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Adaptive Fuzzy Command Acquisition
with Reinforcement Learning

Chin-Teng Lin and Ming-Chih Kan

Abstract—This paper proposes a four-layered adaptive fuzzy
command acquisition network (AFCAN) for adaptively acquiring
fuzzy command via interactions with the user or environment. It
can catch the intended information from a sentence (command)
given in natural language with fuzzy predicates. The intended
information includes a meaningful semantic action and the fuzzy
linguistic information of that action (for example, the phrase
“move forward” represents the meaningful semantic action and
the phrase “very high speed” represents the linguistic information
in the fuzzy command “move forward at a very high speed”).
The proposed AFCAN has three important features. First, we
can make no restrictions whatever on the fuzzy command input,
which is used to specify the desired information, and the network
requires no acoustic, prosodic, grammar, and syntactic struc-
ture. Second, the linguistic information of an action is learned
adaptively and it is represented by fuzzy numbers based on�-
level sets. Third, the network can learn during the course of
performing the task. The AFCAN can perform off-line as well as
on-line learning. For the off-line learning, the mutual-information
(MI) supervised learning scheme and the fuzzy backpropagation
(FBP) learning scheme are employed when the training data are
available in advance. The former learning scheme is used to
learn meaningful semantic actions and the latter learn linguistic
information. The AFCAN can also perform on-line learning
interactively when it is in use for fuzzy command acquisition.
For the on-line learning, the MI-reinforcement learning scheme
and the fuzzy reinforcement learning scheme are developed for
the on-line learning of meaningful actions and linguistic infor-
mation, respectively. An experimental system (fuzzy commands
acquisition of a voice control system) is constructed to illustrate
the performance and applicability of the proposed AFCAN.

Index Terms—Fuzzy backpropagation, fuzzy number, fuzzy re-
inforcement, linguistic information, mutual information, semantic
action, voice control.

I. INTRODUCTION

M OST researchers in automatic speech recognition
(ASR) concentrate their efforts on process of con-

verting speech to ordinary text with the intention of later
combining their results with others who are working on
language acquisition. That is, they assume that transcrip-
tion and acquisition are distinct processes connected at a
simple orthographical interface and always focus on highly
faithful models of acoustic, prosodic, and syntactic structure,
especially to the exclusion of meaning. It is found that
the techniques that attempt to separate transcription and
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acquisition will result in systems whose performance usually
falls far short of human capacity and is hard to reach the
ultimate goal—unrestricted free communication between man
and machine in a changing and uncertain world [1]. Hence,
developing a language acquisition system that involves gaining
the capability of decoding the intended information in a
message spoken in natural language is the concern of this
work. As a start to the fuzzy language acquisition system, in
this paper, we shall use the fuzzy neural network to deal with
the fuzzy command acquisition problems due to the capability
of the fuzzy neural network in processing and learning both
numerical and linguistic information. The proposed network
will equip the ability to acquire fuzzy commands, which is
a nature language consisting of desired actions and fuzzy
linguistic information (fuzzy predicates). Moreover, it can
perform on-line learning to acquire fuzzy commands during
the course of performing tasks.

Much research on language acquisition has focused on dis-
covering syntax structure, often to the exclusion of meaning.
The goal is to develop a theory that can predict the set of
grammatical sentences in a language from a finite number
of observations [2]–[5]. The final purpose of these systems
is to obtain an applicable syntactic structure. There are a
few researchers who focus their attentions on obtaining the
mapping from message to meaning. In [6] and [7], the systems
learn the mapping from sentences to symbolic representations;
that is, the approach is to represent the meaning symbolically,
attempting to make the representation isomorphic to some
subset of reality. Recently, neural networks were also utilized
on language acquisition. In 1991, Jain utilized a modular
recurrent connectionist network to learn to parse sentences.
In 1989 and 1991, Miikkulainen and Dyer [8] used a modular
network to learn to paraphrase script-based stories. In 1990,
St. John and McClelland [9] also used modular connectionist
networks to learn the mapping from input sentences to an
output event description, comprising a set of thematic roles
and their filters. In the above systems, the networks are trained
supervisedly using the backpropagation (BP) algorithm. Dur-
ing the procedure of network training, the input sentence and
the desired output are provided for the network.

In the above work, the semantic and pragmatic domain is
quite rich and, as such, comprising an important portion of
the semantic structure of the entire language. For the purpose
of performing at a desired level, those systems require great
constrained input—a severely restricted vocabulary or a rigid
syntax. In contrast, a different approach was proposed by Gorin
et al. [10], [11] where the system’s understanding of an input
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Fig. 1. The use of the proposed AFCAN in a voice control system.

message was evaluated on the basis of whether the system re-
sponded in an expected and appropriate way over a wide range
of scripts. An information-theoretic-connectionist network was
proposed that learned the mapping from the input message to
a meaningful system response. The network learned through
interactive feedback received from the environment or user as
to the appropriateness of the system’s response to an input
message. The Gorin’s system accepts input sentences without
any restricted vocabulary, so it makes no restrictions on the
language used to specify the desired action to the system.
However, the action has a very restricted semantic domain;
that is, it can perform a few actions.

In the above approaches, none of them can process or
learn fuzzy linguistic information in natural language. Since
such processing and learning ability is the length of the
fuzzy neural network, we establish a fuzzy neural network
called adaptive fuzzy command acquisition network (AF-
CAN) for acquiring fuzzy commands in this paper. The
proposed network can adaptively acquire fuzzy commands via
interactions with the user or environment. It can catch the
intended information from a sentence (command) spoken or
written in natural language with fuzzy predicates. The intended
information includes a meaningful semantic action and the
linguistic information of that action. Furthermore, since the
AFCAN is developed based on Gorin’s approach, it keeps the
property that we can make no restrictions whatever on the
fuzzy command input, which is used to specify the desired
information; also, the network requires no acoustic, prosodic,
grammar, and syntactic structure.

The AFCAN consists of four layers and can be regarded
as a cascaded network comprising two subnetworks—the
crisp connectionist architecture with numerical output (CCNO)
net and the fuzzy connectionist architecture with linguistic
output (FCLO) net. The former is a two-layered network
with crisp mutual information weights and the latter is a
three-layered network with fuzzy weights. The input to the
AFCAN is unrestricted text in fuzzy language and the output
of the AFCAN is the user’s desired semantic action and
the associated fuzzy linguistic information. More clearly, the
CCNO processes the user’s input command to acquire the
desired semantic action and the FCLO maps a crisp input

to a desired fuzzy linguistic output presented in the form of
-level sets [12].
The AFCAN learning includes two parts—off-line learning

and on-line learning. In off-line learning, the training phase
is finished before doing the performance phase, but in on-line
learning, the training proceeds during the course of performing
task. For these two kinds of learning, four learning algorithms
are developed and employed: 1) mutual information (MI)
supervised learning; 2) fuzzy backpropagation (FBP) learning;
3) MI-reinforcement learning; and 4) fuzzy reinforcement
learning. Learning algorithms 1) and 3) are used in the CCNO
to adjust its crisp MI weights and algorithms 2) and 4) are used
in the FCLO to adjust its fuzzy weights. Learning algorithms
1) and 2) are used for off-line learning to build an initial
network for real performance. These two learning algorithms
are also used in the supervised mode of on-line learning and
algorithms 3) and 4) are used in the reinforcement mode of
on-line learning. The on-line learning is to rebuild or tune
an off-line trained AFCAN according to the critics from the
user/environment.

The proposed AFCAN can be applied in a voice control
system, as shown in Fig. 1. The system combines a speech
recognizer with the proposed AFCAN. The user can speak
a fuzzy command to the microphone freely. The speech
recognizer will recognize the user’s speech signals and then
the AFCAN will acquire the input command. In this system,
the objective of acquisition is to produce the correct semantic
action and proper linguistic information about that action.
For example, if the user gives a fuzzy command, “Please
walk at a very high speed,” then the system will produce
the results with the user’s desired semantic action “walk”
and its linguistic information in the form of -level sets
as shown in Fig. 1. Moreover, the system can do the on-
line learning while functioning; that is, the user or teacher
(supervisor) can observe the system’s performance and give
critic reinforcement feedback to the system. There are two
kinds of reinforcement signals, one for semantic action (e.g.,
“No, I want to walk instead of run!”) and the other for
linguistic information (e.g., “The speed is too fast.”). The
system can utilize the reinforcement feedback to tune itself
to become a more suitable system for users.
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Fig. 2. Network structure of the AFCAN.

This paper is organized as follows. In Section II, we de-
scribe the structure of the proposed AFCAN and discuss
the learning issues of the network. Section III presents the
supervised learning schemes of the proposed network. In
Section IV, the mutual information reinforcement learning
scheme and fuzzy reinforcement learning scheme are devel-
oped. In Section V, an application of the AFCAN—fuzzy com-
mands acquisition of a prototype voice control system—is il-
lustrated. The computational efficiency and convergence prop-
erty of the proposed learning algorithms are discussed in
Section VI. Finally, conclusions are made in Section VII.

II. A DAPTIVE FUZZY COMMAND ACQUISITION NETWORK

In this section, we shall propose a network for our acqui-
sition system whose input is the unrestricted text of fuzzy
commands and output is one of a finite set of semantic fuzzy
actions. This network is called AFCAN. The basic structure
of the proposed network will be described first and then the
learning of this network will be discussed briefly.

A. Basic Structure of the AFCAN

Fig. 2 shows the proposed network structure of the AFCAN,
which has a total of four layers. The input is a sentence

and output is a fuzzy action comprising the action and its
linguistic information. Layer one consists of two kinds of
nodes for different functions: the word detector nodes and the
phrase detector nodes whose inputs are from the outputs of
the word detector nodes directly. The word and phrase detector
nodes are, respectively, used to detect the input isolated words
and the input phrases (word pairs). The layer-one nodes are
fully connected to layer-four nodes. Each node in layer two
corresponds to one node in layer one. The input value of
a layer-two node is produced by the output value of the
corresponding layer-one node multiplied by the weight value
between this layer-one node and the fired layer-four node. The
links from layer two to layer three are fully connected and so
are the links from layer three to layer four.

From another point of view, we can consider the AFCAN
as the combination of “a multilayer neural network that maps
a sentence to a semantic action” and “a multilayer fuzzy
neural network that maps a numerical input vector to a fuzzy
number.” The former network is called CCNO and the latter
is called FCLO. The CCNO is constituted of the layer one
and layer four of the AFCAN, as shown in Fig. 3, and the
FCLO is constituted of the layer two, layer three and layer
four of the AFCAN, as shown in Fig. 4. The CCNO proceeds
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Fig. 3. Network structure of the CCNO.

Fig. 4. Network structure of the FCLO.

before the FCLO; that is, for a given input sentence, the
CCNO decides first the semantic action and then the FCLO
decide the corresponding fuzzy linguistic information. Notice
that although the input values of the FCLO are dependent of
the weights from layer-one nodes to fired layer-four nodes, the
AFCAN is a feedforward (instead of recurrent) network since
its two constituent networks (CCNO and FCNO) function
independently and sequentially.

In the AFCAN, we define the semantic actions,
, and the vocabulary words where the phrases

are also produced naturally, . The network
maps an input sentence ( is the
number of words in sentence) to a semantic action .
In layer one, the word detector nodes detect the presence
of a vocabulary word in the input sentence and the phrase
detector nodes, where we consider only phrases comprising
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two adjacent words, detect the presence of the adjacent word-
pair in the sentence. Layer two of the AFCAN is employed
to be the mutual-information (MI) value input layer. The MI
values are calculated according to the weights between the
nodes in layer one and the th node in layer four after the
semantic node is decided (fired). The MI values are used
as the inputs for training the FCLO to produce the desired
fuzzy number in the th semantic node in layer four. In this
network, the “hidden (internal) layer,” layer three, is added to
increase the learning efficiency of the FCLO.

We shall next describe the signal propagation in the pro-
posed network, layer by layer, following the arrow directions
shown in Fig. 2. This is done by defining the transfer function
of a node in each layer. Signal may flow in the reverse direc-
tion in the learning process as we shall discuss in the following
sections. A typical neural network consists of nodes, each of
which has some finite fan-in of connections represented by
weight values from other nodes and fan-out of connections to
other nodes. In the following, the notations represent
the output crisp (fuzzy) number of a node.

Layer 1—Detector Layer:The nodes in this layer are di-
vided into two groups: word detector nodes and phrase detector
nodes. The inputs to the phrase detector node are the
outputs of the word detector nodes and . For this reason,
the input sentences have to pass the word detector nodes first
and then pass through the phrase-detector nodes.

• Word detector nodes: the function of each word detector
node is to detect the presence of a vocabulary wordin
the input sentence and produce an output between
zero and one. In this paper, words are counted only once,
no matter how often they appear. The word detector nodes
execute some function that can detect the presence of a
word in the sentence. The simplest function is a matching
function that produces the output 1 if a particular word
is observed; otherwise produces the output 0. A more
sophisticated function is one that produces an output

equal to the probability that the word is in the
sentence.

• Phrase detector nodes: the function of each phrase de-
tector node is to detect the presence of a vocabulary
phrase in the sentence and produce an output

between zero and one. The simplest case is for noise-
free input in which the output is one if phrase is
observed; otherwise, the output is zero.

Note that the number of phrase detector nodes is 2 ,
depending on the number of word detector nodes () where,
in addition to the phrase type , the inverse type
is also considered so that is why the number should be
multiplied by two.

As a summary, the input–output relation of each node in
this layer is

Input an unrestricted sentence (1)

Output
if the word ( ) or phrase

( ) is observed

otherwise.
(2)

Layer 2—MI-Value Layer:The input of each node in this
layer is a numerical number coming from the output of
the node ( ) in layer one multiplied by the weight

, assuming that the semantic action in layer
four is recognized. That is, the input to a layer-two node is

. Each node in this layer only transmits input
numerical number to the next layer directly. Hence, we have

or (3)

where , , , ,
and is the number of nodes in layer four.

Layer 3—Hidden Layer:As described previously, layers
two, three, and four of the AFCAN constitute the FCLO
network that can map numerical input values to fuzzy output
numbers. The input values fed into each node in this layer are
the weighted output values of layer two, which are numerical
numbers. In order to produce fuzzy outputs, there should exist
fuzzy weights between layer two and layer three, so each
node in this layer is fully connected to the nodes in layer
two through fuzzy weights. More precisely, we have

Output: Net (4)

Net (5)

where is computed by using the extension principle [13],
“( )” represents the addition of fuzzy numbers [13], [14],

is the sigmoid function, is the
number of hidden nodes, and the net-inputs Net, and the
biases are fuzzy numbers. Here, the fuzzy weights
and biases will be updated in the learning process of the
AFCAN.

Layer 4—Semantic Layer:The input values fed into each
node in this layer have two sources; one is from layer one
and the other from layer three. The outputs of layer one
are combined by each of the semantic nodes in this layer
to produce output activations for a semantic action as
follows:

(6)

where are the biases and and are information-
theoretic connection weights, which are crisp numbers and
will be defined in the next section. The semantic node with
the largest activation value is considered to be “fired”
and recognized as the acquired semantic action for the input
sentence , i.e., .

The outputs of layer three are fed into each node in this
layer too and each layer-four node is fully connected to the
nodes in layer three through fuzzy weights. The fuzzy output
of each layer-four node is described by

Fuzzy Output: Net (7)

Net (8)



LIN AND KAN: ADAPTIVE FUZZY COMMAND ACQUISITION WITH REINFORCEMENT LEARNING 107

Fig. 5. Block diagram of the on-line learning scheme of the AFCAN.

where is computed by using the extension principle [13],
“( )” represents the addition of fuzzy numbers [13], [14],

is the sigmoid function, is the
number of nodes in layer four, and the net-inputs Netand
biases are fuzzy numbers. Here, the fuzzy weights
and biases will also be updated in the learning process of
the AFCAN.

Notice that the natural language contains several types of
fuzziness. The types of fuzziness that can be treated with
the AFCAN arefuzzy predicatesand fuzzy predicate modifiers
[15]. Words such as “high,” “slowly,” “lightly,” “soon,” and
“much faster,” are fuzzy predicates. As for the fuzzy predicate
modifiers, in addition to the negation modifier there is a variety
of fuzzy predicate modifiers which act ashedges, e.g., “very,”
“rather,” “more or less,” “slightly,” “a little,” “extremely.”
Hence, the AFCAN can acquire a fuzzy command like, “Let
it turn extremely fast.”

B. Learning of the AFCAN

In the AFCAN, we perform off-line learning to build an
initial network and then use on-line learning to rebuild or
tune a trained AFCAN according to the critics from the
user/environment when the AFCAN is in use. The mutual
information (MI) supervised learning and fuzzy backpropa-
gation (FBP) learning are employed for the off-line learning
of the AFCAN. For off-line learning, we need to prepare a
set of training data for supervised learning. At first we used
the MI-supervised learning (a well-known statistical method of
measuring association) to obtain connection weights between

the detector layer (layer one) and the semantic action layer
(layer four) in the CCNO of the AFCAN (see Fig. 3). The
training data input, output for the MI-supervised learning
is a set of ordered pairssentence, actionconsisting of a
sentence and an associated semantic action. The MI-supervised
learning algorithm will utilize the training data to calculate the
association of each node in layer one and the semantic node in
layer four. This association is recorded by numerical weights
denoted as (described in Section II-A).

When the MI-supervised learning is completed, the FBP
learning, which can be viewed as an extension of the back-
propagation learning algorithm to the case of fuzzy data, is
applied to the FCLO of the AFCAN (see Fig. 4). The training
input data for the FCLO is the MI values computed from the
trained CCNO weights as mentioned in Section II-A and the
corresponding target output for the FCLO is a fuzzy number
represented in the form of -level sets. The FBP can learn
the desired fuzzy input–output mapping, which is represented
by fuzzy weights between layer two and layer three as
well as between layer one and layer four. Hence, with
the FBP algorithm we can learn the desired mapping between
input fuzzy sentence and linguistic information of the semantic
action.

As for on-line learning of the AFCAN, we propose two
reinforcement learning schemes:MI-reinforcement learning
and fuzzy-reinforcement learning. The on-line learning of the
AFCAN includes the MI on-line learning phase and the fuzzy
on-line learning phase. The MI supervised and reinforcement
learning algorithms are for the MI on-line learning. The FBP
and fuzzy reinforcement learning algorithms are for the fuzzy
on-line learning. Like the off-line learning process, the MI on-
line learning has to be performed first and, after we learn
the desired semantic action, the fuzzy on-line learning is
performed. The flowchart of the on-line learning is shown in
Fig. 5. Based on the trained weights from the off-line learning,
the AFCAN is in use for fuzzy command acquisition. For an
input sentence, the AFCAN will produce asemantic action
(by the CCNO in Fig. 3) andfuzzy information(by the FCLO
in Fig. 4). Then the user/environment can provide a teaching
signal to the AFCAN to indicate the appropriateness of the
acquired semantic action and fuzzy information. When the
AFCAN receives the teaching signal, it will perform on-line
learning to improve itself. The MI on-line learning includes
reinforcement mode and supervised mode according to the
types of teaching signals, and so does the fuzzy on-line
learning. The main difference between reinforcement mode
and supervised mode is that the former’s teaching signal only
provides critic feedback (calledcritic or reinforcement signal),
but the latter’s indicates the desired output. In supervised
mode, we use the MI-supervised learning algorithm or the FBP
learning algorithm. In reinforcement mode, we use the MI-
reinforcement learning algorithm or the fuzzy reinforcement
learning algorithm. The details of these learning algorithms
will be presented in the next two sections.

III. SUPERVISED LEARNING OF THE AFCAN

In this section, we shall derive a supervised learning scheme
for the proposed AFCAN. This scheme is suitable to the
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situations where pairs of input–output training data are avail-
able. For each training datum, the input is an unrestricted
sentence and the outputs are a numerical number and a fuzzy
number. Look at a simple example: if we consider a sentence

Go in a very high speedas input, then the desired
outputs consist of the semantic action “go,” which is indicated
by a special numerical number (the th action) and the
linguistic information “very high speed,” which is represented
by a specific fuzzy number in the form of -level sets
where and is the total number of semantic
actions. Hence, each training pair is in the formsentence;
numerical number, fuzzy number. Before the learning of the
AFCAN is started, an initial network is first constructed. The
initial structure of the AFCAN is constructed according to the
number of words and number of semantic actions in the way
described in Section II (see Fig. 2). The number of hidden
nodes in layer three is guessed properly. The fuzzy weights

( ) between layer two and layer three (between layer
three and layer four) are initialized randomly as fuzzy numbers
and so are the biases ( ) of layer three (layer four). The
other weights are randomly initialized as numerical numbers.

After the initialization process, the network is ready for
learning. We shall next propose a two-phase supervised learn-
ing scheme for the AFCAN. In phase one, a mutual infor-
mation (MI) learning algorithm is used to define and adjust
the numerical weights and biases of the CCNO. In phase
two, a fuzzy backpropagation (FBP) learning algorithm is
used to adjust the fuzzy weights and biases of the FCLO.
The flowchart of this two-phase supervised learning scheme
is illustrated in Fig. 6.

A. MI-Supervised Learning

Mutual information (MI) is a famous statistical method of
measuring association [16]. Methods based on MI for language
understanding have been proposed [10], [11], [17], [18]. Given
a system input and observed system output, the mutual
information (MI) between and , denoted by is
defined by [19]

(9)

where conditional probability represents the amount
of uncertainty remaining about the system inputafter the
system output has been observed, and probability rep-
resents our uncertainty about the system input before observing
the system output. The represents the uncertainty
about the system input that is resolved by observing the
system output. We shall use MI to define and adjust the crisp
connection weights and biases of the CCNO in Fig. 3.

Rather than viewing the information weights and biases in
(6) as abstract parameters, we give them explicit meaning
by the following definitions proposed by Gorinet al. [10],
[11]. As shown in the MI-supervised learning part of the
flowchart in Fig. 6, the training database is preprocessed by
word detectors and phrase detectors (in layer one of the
AFCAN) and then the MI theory is applied to do the MI-
supervised learning task. Finally, we can get the association

weights between detector layer (layer one) and semantic
layer (layer four). The MI-supervised learning rule is specified
as follows:

(10)

(11)

(12)

The notation , a word-pair, comprises the adjacent co-
occurrence of words in the sentences. The connection weights
from the phrase detector nodes in layer one to the semantic
layer (layer four) [given in (11)] is the excess MI of the word
pair over the individual words.

Given a semantically labeled sentence, i.e., an input–output
pair sentence, action, weight adaptation proceeds in two
steps. First, each segmented token from the sentence is as-
signed to the best-matching input node. Second, the connection
weights are updated in accordance with the mutual information
theory. In particular, the mutual information between each
word (or word pair) and action is computed from smoothed rel-
ative frequency estimates such that no gradient computations
are required.

The MI weights are defined in terms of single and joint
probabilities that are in turn estimated using the computation
of relative frequencies. These are expressed as follows:

(13)

where denotes the number of observations of the word
in all classes, denotes the number of observations

of sentences in class , denotes the number of
observations of the word pair in all classes,
denotes the number of observations of the word in all
sentences of class , denotes the number of
observations of the word pair in the class , and

denotes the total number of all sentences
observed in all of the classes. It is noted that the above
estimate can converge asymptomatically, but if the number of
observations is small, the estimate will produce quantization
noise. To overcome this problem, smoothing the presence of a
small number of observations by interpolating the measured
relative frequencies with a prior belief is adopted in this
paper. Moreover, for the purpose of accelerating the unlearning
of false connections, we appropriately set a center clipping
threshold so that a single counterexample drives the probability
estimate back to the prior and the connection weight to zero.
The details of the smoothing and center clipping scheme can
be found in Gorinet al. [10], [11].
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Fig. 6. Block diagram of the supervised learning scheme of the AFCAN.

B. Fuzzy Backpropagation Learning

The proposed fuzzy backpropagation (FBP) learning rule
serves as the supervised learning algorithm of the FCLO
subnetwork in the AFCAN (see Fig. 4). The FBP learning
rule is derived by generalizing the traditional (crisp) backprop-
agation rule to its fuzzy counterpart [20]–[24]. The flowchart
of this learning algorithm is shown in the fuzzy supervised
learning part of Fig. 6. For the FBP learning, the weights to
be updated include those between layers two and three (such
as the weights shown in Fig. 4)
and those between layers three and four (such as the weights

, shown in Fig. 4) of the AFCAN.

The training input data of the FCLO are the mutual information
values calculated from the multiplication of the outputs of
layer one and the associated connection weights between layer
one and layer four (i.e., the net inputs to layer-four nodes of
the AFCAN). The desired output of the FCLO is the linguistic
information associated with the selected semantic action by
the CCNO. The linguistic information is represented by-
level sets. We denote the-level sets of the current fuzzy
output and the desired fuzzy output as

(14)
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where and denote the lower and the upper limit of
an -level set, respectively. We train the FCLO with several
values of using the following error function:

diff

(15)

Assume that

(16)

is the adjustable fuzzy parameter in the FCLO subnetwork.
To update fuzzy weights means to update the parameter
and . We shall next derive the update rules for these
parameters layer by layer based on the general learning rule

(17)

where represents or and is the learning rate.
Layer 4: The output of a layer-four node is a fuzzy num-

ber . The update rules of
are derived as follows

[see (7) and (8)] where only the derivation of is
shown:

Net

Net

(18)

The error term produced by the th node in this layer is
defined by

Net Net

(19)

where

Net (20)

Then, from (17) and by performing similar derivation for
, we have

(21)

(22)

where is in the same form of (19) except that the
subscript is replaced by .

Layer 3: In this layer, each node output is also a fuzzy
number . The update rules
of can be derived using
(4), (5), and (19) as follows, where only the derivation of

is shown

Net

Net

Net

Net

(23)

The error signal term produced by the th node for this
layer is defined by

Net Net

(24)

where

Net (25)

Then, from (17) and by performing similar derivation for
, we have

(26)

(27)

where is in the same form of (24) except that the
subscript is replaced by .

When fuzzy weights are adjusted by (18)–(27), an unde-
sirable situation may occur. That is, the lower limits of the

-level sets of fuzzy weights may exceed the upper limits,
and the updated fuzzy weights may thus become nonconvex.
In order to deal with this situation, necessary modifications
on the updated fuzzy weights to make sure that they are legal
fuzzy numbers after updating are performed. This process is
described as follows.

Procedure—Fuzzy Number Restoration:

Inputs: Fuzzy weights standing for
and , which are updated by (18)–(27).

Outputs: The modified fuzzy weights
, which are legal fuzzy

numbers.
Step 1. ,

if , then and ,
else and .

Step 2. For down to zero, do if
, then , else

and if ,
then , else .

Step 3. Output and stop.
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Fig. 7. The proposed RAFCAN system.

IV. REINFORCEMENT LEARNING OF THE AFCAN

In this section, we shall derive reinforcement learning
algorithms for the on-line learning of the AFCAN. Since the
outputs of the AFCAN have two forms—numerical numbers
and fuzzy numbers—standing for semantic actions and lin-
guistic information, respectively, the proposed reinforcement
learning scheme has two learning phases. In phase one, an
MI-reinforcement learning algorithm is employed to tune the
CCNO with the numerical reinforcement signal (numerical
evaluative feedback). In phase two, a fuzzy reinforcement
learning algorithm is utilized to tune the FCLO with the fuzzy
reinforcement signal (fuzzy evaluative feedback). To solve the
reinforcement learning problems, we need a more powerful
network structure. We shall first set up such structure based on
the original structure of the AFCAN in Fig. 2 in the following
subsection and then develop a reinforcement learning scheme
for the AFCAN in Sections IV-B and C.

A. Structure of the Reinforcement AFCAN

For reinforcement learning problems, almost all existing
learning methods of neural networks focus their attention on
numerical evaluativeinformation [25]–[31]. In this paper, we
shall attack thefuzzy reinforcement learningproblem where
only fuzzy critic signal (e.g., “faster,” “slower,” “good,”
“bad”) is available. This problem is much closer to the expert
instructing learning system in real world than the original one
with scalar critic signal.

In the reinforcement learning problems, it is common to
think of a network functioning in an environment. The envi-
ronment supplies the inputs to the network, receives its output,
and then provides the reinforcement signal. If a reinforcement

signal indicates that a particular output is wrong, it gives no
hint as to what the right answer should be; in terms of a
cost function, there is no gradient information. It is, therefore,
important in a reinforcement learning network for there to
be some source of randomness in this network, so that the
space of possible outputs can be explored until a correct
value is found. This is usually done by usingstochastic units.
Furthermore, a reinforcement signal may only be available
at a time long after a sequence of actions has occurred.
To solve the long time-delay problem, prediction capabilities
are necessary in a reinforcement learning system. With this
concept, we propose a reinforcement learning model as shown
in Fig. 7, which integrates two previously proposed four-
layered networks (see Fig. 2) into a learning system. The new
system is called reinforcement AFCAN (RAFCAN). As in the
original AFCAN, each CCNO used in the RAFCAN maps a
sentence input to a desired action (presented as a numerical
number), and each FCLO maps a crisp MI-value input obtained
from the CCNO to a desired linguistic information (presented
in the form of -level sets).

The original four-layered network in Fig. 2 serves as the
action network, which comprisessemantic action networkand
fuzzy action network. The semantic action network is built by
a CCNO in Fig. 3 and includes the word detectors, phrase
detectors, and the semantic action selection layer. The fuzzy
action network is realized by a FCLO in Fig. 4 and a newly
addedfuzzy stochastic unit. The semantic action network and
fuzzy action network are used respectively to choose the
proper semantic action and linguistic information with respect
to the current input sentence. For solving the reinforcement
learning problem, we use another CCNO to serve as theeval-
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uation networkof the semantic action network. This evaluation
network is to perform the acquisition of the external user’s or
environment’s responses on the selected semantic action and
produce numerical reinforcement signals. More clearly, the
CCNO can acquire the user’s or environment’s responses to
the selected semantic action and encode the negative feedback
or affirmative feedback to a two-valued number

, so the reinforcement signal is numerical. Similarly,
we use another FCLO to serve as theevaluation network
of the fuzzy action network. This evaluation network is
called fuzzy predictor, which performs multistep prediction
of the external fuzzy reinforcement signal. The evaluation
network provides the action network with more informative
and beforehand internal reinforcement signals for learning.
Because the reinforcement signal for the fuzzy action network
is a fuzzy number, a FCLO is used as the fuzzy predictor.

Like the supervised learning scheme introduced in
Section III, we need to do network initialization before the
reinforcement learning proceeds. The initialization process
is exactly the same as that for the supervised learning (see
Section III). It should be done on both the action network
and the evaluation network. After the initialization process,
the reinforcement learning algorithms are performed on both
subnetworks. Next, we shall derive the reinforcement learning
algorithms in the following subsections.

B. MI-Reinforcement Learning

As shown in Fig. 7, the CCNO-based evaluation network
performs the acquisition of the external environment’s re-
sponse to the action selected by the semantic action network.
In this section, we shall attack the problem of the semantic-
level error feedback acquired by this evaluation network and
consider the reinforcement signal as a crisp number,
zero, or . Assume that is the crisp signal available
at time step and caused by the input and semantic actions
chosen at time step .

In the MI-reinforcement learning, there may need several
steps for a user to induce the RAFCAN to perform his/her
desired action. At first, the user gives a command (sentence)
to the RAFCAN to execute his/her desired action. Let us
denote this command as (e.g., “Please walk forward
at a very high speed.”). The output of the semantic action
network indicates the RAFCAN’s understanding of the user’s
command. Let us denote the current output as (e.g.,
assume the selected semantic action is “walk backward.”).
The user then responses with a message in accordance with
the appropriateness of the network’s performance to his/her
command (e.g., “My command is‘walk forward,’ instead of
‘walk backward.’ ”). The critic response should be represented
as another more clarifying message. With such critic re-
sponses, the RAFCAN will tune itself using the following
MI-reinforcement learning rule. This process will continue
till the user give positive response (e.g., “Yes!,” “ OK!,” “ It
is right!”) and we denote this response as an affirmative
reinforcement signal.

We use to denote the MI-reinforcement signal at
time step ; if , it represents that the user give

affirmative response; otherwise if the user
gives negative response. The MI-reinforcement learning rule
is given as follows:

(28)

(29)

where is the total activation value of semantic node
in layer four of the semantic action network, is the
activation value of semantic nodefor [i.e., (6)], is the
time step, is a gain parameter which is assumed to be,

denotes theth user input, (where ) is the
reinforcement signal, which is zero or , and denotes
the network’s selected action after theth user input.

The learning process stops when the reinforcement signal
and at that step, the correct action is

executed. At the same time, since the RAFCAN has known the
user’s desired action, it will apply the MI-supervised learning
algorithm developed in Section III-A to record (learn) the new
mapping: ,

. The above whole learning procedure is called theMI-
reinforcement learning algorithm.

It is noted that when the MI-reinforcement learning pro-
ceeds, the word detector and phrase detector nodes in layer one
become adaptive too. That is, if new words are observed and
necessary for the fuzzy command acquisition, the RAFCAN
will regard them as the new received reference words and
will add corresponding new word detector and phrase detector
nodes. We have designed a word filter for the RAFCAN in
performing the MI-reinforcement learning. The function of the
word filter is to dismiss some usual use words such as “we, he,
she, they, is, are.” This kind of words is not so important in the
fuzzy command acquisition task and, if we accept them, they
will result in time-consuming learning and memory-consuming
for implementation.

C. Fuzzy Reinforcement Learning

In this subsection, we shall attack the fuzzy reinforcement
learning problems by considering the reinforcement signal

as a fuzzy number in the form of-level sets. We also
assume that is the fuzzy signal available at time step
and caused by the input and action chosen at time step
or even affected by earlier inputs and actions. Namely, the
reinforcement signal is a fuzzy number such that

(30)

and satisfies the following inequality relation

defuzzifier defuzzifier

defuzzifier (31)

where defuzzifier represents
discrete degree of reward or penalty, where
is the cut of at . For example, we may have

{very slow, slow, fast, very fast} with each fuzzy
term defined by a proper membership function. Exemplary
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Fig. 8. The exemplary fuzzy reinforcement signals used in the RAFCAN.

fuzzy reinforcement signals used in the RAFCAN are shown
in Fig. 8.

In the architecture of the proposed RAFCAN shown in
Fig. 7, three key components take care of the fuzzy reinforce-
ment learning problems: 1) the fuzzy action network maps
a numerical vector (the MI values from the semantic-action
network) into a linguistic information ; 2) the evaluation
network (fuzzy predictor) maps a numerical vector (the MI
values) and an external fuzzy reinforcement signal into a
predicted fuzzy reinforcement signal. This predicted signal is
used to produce internal reinforcement signal for helping the
learning of fuzzy action network; and 3) the fuzzy stochastic
unit uses both and the predicted reinforcement signal from
the fuzzy predictor to produce a fuzzy number, which
is sent out to the environment. We shall next describe the
function of the stochastic unit and the reinforcement leaning
of fuzzy predictor and fuzzy action network, respectively, in
the following.

Fuzzy Stochastic Unit:In the fuzzy reinforcement learning
mode, the output error gradient information of the fuzzy action
network is not told, so it needs to be estimated. To estimate
the gradient information, the output of the fuzzy action
network is not directly sent out to the environment. Instead, the
stochastic unit uses the predicted fuzzy reinforcement signal

from the fuzzy predictor and the fuzzy information
recommended by the fuzzy action network to stochastically
generate an actual fuzzy information sent out to the envi-
ronment. The actual fuzzy information is a random fuzzy
variable with fuzzy mean and variance . The variance
(or width) representing the amount of exploration is some
nonnegative, monotonically decreasing function of . In our
model, is chosen as

(32)

where defuzzifier , is a search-range scaling
constant which can be simply set to one, and is the
predicted fuzzy reinforcement signal used to predict
for the network input at time. The magnitude of is large
when is small. Because we restrict the highest degree of
reward to , the value of is zero when .
The stochastic perturbation in the suggested approach leads to

a better exploration of output space and better generalization
ability.

Once the amount of exploration has been decided, the
next problem is to generate the actual fuzzy output. Since the
output is a fuzzy number , the fuzzy sto-
chastic unit generates a fuzzy output
based on the amount of exploration . The parameter
[ ] is set as a uniform random variable with mean
[ ] and width . After the parameters and
are decided, we must then maintain the convex property of the
fuzzy output. We propose the following procedure to complete
the fuzzy stochastic exploration. In this procedure, the notation

is the number of quantized membership grade.
Procedure. Fuzzy Stochastic Exploration:

Input:
Output:
Step 1. For to , find randomly such that

and then find randomly such that

Step 2. For down to zero, find randomly
such that

and find randomly such that

Step 3. Output and stop.

Fuzzy Reinforcement Learning of Fuzzy Predictor:In a re-
inforcement learning environment, the learning system usually
receives evaluation of its behavior only after a long sequence
of outputs, calleddelayed reinforcement. We shall now discuss
how the problem of learning with delayed reinforcement can
be solved using the fuzzy predictor. In the delayed rein-
forcement learning problem, thetemporal credit assignment
problem becomes severe because we have to assign credit
or blame individually to each output in a sequence for an
eventual success or failure. The solution to the temporal credit
assignment problem is to design a multistep fuzzy predictor
that can predict the reinforcement signal at each time step.
To achieve this purpose, the technique based on the temporal
difference (TD) method is used. The TD method is a class
of incremental learning procedures introduced by Sutton [27].
The main characteristic of the TD method is that they learn
from successive predictions, whereas in the case of supervised
learning, learning occurs only when the difference between the
predicted outcome and the actual outcome is revealed. Hence,
the learning in TD does not have to wait until the actual
outcome is known and can update its parameters within a
trial period. In the proposed reinforcement learning system, we
generalize the TD method to its fuzzy counterpart for training
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the fuzzy predictor in the RAFCAN. We shall discuss three
different cases of reinforcement learning problems below.

Case 1—Prediction of Final Fuzzy Outcome:Assume we
are given the numerical input sequences of the form

where each is an input vector of
real numbers available at time stepfrom the environment and
the fuzzy reinforcement signal is at time step .
For each input sequence, the fuzzy predictor produces a cor-
responding sequence of predictions ,
each of which is a fuzzy number and an estimate of .
Then based on the TD() procedure in [27], the update rule
for the fuzzy weights in the fuzzy
predictor can be derived as

(33)

(34)

in which alterations to the predictions of input vectors occur-
ring steps in the past are weighted according to for

.
Case 2—Prediction of Finite Cumulative Fuzzy Outcomes:

The TD method can be also used to predict a quantity that
accumulates over a sequence. That is, each step of a sequence
may incur a cost and we wish to predict the expected total cost
over the sequence. In this problem, the predictor output
is to predict the remaining cumulative fuzzy cost given theth
observation rather than the overall fuzzy cost for the sequence.
In our system, we consider the cost to be the value of the
reinforcement signal. Let

denote the actual fuzzy cost incurred between time steps
and . We would like to be equal to the expected

value of .
Hence, we have

(35)

The prediction error can be represented in terms of temporal
difference as

(36)

(37)

where . Thus, the update rules are

(38)

(39)

Case 3—Prediction of Infinite Discounted Cumulative Fuzzy
Outcomes: In this case, predict the discounted sum:

, i.e.,
, , where , ,

is the discounted rate parameter. If the prediction is accurate,
we can write

(40)

and

(41)

The mismatch or TD error is the difference between the right-
hand and left-hand sides of these equations

, and, thus, the update
rules are

(42)

(43)

Once the output-error gradient information of the fuzzy
predictor is obtained using the methods discussed in the
above three cases, its learning becomes a supervised learning
problem. Hence, (18)–(27) can be used here directly to train
the fuzzy predictor if we replace the associated gradient terms
in those equations by the gradient terms derived in the above
three cases properly. Notice that the system only receives an
external reinforcement signal after a sequence of
inputs at the time step . Hence, we can assume that the
external reinforcement signal is zero (nonexisting) at the
other time steps; that is, , for .
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TABLE I
THE ACTIONS AND FUZZY TERMS USED IN THE ILLUSTRATED VOICE CONTROL SYSTEM

Fuzzy Reinforcement Learning of Fuzzy Action Network:
We next develop a reinforcement learning algorithm for the
fuzzy action network. The goal of the reinforcement learning
is to adjust the parameters and of the fuzzy
action network such that the fuzzy reinforcement signal
is maximum; that is

(44)

where or and defuzzifier .
We first derive the reinforcement learning algorithm for the

crisp action network with numerical output instead of fuzzy
output. This will help us to derive the reinforcement learning
algorithm for the fuzzy action network. To determine ,
we need to know where is the output of the crisp
action network. Since the fuzzy reinforcement signal does
not provide any hint as to what the right answer should be
in terms of a cost function, the gradient can only
be estimated using the stochastic unit. According to [26],
the gradient information for the crisp action network can be
estimated by

(45)

where

(46)

When the output is linguistic (for fuzzy action network), we
can generalize the above update rule to its fuzzy counterpart
and obtain

(47)

(48)

Again, with the error gradient information available, the fuzzy
supervised learning algorithm developed in Section III-B can
be applied here directly to train the fuzzy action network.

In the proposed system, the fuzzy action network and the
fuzzy predictor are trained together. However, since the fuzzy
action network relies on accurate prediction of the fuzzy
predictor, it seems practical to train the fuzzy predictor first,
at least partially or to let the fuzzy predictor have a higher
learning rate than the fuzzy action network.

V. AN ILLUSTRATIVE EXAMPLE—FUZZY COMMAND

ACQUISITION OF A VOICE CONTROL SYSTEM

In this section, we shall establish a system based on the
proposed RAFCAN that can acquire fuzzy commands given
by users in voice or typed input form. The system can
acquire only one semantic action at a time, so if it acquires
several semantic actions at the same time, it will list them
along with their uncertainty factors, and the user should do
a judgement (maybe a positive answer or negative answer)
from the listed actions. The actions and associated linguistic
information (fuzzy predicates) that this system can acquire are
listed in Table I. After a command is acquired, the system will
show the selected action and linguistic information in the form
of -level sets. We can make use of such output information
to do thefuzzy controltask directly.

The voice control system uses the architecture of the RAF-
CAN in Fig. 7. Initially, we set up the detector nodes in layer
one of the AFCAN according to the given reference words and
put random weights in the FCLO. The initial AFCAN has 41
word detector nodes (layer one), 1640 phrase detector nodes
(layer one), 1681 MI-value nodes (layer two), 10 hidden nodes
(layer three), and 8 semantic nodes (layer four). The 41 refer-
ence words for the word detector nodes are listed in Table II.
We also design a word filter containing 36 words such as “the,”
“is,” “are,” “you,” “mine,” “hers,” etc. We train the system
using the off-line learning scheme developed in Section III
on some input-output training pairssentence, fuzzy action
where the fuzzy action is represented by an action number
(1–8) and a -level set ( ). The whole
off-line training data can be found in [32]. When the system
is set up and in use, the on-line learning scheme developed in
Section IV is performed all the time. We next do some simu-
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TABLE II
THE REFERENCEWORDS FOR THEWORD DETECTOR NODES IN THE ILLUSTRATED VOICE CONTROL SYSTEM

(a)

(b)

(c)

Fig. 9. Screen copy of the voice control system—the first case.

lations to illustrate the power and specialist of the command
acquisition system. We illustrate four cases in the following.

The First Case:This case is shown in Fig. 9, which is a
screen copy of the system interface. According to Fig. 9(a),
the system acquires the command correctly without further
iteration after the user gives the command. Hence, the user
replies “(y)es” as the next input to accept the selected action
of the system. After the system recognizes the user’s desired
action, it then continues to acquire the linguistic information
as shown in Fig. 9(b). The user then makes a critic on the
shown membership function where we use “1” to stand for
positive critic, “ 1” for negative critic, and “0” for good critic

(i.e., agree the system’s output) [Fig. 9(c)]. Each of these three
critic signals corresponds to one proper fuzzy term whose
membership function is similar to that shown in Fig. 8. In
the current case, the linguistic information matches the user’s
desire, so he/she chooses the “0” input.

Some other sentences that can be acquired correctly by the
system are as follows.

“I have no more time. Please move forward in a very high
speed!”
“My mother will come to my graduation. Would you please
move forward at a very high velocity?”
“This vase is easily broken. You have to hold it very tightly.”
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(a)

(b)

Fig. 10. Screen copy of the voice control system—the second case.

“The ground is sliding. You should whirl in a very low
speed.”

The Second Case:This case, as shown in Fig. 10(a), il-
lustrates that the system cannot catch the user’s intention
exactly, so it shows all the promising actions that it acquires.
After the user gives another command containing clarifying
information, the system reduces its initial uncertainty and
appropriately recognize the command. This case shows the
power of the system’s on-line learning ability using the MI-
reinforcement learning algorithm. As shown in Fig. 10(b),
the system can acquire the user’s meaning correctly after it
receives the second command via on-line learning. Another
example belonging to this case is shown in the following:

Machine : May I help you? Please enter
your command!

User : Seize the pinwheel very tightly
opposing wind and let it whirl
very fast.

Machine : Do you want [action 2] or
[action 3]?

User : I mean to hold the pinwheel very
tightly when opposing the wind!

Machine : Do you want [action 2]?
User : You can answer (y/n) y

Machine : Your command is [action 2].

The Third Case:In this case (see Fig. 11), we aim at the
on-line learning of the acquired linguistic information. After
the action is acquired correctly, the system will show the
membership function of the acquired linguistic information.
The user then has three kinds of critic signals for use to express
his/her judgement on the acquired linguistic information:pos-
itive (1), negative( 1) andgood (0). In the current case, the
user feel the linguistic information in Fig. 11(b) is “too slow,”

so he/she gives a negative critic (1) [see Fig. 11(c)]. At this
time, the system will perform on-line learning according to
the user’s critic [Fig. 11(d)]. If the user changes the mind
and has different thinking on the linguistic information, he/she
can again continue to give critics to the system. It is noted
that the user can give the critics any time during the fuzzy
reinforcement learning since we perform multistep prediction
in the fuzzy predictor of the RAFCAN.

The Fourth Case:In the above cases, all the input com-
mands can be acquired to some extend, since the input words
and phrases have existed in the initial detector nodes. In
the fourth case, we shall illustrate that the system can learn
new words (phrases) and their semantic associations from
interactive command inputs. From Fig. 12(a), we observe that
the command, “Go ahead very fast,” is not understood by the
system because the words “go” and “ahead” are not included
in the reference words originally (see Table II). Hence, the
system replies with, “The system cannot recognize,” and ask
for the user to enter the command in other expression. When
the user gives the second command, “I mean to go forward
very fast,” the system understands this command, and response
with, “Do you want [action 5].” Since action 5 is the user’s
desired action, the user presses the “y” key. When the above
process is finished, the system will add new detector nodes.
Before doing this, the new words should pass the word filter
to dismiss some usual use words (e.g.,he, she, and). After
adds new detector nodes, the system learns the weights (MI
weights and fuzzy weights) of the new network. When the
relearning process is finished, we give the original command to
test the effect of the processes of new word adding and weight
relearning. Fig. 12(b) shows that the system after learning
can acquire correctly the command, “Go ahead very fast.”
Fig. 12(c) shows the acquired linguistic information of this
command.
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(a)

(b)

(c)

(d)

Fig. 11. Screen copy of the voice control system—the third case.

VI. I SSUES ONCOMPUTATIONAL

EFFICIENCY AND CONVERGENCEPROPERTY

For the MI-supervised learning algorithm proposed in
Section III-A, we observe from (13) that the weights and
biases are totally determined by the count measurements

, and . Because counts can be
accumulated sequentially, the estimates of the weights can
be adaptively and sequentially updated with each new input.
Since the definition of training procedure is sequential, the
network only requires a single pass through the data and,
thus, it provides fast learning. This is in contrast to those of
stochastic gradient algorithms that may need many interactions
through the data to converge only to some local minimum
of the error function. As for the convergence of the MI-
supervised learning algorithm, it is guaranteed to decrease
the single step-error function for nonzero input vectors and
converges asymptomatically [10]. Furthermore, it has been
shown that if the words are unambiguous such that all layer-
one outputs of the CCNO are zero or one and if the language

generating the commands is first-order Markovian, then the
CCNO is equivalent to amaximum a posterioridecision rule
[10]. Although the hypotheses are rarely true in real cases, this
property provides insight into the network’s characteristics.

During the MI-reinforcement learning discussed in
Section IV-B, the connection weights of the CCNO are
held constant during the dialogue, and adapted using the
MI-supervised learning algorithm after the dialogue converges
and before commencing the next dialogue. Hence, as its
supervised version, the MI-reinforcement learning algorithm
is fast and needs only a single pass through each new input.
From (28), if we have ,
meaning that action is not the desired action and, thus, the
RAFCAN will never let action be selected again in the
current dialogue [see (29)]. The MI-reinforcement learning
(i.e., dialogue) converges when . The dialogue
can be terminated and the user connected to a supervisor if it
continues too long without convergence. If the dialogue fails
to converge, then the negative examples could be exploited
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(a)

(b)

(c)

Fig. 12. Screen copy of the voice control system—the fourth case.

for adaptation. In fact, it can be shown that the probability,
, that a dialogue converges in steps (sentences) is

where is the probability of error on
each user’s input command.

The proposed FBP algorithm in Section III-B is a gradient
descent procedure in which the (fuzzy) weights are modified
along the negative direction of the gradient ofin (15) with
respective to the weights. Hence, it can be expected that the
weights will eventually converge to the values that minimize
to within some small fluctuations if there is adequate learning,
adequate number of hiddens nodes, and a deterministic rather
than a stochastic relation between input and desired output.
The FBP algorithm is bounded by all of the problems of any
hill climbing procedure such as the problems of local minima
and slow convergence. The average iteration number for the
FCNO to learn a desired fuzzy output in our simulations is
6000. However, the use of resolution principle to express
a fuzzy set in terms of its -level sets has sped up the
convergence of the FBP algorithm already. Also, empirical
studies have shown that the poor local minima are rarely
encountered if the FCNO contains a few more hidden nodes
than required for a learning task. Even though, since the FBP
algorithm is a generalization of the BP algorithm, several
existent techniques for improving the local minima and slow
convergence problems [13], [16] could be adopted.

The fuzzy reinforcement learning algorithms presented in
Section IV-C are derived based on the FBP algorithm by
incorporating the TD method on the fuzzy predictor, and the

stochastic exploration technique on the fuzzy action network.
Hence, their convergence property basically inherits that of the
FBP algorithm mentioned in the above. On the side of fuzzy
predictor, the TD() method has been shown to converge in
expected value to the idea predictions for general
based on the concept of dynamic programming [33]. In the two
extreme cases, TD(0) converges in the mean for observations
of an absorbing Markov chain and TD(1) reduces to the normal
least-mean square (LMS) estimator as shown in [27]. The
TD( ) method is an efficient prediction procedure since the
learning in TD does not have to wait until the actual outcome
is known and can update the connection weights within a trial
period. On the side of fuzzy action network, being instructed
by the fuzzy predictor through an internal reinforcement signal,
the fuzzy stochastic unit can perform an efficient exploration
on the output space to seek for better outputs. This shortens the
learning time of the fuzzy action network a lot as compared
to normal reinforcement learning schemes [26].

The convergence property of the fuzzy reinforcement learn-
ing algorithm for the fuzzy action network is discussed as
follows. According to (45), before the external reinforcement
signal occurs [i.e., ], the reinforcement sent to the
crisp action network is the difference between the predicted
reinforcement signal at the current time step (discounted by

) and the predicted reinforcement signal at the previous
time step [i.e., ]. That is, (45) becomes

where is the
predicted reinforcement signal for the output of the crisp
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action network, and is the predicted reinforcement
signal for output . Because external reinforcement
signals and input patterns depend on the past history,
will influence the predicted reinforcement signal for
output ; that is, the output at time step will
influence the output at time step . Thus,
can be viewed as the predicted reinforcement signal for the
actual output at time step . From the above description,
we know that the value of is always positive. Namely, if

, increases in reinforcement prediction therefore become
rewarding events (i.e., ) and decreases become penalizing
events (i.e., ). When the external reinforcement signal
occurs, the situation is slightly different. When the external
reinforcement signal comes at time step , we let the
corresponding predicted reinforcement signal be zero.
In this situation, (45) becomes

. The external reinforcement signal is the actual
critic score for and is the predicted reinforcement signal
of . Thus, the value of will be positive. From
the above observation, we understand that (47) and (48) are
appropriate for the fuzzy action network to estimate its output-
error gradient correctly. Since the error gradient information
can be estimated correctly in this way, the reinforcement
learning of the fuzzy action network can converge like the
FBP algorithm analyzed in the above.

VII. CONCLUSION

In this paper, the fuzzy command acquisition network, AF-
CAN, which consists of command acquisition and fuzzy infor-
mation acquisition, is proposed. Unlike the general language
acquisition systems, the proposed system has the following
characteristics: 1) the system is built as a neural network
trained by users’ given data, so the system equips the ability
to tune its parameters and structure to match the application
environment; 2) the system has the ability to acquire fuzzy
command, which is a nature language comprising the desired
actions and fuzzy linguistic information; 3) the input sentences
(commands) of this system are unrestricted, but the kinds
of output semantic actions are quite restricted. Hence, the
proposed AFCAN is suitable for constrained-action tasks.
That is, one can ask the machine to perform one of a
small number of actions, but is allowed total freedom in
making such requests; 4) the proposed system needs not
any acoustic, prosodic, syntactic, and grammatical structure.
It is the network (connectionist) structure that enables it to
decode the intended information from a natural language
message and this structure makes the system be able to
perform more human-like command acquisition and learning;
and 5) the system can acquire fuzzy command during the
course of performing task. That is, it has the capacity of
on-line learning for seeking a more suitable network at any
time by accepting the critics from the users. There are many
promising applications for the proposed command acquisition
system such as automated call routing in a telecommunications
network, on-line information retrieval system, human voice-
control robot, voice-control automatic car, etc. The proposed
AFCAN can make the man-machine interface in the above

applications more considerate and friendly. One deficiency
of the proposed AFCAN is that the number of nodes in
layers one and two increases exponentially as the number
of words increases. This restricts the generalization of the
proposed fuzzycommandacquisition network to a general
fuzzy languageacquisition network directly. This problem
is also due to the semantic complexity and context-sensitive
structure of human languages. One promising approach to
solving this problem partially is to use the distributed rep-
resentation concept of neural networks in layers one and two
of the proposed AFCAN. This will be our future research.
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