 No + N,/p, NJ 4 JIW. Owing to the 
slow-hopping nature of the system, it is reasonable to 
assume that channel synbols in the same hop are either 
all jammed or all unjammed, hence two consecutive 
symbols used in demodulating a coded symbol are cor- 
rupted by a noisy component with the same statistic. For 
a system employing a rate R, code, one has R, Eb/Nj = 
E$Nj where E, = SIR, = energy per symbol. Hence if 
one has the required E , / N j  to achieve a cut-off rate R,, 
one can easily find out the required E@j via the above 
relation if the code used has a rate less than or equal to 
RO. 

3 

A decoding metric is used to measure the distance 
between the demodulated waveform and the desired code 
symbol. The effect of a decoding metric on the decoded 
bit error rate (BER) is expressed by the following equa- 
tions [9, 113, which relate the BER and the computa- 
tional cut-off rate R ,  to the decoding metric 

Metrics with perfect side information 

BER < G(D) ( 1 4  
Ro = 1 - logz(1 + D) (W 

where R, can be regarded [9] as the practically achiev- 
able reliable data rate per coded symbol and the func- 
tional form G( . ) is to be determined by the specific code 
used. The parameter D for a memoryless channel is 
defined by [9,11] 

D = min D(A) 
1LO 

= min E{exp [L(m(y, x’; z) - m(y, x; z))] I x } ~ , + ~  (2) 
130 
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q+ N=2k 

information such as knowledge of a jammer’s presence, 
the associated jamming power etc. [9]. The optimal 
decoding metric in the sense of minimising BER is the 
so-called maximum-likelihood (ML) metric, m(x, y ; z) 
= log cpol I x, z)], pcV I x, z) being the conditional PDF of 

the demodulator output y given that the code symbol x 
has been transmitted and side information z is provided. 
When side information is not available, the ML metric 
then becomes m(x, y; z) = m(x, y )  = log CPO, I x)]. Note 
that the cut-off rate defined in eqn. la is a generalisation 
of the one associated with the so-called channel reliability 
function [13] in the sense that the latter is valid for ML 
metrics only whereas the former can be defined for arbi- 
trary metrics [9]. 

Under the perturbation of the additive white Gaussian 
noise (AWGN), the binary DPSK demodulator output 
behaves as the difference of a squared Rician random 
variable 2, and a squared Rayleigh random variable 2,. 
The probability density function (PDF) of such a random 
variable can be derived from convoluting the PDFs of 2, 
and -2, or from taking inverse transform of the charac- 
teristic function of 2, - 2, [14, 161 

( 3 4  
PCY; x) = 0.5.‘-x”QC&), 2,/(y)l, y > 0 

= 0.5ey-x/2 Y - = O  

where 

Q(a, b) = l m u  exp [-(a’ + u2)/2]~,(au) du 

D = SJ{dy I - mo I 1)) dY 

(3b) 

I,( - )  is the modified Bessel function of the first kind of 
order zero, and x = 2E$N, or 2E$N,., depending on 
whether a PBNJ is present. It can be shown [7] that, for 
ML decoding with perfect side information, 

where p(y I i )  is the probability density function (PDF) of 
the demodulator output given that the code symbol i 
(i = - 1 or l), has been transmitted. Substituting eqn. 3a 
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into the above equation, one obtains 

D = (1 - PI exp ( - B o )  f"2Bo. 2JY)) dy 

+ p exp ( - B J )  [ J { e ( J Z B J ,  2 d y ) )  d y  (4) 

where Bo = E$No and BJ = EJNj.. The perfect side 
information assumption here implies 

3.5 t I 

-6p  -5p - L p  - 3 p  -2p -1p 1P 2P 3P LP 5P 6P 
input 

L 
Fig. 2 N-level quantiser: N = 8 

(i) the presence or absence of the jammer is always 
detected without error 

(ii) the magnitudes of the thermal noise power spectral 
density No and the jamming power at each hop can be 
perfectly estimated 

(iii) the information obtained in (i) and (ii) is used to 
generate the corresponding ML metric during the course 
of decoding. 

To implement an ML decoding metric log My I x)], the 
jammer state must be made available. Moreover, an ML 
decoding metric which is optimal for one kind of jammer 
is bound to be less superior for other jammers. Since 
most of the time the communication link is free of 
jamming, the simple AWGN ML metric m(x, y) = xy is 
usually adopted no matter whether the coding channel is 
AWGN or not. A mismatch will arise whenever the 
channel statistic deviates from the assumed one. The mis- 
match loss is therefore defined [l l]  as the difference of 
the required E J N ,  between the ML decoder and a 
non-ML one to achieve a given BER. 

With AWGN, it has been shown [14] that the 3-bit 
quantisation suffers less than a 0.25 dB loss compared to 
the infinite-bit case. However, in the presence of jamming, 
as was shown in References 7 and 8, this is not the case 
unless side information is furnished. The reason for this is 
simple. When a jammed chip results in a large erroneous 
(i.e. incorrect sign) metric, the corresponding code word 
metric, which is the sum of each component (or chip) 
metric, will need a lot of clean chip metrics to make up 
for the single error. An obvious solution to this problem 
is to limit the maximum absolute value of the metric so 
that any single contaminated output from the metric con- 
vertor will not do too much damage. Hard limiting is the 
simplest choice. A better 'damage control' mechanism is 
to multiply the demodulator output y by a weighting 
factor C y ,  which is a function of the jammer state infor- 
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mation derived from say, an AGC circuit. For the re- 
ceiver with decoding metric m ( ~ ,  y; z) = Cyxy, where 
Cy = CJ if y is jammed, and Cy = CO otherwise, one 
obtains 

+ ~ 1 - P  exp [ -1 AWBO 

1 - (WA)2 1 + WA 
(5 )  

where w = Co/C,, 0 < A < min (l /y,  l/w), y NJN, . 
The inclusion of p in the notation D(1, p) emphasises the 
dependence of D on p. From eqn. 5,  one can show that 
the optimal weighting for direct-sequence-BPSK signal- 
ling, C, = 1, CO = 00, as suggested in Reference 9, is not 
suitable for the FH/DPSK system in question. In fact, for 
CJ = 1, 

lim min D(A, p) = p + 6 
CO-m A 

where 

6 = (1 - PY(1 - v2)  exp C-rlBo/U + 591 
rl = CJW + Pol2 + 8Bo} - (2 + B0)1/4. 

D(n, p) = C(/(l - exp [-nBJ/(l + (7) 

If there is no thermal noise, i.e. if Bo = 00, then 

For the special case when (C, ,  CO) = (l/Nj,, l/No) one 
obtains 

Wn, = p/(l - A2)  exp [-nbJ/(l + 
+ (1 - P)/U - exp [-Vo/(1 + 41 (8) 

Figs. 3 and 4 compare cut-off rates for the above three 
soft-decision decoders, namely the suboptimal weighting, 

0 8  O 9- 

. 

0 1  ::/ 0 

10'2 lo-' 100 

fraction of band jammed 

Fig. 3 
- optimal weighting 
_ _ _ _  optimal (Snite) weighting 
. . . . . . . suboptical weighting 
(i) E J N ,  = 5 dB (ii) E J N ,  = 10 dB E J N ,  = 9 dB 
no quantisation 

Cut-off rates for three FHIDPSK soft-decision metrics 

eqn. 8, the zero thermal noise case, eqn. 7, and the 
optimal finite weighting, eqn. 5, with w optimised. These 
numerical results reveal that they behave almost the 
same, especially in high E$No environments. The family 
of weights, A 4 {(Nix, N;?, 0.5 < x < 2} ,  was investi- 
gated via numerical search and it turns out that x = 1 
yields the tightest Chernoff bound D. This is why eqn. 8 is 
chosen to represent the class A. 
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The metrics discussed so far assume an infinite bit pre- 
cision in the decoding circuitry. In reality this can at best 
be approximated by using N-bit words, where N is large. 
To evaluate the decoded performance for the finite bit 
precision case, it is necessary to obtain the probability 
mass function (PMF) of the N-bit quantiser output. 

I1I 
0 3 .  

0 2 -  

0 1 -  

10-2 lo-' I00 
fraction of band jammed 

Cut-offrates for three FHIDPSK soft-decision metrics Fig. 4 
~ optimal weighting 
_ _ _ _  optimal (finite) weighting 
. . . . . . . suboptimal weighting 
(i) E J N ,  = 5 dB (U) E J N ,  = 10 dB E,/No = 15 dB 
no quaotisation 

Given the demodulator output PDF (eqn. 3), this PMF is 
to be derived by evaluating the difference of the corre- 
sponding probability distribution function F(y ; x) at the 
quantiser input thresholds. Using the technique of inte- 
gration by parts and the definition of Marcum's Q func- 
tion (eqn. 3b) one obtains [16] 

F(Y; 4 = 1 - QCJ(24, J (2~) l  

+ 0.5ey-x/2Q[J(x), 2J(y)] y > 0 

Y < O  (9) - - o . ~ ~ - ( x / ~ - Y )  

It follows that the PMF for the output of the N-level 
quantiser shown in Fig. 2 is given by 

Pr (z = n + 1/2 I y) 

4 PAY) 
= F((n + l ) ~ )  - F(na) 

= 1 - F((N/2 - l ) ~ )  

= F((1 - N/~)o) 

-N/2 + 1 < n < N/2 - 1 

n = N/2 - 1 

n = -NI2 + 1 

Defining Pn(y) Pr (z = n + 1/2 I y) then, for a slow 
FH/DPSK receiver with the N-level quantiser (Fig. 8), 
one obtains 

NI2 - 1 

D(A, PI = C [PPn(NJ*/No) + (1 - ~Pn(111 
n =  -NI2 

x exp [ - A(n + OS)] (10) 
where 

PAY) = QCJ(2xL J(2nply)I 

- QCJCW, J(2(n + l)p/y)l 
- 0.5e -x12[enP'YQ(,/(x), 2J(np/y)] 
- + 1 ) P / Y  QCJC4,  2J(n + 1 ~ / ~ ) 1  

0 < n < N/2 - 1 (lla) 

and where p = normalised step size. 
In the above derivations it was assumed that the 

knowledge of the jammer's presence or absence is not 
available, and thus the receiver uses the same p all the 
time. However, as can be seen from the expressions for 
P&), the performance is dictated by the quantiser step 
size p. It is well known that, if the input signal amplitude 
is not uniformly distributed, then the so-called 40-loading 
rule [12] calls for a quantisation step size p = 8p,/N, 
where N is the number of quantisation levels and po is 
the root mean square value of the input waveform. For 
the FH/DPSK receiver, it is easy to show that po = 
,/[2(1 + E,,/N,)] if the only noise component is AWGN. 
Although the 40-loading rule is optimal for minimal 
quantiser overload in AWGN, it may no longer be a 
proper choice when a PBNJ is present or under other 
design criteria, Figs. 5-7 illustrate the effect of the step 
size on R, with the assumption that the same step size 
was used for both jammed and unjammed situations. All 
the data were obtained with a 3-bit quantiser. These 
results are in direct contrast to the AWGN case [15], 
where the choice of the step size is not crucial to the BER 
performance. Numerical results [ 161 indicate that 

(a) no single step size is the global optimal one 
(b) the choice of p is less sensitive if p is small and 

(c) the optimal p corresponding to the worst p is in 

(d) the optimal p is insensitive to EJN,. . 

EJN, is high 

proportion to EJN, 

O 2 t  

7 9 11 13 15 

Effect of the quantiser step size p on cut-off rate performance 

E,/Nj ,dB 

Fig. 5 
E J N ,  = 9 dB 

When the number of bits is only one (N = 1) the 
decoding metric becomes the hard-decision metric which 
yields the well known bound 

D(p) = 2[P,(1 - P,)]1/2 
where P ,  is the uncoded BER. When the jammer's state is 
perfectly known, one can use that information to weight 
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optimally the demodulated bit sequence with ( C J ,  CO) = 
(1, CO). In such a case, 001) should be computed with 

(13) 
Fig. 8 illustrates the worst-case cut-off rate performance 
for four decoding metrics, all with perfect side informa- 

unjammed conditions separately, and the ML metric 
(eqn. 4). The worst case means that the jammer chooses, 
from all possible p, the one that forces the system to have 
the smallest cut-off rate. It is noticed that the last three 
metrics perform equally well at high EJN, .  They all 
essentially belong to the same category of receiver which 
puts different weights on contaminated and uncontami- 
nated demodulator outputs. 

4 

pe = P/2 exp (-280) 

Metrics with no or imperfect side information 

7 9 11 13 15 
Es lNJ.dE 

Fig. 6 Cut-off rate as a function of EJN, and quantiser step size p 
E J N ,  = 15 dB 

normalised step size = O  1 $ 0 6  

4 
2 0 4  

. 

7 9 11 13 15 
E, INJ, dB 

O: 

Fig. 7 Cut-off rate as a function of EJN, and quantiser step size p 
E,JN,  = 25 dB 

1 Or 

a 

7 9 11 13 15 
E,/ NJ , dB 

Fig. 8 
(i) Maximum likelihood metric 
(ii) Optimal weighting without quantisation 
(iii) Hard decision 
(iv) Optimal 3-bit quantisation 

Cut-off rate performance with perfect side information 

tion, namely, the hard-decision metric (eqn. 13), the sub- 
optimal weighting metric (eqn. 8), the 3-bit quantised 
metric with the step size optimised for jammed and 

Note that all these decoding metrics require perfect side 
information about the jammer state. In practice, the 
jammer state is never perfectly known, hence the numeri- 
cal results obtained can be used only as the baseline per- 
formance for each metric. This Section will examine the 
effect of the absence of such perfect side information. 

The first case of practical interest is the soft metric 
(C,, CO) of eqn. 5. When no side information is available, 
no weighting is necessary or possible. Substituting (C,, 
CO) = (1, 1) into eqn. 5, one obtains 

w PI = P exp C-W,/(l + Y41/C1 - ( r V 1  

+ (1 - P) exp C-nPZl(1 + n)I/u - J2) 
O < A <  1 (14) 

For the hard-decision metric, the uncoded BER 

should be used in place of eqn. 13 in evaluating D(p) (see 
eqn. 12). The ML metric without the jammer state gives 
the following equation 

p e  = (1 - p)/2 exp + d2 exp ( - E b / N J ' )  (15) 

+ e - y ( 2 A - l )  1 A Q - CJ(28o), 2J(y)l) dy (16) 
where it is assumed that the system is operating at the 
designed point Bo. 

A family of soft metrics A was discussed in the preced- 
ing Section, where the finite weighting (l/N,,, l/No) was 
shown to render a near-optimal performance. It was 
assumed there that the weighting factor could be 
obtained without error. Usually, it can be derived from a 
square-law envelope detector (or an AGC detector as it 
was sometimes called [SI) at an adjacent channel which 
is assumed to have the same noise statistics as the signal 
channel. Let the normalised weighting factors derived 
from the estimation circuitry be ((wJ N o ) -  ', (wo No)-1) A 
(C,, , Cor);  then the corresponding Chernoff bound is 
given by 

D(p;  W J ,  ' min D(p,  A; w J ,  WO) (174 

lo 4 l/max (Y/w, ,  l/wo) ( 174 

w, p; W J ,  WO) = dC1 - (nY/w,)'l 

O d A - Z A o  

where 

and 

exp [-ny8J/(w.l + 
+ (1 - NC1 - (l/wO)zl 

x exp c - V o / ( w o  + 41 (174 
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If the weighting factors are derived from an envelope 
detector as just mentioned, then the average Chernoff 
bound is 

bound [9], 

BER < O.5[36D1O + 211D12 
+ 14040l4 + 11633D16 + . . .I (19) 

D being given by eqn. 11, and Weinberg’s empirical 
formula, which relates the BER to R,[10] 

’(p) = r r Y - l D ( ) l ;  w J ,  

exp [ - ( w J / Y  + dwJ dwO (18) 
log,o(BER) 

= K1 + Kz 10glo{ 1 + exp [a(Ro - b)] 
2 1 - R o -  I (20) 

Fig. 9 illustrates the cut-off rate performance for 
(i) soft decision without side information (eqn. 14) 
(ii) hard decision 
(iii) ML decoding without side information (eqn. 16) where Kl = logl,(102.31), K ,  = 11.668, a = 3.017 and (iv) 3-bit quantisation metric without optimising step = 1.602. The thicker in and 11 were 

sue 
(v) soft decision with imperfect AGC weighting. 

The case of perfect AGC weighting is also included for 
the convenience of comparison. In all cases, the worst p 
values (denoted by p*) which minimise R, are assumed, 
i.e. D(p*) 4 maxo+sl D(p). As expected, the R, of the 
unweighted and unquantised metric (eqn. 14) is the worst 
one. The mismatch loss for this case is phenomenal; for 
example it is greater than 13 dB at R, = 1/2. But by 
using a hard limiter, one can easily recover more than 
10 dB of the degradation. The finite-bit quantisation 
metric is insensitive to the variation of channel statistic as 
was mentioned before. The AGC weighting metric per- 
forms poorly at low E J N j  but gradually catch up with 
the ML metric at high EJNJ*.  This is a result of the fact 
that the envelope detector is not a reliable noise power 
estimator at low E J N j , .  To demonstrate the utility of the 
cut-off rate performance, the error rate of Odenwalder’s 
(7, 1/2) coded system is evaluated in the following 
Section. One can also see more clearly the relative per- 
formance improvements or degradations of each metric 
with respect to a fixed BER. 

0 
10-41 I I 

0 01 0 2  0 3  0 4  0 5  0 6  0 7  0 8  0 9  
fraction of band Jammed 

Fig. 10 BER estimation 
~ Weinberg’s formula 
- Odenwalder’s upper bound 

E d N ,  = 9 dB; E J N ,  = 1.5 dB 
0 Simulation 

2 

10 

1 O r  

10-3 

O 2 1  , 1, 
O5 7 9 11 13 15 

€ 5 1  NJ , dB 

Fig. 9 Cut-offrate performance 
(i) Soft decision with optimal weighting and perfect side information 
(ii) ML metric with imperfect side information 
(iii) 3-bit quantisation without side information 
(iv) Soft decision with imperfect AGC weighting 
(v) Hard-decision 
(vi) No weighting 

5 

The BER performance of a convolutional encoded, three- 
bit soft-decision Viterbi-decoded system is presented in 
this Section. The Odenwalder (7, 1/2) code is chosen 
because of its popularity [7,9, 10, 141. As was mentioned 
in Section 3, the decoded BER is related to R, or D via a 
nonlinear function. For the (7, 1/2) code, two analytical 
formulas are available, namely, Odenwalder’s upper 

BER evaluation-comparison of two formulas 
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0 01 0 2  03 0 4  0 5  0 6  0 7  0 8  0 9  1 0  
fraction of band jammed 

Fig. 11 BER estimation 
~ Weinberg’s formula 
- Odenwalder’s uppcr bound 

E d N ,  = 15 dB; E d N ,  = 5 dB 
Simulation 

computed from the former, and the thinner curves were 
computed from the latter. The constants in eqn. 20 were 
derived from established simulation data for the Gauss- 
ian channel with 3 bit quantisation. It is found that the 
behaviour of the decoded BER as a function of p is con- 
sistent with earlier reports [l-81 and eqns. 19 and 20 
both predict a similar trend and the same worst case p. 
Also shown in these two figures are some Monte-Carlo 
simulation results which tell us that Weinberg’s formula 
(eqn. 15) is uniformly tighter than Odenwalder’s upper 
bound (eqn. 14) by an order of magnitude. The slight dis- 
crepancies between the simulation and formula-derived 
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results are due to the fact that Weinberg’s formula 
assumed a quantised ML metric. Fig. 12 is the BER per- 
formance of the (7, 1/2) coded system for various metrics, 
converted from parts of Figs. 8 and 9, i.e. eqn. 20 is used 
to obtain BER from R ,  . For the convenience of compari- 
son, the BER curves are plotted against E J N ,  , the corre- 
sponding E d N ,  being 3 dB higher. Conclusions similar 
to those in the preceding Section can be made. 

the optimal 
weighting metric is only 0.3 dB away from the best per- 
formance if perfect side information is supplied. The 
replacement of perfect side information with AGC esti- 
mation does not cause too much degradation (e.g. a 
1.1 dB loss even for an estimation as bad as (1.5, 0.1)). 
One also observes that the mismatch loss for the ML 
metric without side information is about 2 dB. The case 
of 3-bit quantisation without the knowledge of the 
jammer state suffers another 1.8dB loss whereas the 
hard-decision metric has a mismatch loss of 6dB. In 
other words, the increase of quantisation resolution from 
1 bit to 3 bits can easily give 4.2dB improvement. The 
metric of soft decision with0u.t weighting is not presented 
in Fig. 12 because the corresponding BER is higher than 

It is revealed that, when the BER is 

E b / N o , d 6  

Fig. 12 BER performance 
(i) ML metric with perfect side information 
(ii) Soft-decision with optimal weighting and perfect side infomation 

(iii) ML metric without side information 
(iv) 3-bit quantisation without side information 
(v) Soft decision with imperfect AGC weighting 

(vi) Hard decision without side information 

10- within the range of interest. However, computations 
can show that, at a error rate, the simple hard- 
decision metric recovers more than the 10dB loss suf- 
fered by the soft-decision/no-side-information metric. 

6 Conclusion 

An analytic approach to evaluate the coded performance 
of practical FH/DPSK receivers in the presence of partial 
band noise jamming has been presented. A variety of 
decoding metrics have been considered and compared. 
The effectiveness of quantisation is most convincing when 
side information is not available; an improvement of 
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more than 10dB is obtained by resorting to the simple 
hard limiter. The Viterbi-decoded performance of the 
Odenwalder (7, 1/2) convolutional code is evaluated with 
two formulas. Comparison with simulation data has 
revealed that Weinberg’s empirical formula is an excel- 
lent approximation for BER performance estimations in 
PBNJ. This result indicates that the BER performance of 
the 3-bit soft-decision metric is about 2 dB away from 
that of the corresponding ML metric, and that the AGC 
weighting scheme is recommended if an operating E J N ,  
greater than 10.5 dB is available or if a BER less than 
3 x is required. 

Besides intentional jamming, electromagnetic wave- 
forms generated by nonhostile sources sometimes can 
also degrade the signal channel performance, especially 
when the latter link has a low power margin. As far as a 
FH system receiver is concerned, many broadband radio- 
frequency interference (RFI) waveforms, such as those 
resulting from noncoherent radar pulsed trains, can be 
treated as PBNJ as well. A practical application example 
is to evaluate the ship communication terminal AJ capa- 
bility when the RFI comes from onboard radar signals. 
Moreover, it was recently shown [8] that PBNJ is as 
effective as PBMTJ against FH/DPSK systems. Thus the 
analysis and the numerical results presented here can be 
used in system designs and performance predictions, even 
when the assumed operating scenario is not strictly 
PBNJ. 
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