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Adaptive Fuzzy Command Acquisition
with Reinforcement Learning

Chin-Teng Lin and Ming-Chih Kan

Abstract—This paper proposes a four-layered adaptive fuzzy
command acquisition network (AFCAN) for adaptively acquiring
fuzzy command via interactions with the user or environment. It
can catch the intended information from a sentence (command)
given in natural language with fuzzy predicates. The intended
information includes a meaningful semantic action and the fuzzy
linguistic information of that action (for example, the phrase
“move forward” represents the meaningful semantic action and
the phrase “very high speed” represents the linguistic information
in the fuzzy command “move forward at a very high speed”).
The proposed AFCAN has three important features. First, we
can make no restrictions whatever on the fuzzy command input,
which is used to specify the desired information, and the network
requires no acoustic, prosodic, grammar, and syntactic struc-
ture. Second, the linguistic information of an action is learned
adaptively and it is represented by fuzzy numbers based on-
level sets. Third, the network can learn during the course of
performing the task. The AFCAN can perform off-line as well as
on-line learning. For the off-line learning, the mutual-information
(MI) supervised learning scheme and the fuzzy backpropagation
(FBP) learning scheme are employed when the training data are
available in advance. The former learning scheme is used to
learn meaningful semantic actions and the latter learn linguistic
information. The AFCAN can also perform on-line learning
interactively when it is in use for fuzzy command acquisition.
For the on-line learning, the MlI-reinforcement learning scheme
and the fuzzy reinforcement learning scheme are developed for
the on-line learning of meaningful actions and linguistic infor-
mation, respectively. An experimental system (fuzzy commands
acquisition of a voice control system) is constructed to illustrate
the performance and applicability of the proposed AFCAN.

Index Terms—Fuzzy backpropagation, fuzzy number, fuzzy re-
inforcement, linguistic information, mutual information, semantic
action, voice control.

I. INTRODUCTION

M

(ASR) concentrate their efforts on process of co

OST researchers in automatic speech recogniti

acquisition will result in systems whose performance usually
falls far short of human capacity and is hard to reach the
ultimate goal—unrestricted free communication between man
and machine in a changing and uncertain world [1]. Hence,
developing a language acquisition system that involves gaining
the capability of decoding the intended information in a
message spoken in natural language is the concern of this
work. As a start to the fuzzy language acquisition system, in
this paper, we shall use the fuzzy neural network to deal with
the fuzzy command acquisition problems due to the capability
of the fuzzy neural network in processing and learning both
numerical and linguistic information. The proposed network
will equip the ability to acquire fuzzy commands, which is
a nature language consisting of desired actions and fuzzy
linguistic information (fuzzy predicates). Moreover, it can
perform on-line learning to acquire fuzzy commands during
the course of performing tasks.

Much research on language acquisition has focused on dis-
covering syntax structure, often to the exclusion of meaning.
The goal is to develop a theory that can predict the set of
grammatical sentences in a language from a finite number
of observations [2]-[5]. The final purpose of these systems
is to obtain an applicable syntactic structure. There are a
few researchers who focus their attentions on obtaining the
mapping from message to meaning. In [6] and [7], the systems
learn the mapping from sentences to symbolic representations;
that is, the approach is to represent the meaning symbolically,
attempting to make the representation isomorphic to some
subset of reality. Recently, neural networks were also utilized
on language acquisition. In 1991, Jain utilized a modular
recurrent connectionist network to learn to parse sentences.
In 1989 and 1991, Miikkulainen and Dyer [8] used a modular
Petwork to learn to paraphrase script-based stories. In 1990,

. _ X . _ "St. John and McClelland [9] also used modular connectionist
verting speech to ordinary text with the intention of late

combining their results with others who are working o
language acquisition. That is, they assume that transcr

hetworks to learn the mapping from input sentences to an
%L!tput event description, comprising a set of thematic roles
$hd their filters. In the above systems, the networks are trained

tion and acquisition are distinct processes connected at a

simple orthographical interface and always focus on high
r

faithful models of acoustic, prosodic, and syntactic structu

especially to the exclusion of meaning. It is found tha
the techniques that attempt to separate transcription a

?upervisedly using the backpropagation (BP) algorithm. Dur-
|Xg the procedure of network training, the input sentence and
%e desired output are provided for the network.

ndn the above work, the semantic and pragmatic domain is
quite rich and, as such, comprising an important portion of
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,nconstrained input—a severely restricted vocabulary or a rigid
%/ntax. In contrast, a different approach was proposed by Gorin

et al. [10], [11] where the system’s understanding of an input
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Fig. 1. The use of the proposed AFCAN in a voice control system.

message was evaluated on the basis of whether the systemiae desired fuzzy linguistic output presented in the form of
sponded in an expected and appropriate way over a wide rangkevel sets [12].
of scripts. An information-theoretic-connectionist network was The AFCAN learning includes two parts—off-line learning
proposed that learned the mapping from the input messagetwl on-line learning. In off-line learning, the training phase
a meaningful system response. The network learned througtiinished before doing the performance phase, but in on-line
interactive feedback received from the environment or user lagrning, the training proceeds during the course of performing
to the appropriateness of the system’s response to an infagk. For these two kinds of learning, four learning algorithms
message. The Gorin’s system accepts input sentences witharet developed and employed: 1) mutual information (Ml)
any restricted vocabulary, so it makes no restrictions on thapervised learning; 2) fuzzy backpropagation (FBP) learning;
language used to specify the desired action to the syste3h. Ml-reinforcement learning; and 4) fuzzy reinforcement
However, the action has a very restricted semantic domalearning. Learning algorithms 1) and 3) are used in the CCNO
that is, it can perform a few actions. to adjust its crisp MI weights and algorithms 2) and 4) are used
In the above approaches, none of them can processirothe FCLO to adjust its fuzzy weights. Learning algorithms
learn fuzzy linguistic information in natural language. Sincg) and 2) are used for off-line learning to build an initial
such processing and learning ability is the length of theetwork for real performance. These two learning algorithms
fuzzy neural network, we establish a fuzzy neural netwoike also used in the supervised mode of on-line learning and
called adaptive fuzzy command acquisition network (ARalgorithms 3) and 4) are used in the reinforcement mode of
CAN) for acquiring fuzzy commands in this paper. Then-line learning. The on-line learning is to rebuild or tune
proposed network can adaptively acquire fuzzy commands wan off-line trained AFCAN according to the critics from the
interactions with the user or environment. It can catch theser/environment.
intended information from a sentence (command) spoken orThe proposed AFCAN can be applied in a voice control
written in natural language with fuzzy predicates. The intendsgistem, as shown in Fig. 1. The system combines a speech
information includes a meaningful semantic action and thecognizer with the proposed AFCAN. The user can speak
linguistic information of that action. Furthermore, since tha fuzzy command to the microphone freely. The speech
AFCAN is developed based on Gorin’s approach, it keeps thecognizer will recognize the user’'s speech signals and then
property that we can make no restrictions whatever on thlee AFCAN will acquire the input command. In this system,
fuzzy command input, which is used to specify the desird@tle objective of acquisition is to produce the correct semantic
information; also, the network requires no acoustic, prosodagtion and proper linguistic information about that action.
grammar, and syntactic structure. For example, if the user gives a fuzzy command, “Please
The AFCAN consists of four layers and can be regardedalk at a very high speed,” then the system will produce
as a cascaded network comprising two subnetworks—tthe results with the user’'s desired semantic action “walk”
crisp connectionist architecture with numerical output (CCN@nd its linguistic information in the form ofv-level sets
net and the fuzzy connectionist architecture with linguistias shown in Fig. 1. Moreover, the system can do the on-
output (FCLO) net. The former is a two-layered networkne learning while functioning; that is, the user or teacher
with crisp mutual information weights and the latter is gsupervisor) can observe the system’s performance and give
three-layered network with fuzzy weights. The input to theritic reinforcement feedback to the system. There are two
AFCAN is unrestricted text in fuzzy language and the outpkinds of reinforcement signals, one for semantic action (e.g.,
of the AFCAN is the user's desired semantic action ar@No, | want to walk instead of run!”) and the other for
the associated fuzzy linguistic information. More clearly, thiénguistic information (e.g., “The speed is too fast.”). The
CCNO processes the user’'s input command to acquire thestem can utilize the reinforcement feedback to tune itself
desired semantic action and the FCLO maps a crisp ingotbecome a more suitable system for users.
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Fig. 2. Network structure of the AFCAN.

This paper is organized as follows. In Section Il, we deand output is a fuzzy action comprising the action and its
scribe the structure of the proposed AFCAN and discuBrguistic information. Layer one consists of two kinds of
the learning issues of the network. Section Il presents tmedes for different functions: the word detector nodes and the
supervised learning schemes of the proposed network. ghrase detector nodes whose inputs are from the outputs of
Section IV, the mutual information reinforcement learninghe word detector nodes directly. The word and phrase detector
scheme and fuzzy reinforcement learning scheme are deveddes are, respectively, used to detect the input isolated words
oped. In Section V, an application of the AFCANuzzy com- and the input phrases (word pairs). The layer-one nodes are
mands acquisition of a prototype voice control systeisiil- fully connected to layer-four nodes. Each node in layer two
lustrated. The computational efficiency and convergence pramresponds to one node in layer one. The input value of
erty of the proposed learning algorithms are discussed anlayer-two node is produced by the output value of the
Section VI. Finally, conclusions are made in Section VIl. corresponding layer-one node multiplied by the weight value

between this layer-one node and the fired layer-four node. The

IIl. ADAPTIVE FUZZY COMMAND ACQUISITION NETWORK  inks from layer two to layer three are fully connected and so

In this section, we shall propose a network for our acquare the links from layer three to layer four.
sition system whose input is the unrestricted text of fuzzy From another point of view, we can consider the AFCAN
commands and output is one of a finite set of semantic fuzag the combination of “a multilayer neural network that maps
actions. This network is called AFCAN. The basic structura sentence to a semantic action” and “a multilayer fuzzy
of the proposed network will be described first and then threural network that maps a numerical input vector to a fuzzy

learning of this network will be discussed briefly. number.” The former network is called CCNO and the latter
) is called FCLO. The CCNO is constituted of the layer one
A. Basic Structure of the AFCAN and layer four of the AFCAN, as shown in Fig. 3, and the

Fig. 2 shows the proposed network structure of the AFCANFCLO is constituted of the layer two, layer three and layer
which has a total of four layers. The input is a sentendeur of the AFCAN, as shown in Fig. 4. The CCNO proceeds
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Fig. 4. Network structure of the FCLO.

before the FCLO; that is, for a given input sentence, the In the AFCAN, we define the semantic actions 1 < k <
CCNO decides first the semantic action and then the FCLK, and the vocabulary words,, where the phrases,,v,
decide the corresponding fuzzy linguistic information. Noticare also produced naturally, < m, n < M. The network
that although the input values of the FCLO are dependentmfps an input sentence = (v, Vi, -« Var,) (L is the
the weights from layer-one nodes to fired layer-four nodes, theamber of words in sentencg) to a semantic action,, (S).
AFCAN is a feedforward (instead of recurrent) network sincin layer one, the word detector nodes detect the presence
its two constituent networks (CCNO and FCNO) functiolof a vocabulary word in the input sentence and the phrase
independently and sequentially. detector nodes, where we consider only phrases comprising
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two adjacent words, detect the presence of the adjacent wordtayer 2—MI-Value Layer:The input of each node in this
pair in the sentence. Layer two of the AFCAN is employethyer is a numerical number coming from the output of
to be the mutual-information (MI) value input layer. The Mithe nodey},(+},.) in layer one multiplied by the weight
values are calculated according to the weights between tbi{*ko, assuming that the semantic actiep,(S) in layer
nodes in layer one and thigith node in layer four after the four is recognized That is, the input to a layer-two node is
semantic node;, is decided (fired). The Ml values are used;},(y%,,,) ><wmk Each node in this layer only transmits input
as the inputs for training the FCLO to produce the desiraduimerical number to the next layer directly. Hence, we have
fuzzy number in thépth semantic node in layer four. In this ) L L4
network, the “hidden (internal) layer,” layer three, is added to Yi = Y (OF Yy ) X Wi, (3)
increase the learning efficiency of the FCLO.

We shall next describe the signal propagation in the pr
posed network, layer by layer, following the arrow direction@"
shown in Fig. 2. This is done by defining the transfer function

of a node in each layer. Signal may flow in the reverse dire etwork that ical inout val o f tout
tion in the learning process as we shall discuss in the followi work that can map numerical Input vaiues o 1uzzy outpu
mbers. The input values fed into each node in this layer are

sections. A typical neural network consists of nodes, each . X .
weighted output values of layer two, which are numerical

which has some finite fan-in of connections represented b In order t q ¢ outs. th hould exist
weight values from other nodes and fan-out of connections fgMPers- In order 1o produce fuzzy outputs, theré should exis

other nodes. In the following, the notations(Y") represent fuzzy .weig.hts bet\/\{een layer two and layer three, SO each
the output crisp (fuzzy) number of a node. node in this layer is .fuIIy connected 'to the nodes in layer
Layer 1—Detector LayerThe nodes in this layer are di- o through fuzzy weights. More precisely, we have

vided into two groups: word detector nodes and phrase detector Output: Y? = f(Net}) =12 . N @)
nodes. The inputs to the phrase detector noge,, are the J 7 v T ST

Whel’el<L<M—i—2XCé\4,1<m n<M, 1<k <K,
nd K is the number of nodes in layer four.

Layer 3—Hidden Layer:As described previously, layers
, three, and four of the AFCAN constitute the FCLO

M
outputs of the word detector nodes andy,. For this reason, @ MA2ZxC; 93 o 5
the input sentences have to pass the word detector nodes first Net; = Z Wiityi (+)6; ()
and then pass through the phrase-detector nodes. =1

« Word detector nodes: the function of each word detect@merey3 is computed by using the extension principle [13],
node is to detect the presence ofavocabulary wordn - “(4)” represents the addition of fuzzy numbers [13], [14],
the input sentenc® and produce an outpyt, between flx) = 1/(1 + exp™®) is the sigmoid functionV;, is the
zero and one. In this paper, words are counted only onggimber of hidden nodes, and the net-inputs?Nend the
no matter how often they appear. The word detector nocie@sesef are fuzzy numbers. Here, the fuzzy we|gms23
execute some function that can detect the presence i biase? will be updated in the learning process of the
word in the sentence. The simplest function is a matching=CAN.
function that produces the output 1 if a particular word | ayer 4—Semantic LayerThe input values fed into each
is observed; otherwise produces the output 0. A mOfRyde in this layer have two sources; one is from layer one
soph|st|cated function is one that produces an outpgihd the other from layer three. The outputs of layer one
vy, equal to the probability that the wond,, is in the are combined by each of the semantic nodes in this layer

sentence. to produce output activations, for a semantic actiom; as
« Phrase detector nodes: the function of each phrase @§itows:

tector node is to detect the presence of a vocabulary
phrasev,,v, in the sentences and produce an output .
Y DEIWEeN zero and one. The simplest case is for noise- Z Uk + Z Z ym"w("m)’“ +or (6)

free input in which the output is one if phrasg,v, is

observed; otherwise, the output is zero. wherewy, are the biases and!* andw(? | L are information-

Note that the number of phrase detector nodes is@)/, theoretic connection Weights which are crisp numbers and

depending on the number of word detector nod&g (vhere, will be defined in the next section. The semantic node with
in addition to the phrase type,.v,, the inverse type, v, the largest activation value, is considered to be “fired”
is also considered so that is why the numisgY should be and recognized as the acquired semantic action for the input

m=1 m=1 n=1

multiplied by two. sentences, i.e., ¢, (S) = arg maxy, a.
As a summary, the input—output relation of each node in The outputs of layer three are fed into each node in this
this layer is layer too and each layer-four node is fully connected to the

nodes in layer three through fuzzy weights. The fuzzy output
of each layer-four node is described by

Input (S) =an unrestricted sentence (1)
1, if the word ,,,) or phrase Fuzzy Outputy;’ = 1\( %) k=12, K (7)
Outputy? (yt,) = (Ymy) is observed (2) -
0, otherwise. z_: Y (8)
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the detector layer (layer one) and the semantic action layer
On-line input (layer four) in the CCNO of the AFCAN (see Fig. 3). The
training data(input, outpu} for the MI-supervised learning
/ is a set of ordered pairésentence, actignconsisting of a
Trained weights sentence and an associated semantic action. The MI-supervised
from . . . . ..
off-line leaming learning algorithm will utilize the training data to calculate the
" association of each node in layer one and the semantic node in
y layer four. This association is recorded by numerical weights
Main Network denoted asv}% (described in Section II-A).
AFCAN When the MI-supervised learning is completed, the FBP
/\ learning, which can be viewed as an extension of the back-
_____ . W propagation learning algorithm to the case of fuzzy data, is
i, Fuzzy Semantic | applied to the FCLO of the AFCAN (see Fig. 4). The training
1| information action D

77777777777777 L input data for the FCLO is the MI values computed from the
trained CCNO weights as mentioned in Section II-A and the
corresponding target output for the FCLO is a fuzzy number
represented in the form af-level sets. The FBP can learn
the desired fuzzy input—output mapping, which is represented
by fuzzy Weightst?i3 between layer two and layer three as

TFurzyre- || Ml ! well as W2 between layer one and layer four. Hence, with
|l inforcement| | inforcement’ the FBP algorithm we can learn the desired mapping between
| learning learning |i input fuzzy sentence and linguistic information of the semantic
R T action.
Y As for on-line learning of the AFCAN, we propose two
reinfog;:emen[ mode reinforcement learning schemeil-reinforcement learning
supervised and fuzzy-reinforcement learnind’he on-line learning of the

AFCAN includes the Ml on-line learning phase and the fuzzy
Fig. 5. Block diagram of the on-line learning scheme of the AFCAN.  on-line learning phase. The MI supervised and reinforcement

learning algorithms are for the Ml on-line learning. The FBP

4 . . o
YvheEeYk is computed by using the extension principle [13]and fuzzy reinforcement learning algorithms are for the fuzzy
(+)" represents the addition of fuzzy numbers [13], [14]on ing |earning. Like the off-line learning process, the MI on-

J(@) = 1/(1 +exp™®) is the sigmoid function K is the e |earing has to be performed first and, after we learn
n_umber40f nodes in layer four, and the net-mput_sﬁl\lmhf the desired semantic action, the fuzzy on-line learning is
biases; are fuzzy numbers. Here, the fuzzy weigMS’} performed. The flowchart of the on-line learning is shown in
and biased;; will also be updated in the learning process ofjg 5 Based on the trained weights from the off-line learning,
the AFCAN- _ the AFCAN is in use for fuzzy command acquisition. For an
Notice that the natural language contains several typesi%ut sentence, the AFCAN will produce semantic action
fuzziness. The types of fuzziness that can be treated W(m, the CCNO in Fig. 3) anfuzzy informatior(by the FCLO
the AFCAN arefuzzy predicateandfuzzy predicate modifiers i, "rig. 4). Then the user/environment can provide a teaching
[15]. Words such as “high,” “slowly,” “lightly,” “soon,” and gjgna| to the AFCAN to indicate the appropriateness of the
“much faster,” are fuzzy predicates. As for the fuzzy predicalgqyired semantic action and fuzzy information. When the
modifiers, in addition to the negation modifier there is a varielyrc AN receives the teaching signal, it will perform on-line
of fuzzy predicate modifiers which act edgese.g., "very,” |eaming to improve itself. The MI on-line learning includes

‘rather,” “more or less,” “slightly,” “a little,” “extremely.” reinforcement mode and supervised mode according to the
Hence, the AFCAN can acquire a fuzzy command like, “L&{nes of teaching signals, and so does the fuzzy on-line
it turn extremely fast.” learning. The main difference between reinforcement mode

and supervised mode is that the former’s teaching signal only
B. Learning of the AFCAN provides critic feedback (callettitic or reinforcement signal

In the AFCAN, we perform off-line learning to build anbut the latter's indicates the desired output. In supervised
initial network and then use on-line learning to rebuild omode, we use the Ml-supervised learning algorithm or the FBP
tune a trained AFCAN according to the critics from théearning algorithm. In reinforcement mode, we use the M-
user/environment when the AFCAN is in use. The mutu&ginforcement learning algorithm or the fuzzy reinforcement
information (MI) supervised learning and fuzzy backpropdearning algorithm. The details of these learning algorithms
gation (FBP) learning are employed for the off-line learningill be presented in the next two sections.
of the AFCAN. For off-line learning, we need to prepare a
set of training data for supervised learning. At first we used
the MI-supervised learning (a well-known statistical method of In this section, we shall derive a supervised learning scheme
measuring association) to obtain connection weights betwden the proposed AFCAN. This scheme is suitable to the

I1l. SUPERVISED LEARNING OF THE AFCAN
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situations where pairs of input—output training data are availeightsw!* between detector layer (layer one) and semantic
able. For each training datum, the input is an unrestrictéayer (layer four). The MI-supervised learning rule is specified
sentence and the outputs are a numerical number and a fuagyfollows:

number. Look at a simple example: if we consider a sentence Plcilvm)

S = (Go in a very high speédas input, then the desired wit =y, c) = log # (10)
outputs consist of the semantic actiagyo,” which is indicated " (cx)

by a special numerical numbes, (the kth action) and the Wimn)k =1(VmVn, cx) = L(Vm, cx) = L(vn, cx)
linguistic information Yery high speed which is represented ~ log P(ex|vmn) log P(cp|vm)

by a specific fuzzy numbeY;, in the form of a-level sets T8 T Py % T P

wherek =1, 2, -.-, K and K is the total number of semantic P(ci|vn)

actions. Hence, each training pair is in the fofsentence; — log “Plen) (11)
numerical number, fuzzy numbeBefore the learning of the wi = log Plcx) = log P(ck). (12)

AFCAN is started, an initial network is first constructed. The
initial structure of the AFCAN is constructed according to th?he notationy,,,, a word-pair, comprises the adjacent co-

number of words and number of semantic actions in the WaY..,,rrence of words in the sentences. The connection weights
described in Section Il (see Fig. 2). The number of hiddgp,y, the phrase detector nodes in layer one to the semantic

n0(2:13es ingiayer three is guessed properly. The fuzzy weighis.er (jayer four) [given in (11)] is the excess MI of the word
Wi (W) between layer two and layer three (between Iay%rair over the individual words.

three and layer four) are initialized randomly as fuzzy numbers siyen a semantically labeled sentence, i.e., an input—output

and so are the biasé} (6,) of layer three (layer four). The i (sentence, actign weight adaptation proceeds in two
other weights are randomly initialized as numerical numbergteps_ First, each segmented token from the sentence is as-
After the initialization process, the network is ready foLigned to the best-matching input node. Second, the connection
learning. We shall next propose a two-phase supervised 1eafights are updated in accordance with the mutual information
ing scheme for the AFCAN. In phase one, a mutual infOkpeory | particular, the mutual information between each
mation (MI) learning algorithm is used to define and adjugiord (or word pair) and action is computed from smoothed rel-

the numerical weights and biases of the CCNO. In phagge frequency estimates such that no gradient computations
two, a fuzzy backpropagation (FBP) learning algorithm ig,q required.

used to adjust the fuzzy weights and biases of the FCLO.tho i weights are defined in terms of single and joint

The flowchart of this two-phase supervised learing scherggypapilities that are in turn estimated using the computation
is illustrated in Fig. 6. of relative frequencies. These are expressed as follows:

A. MI-Supervised Learning Pleglim) = N(vm, cx)
" N(vm)

Mutual information (MI) is a famous statistical method of
N(Vrnl/nv ck)

measuring association [16]. Methods based on Ml for language P(ck|,,m,,n) =
understanding have been proposed [10], [11], [17], [18]. Given N(vmvn)
a system inputd and observed system outph, the mutual Plew) = N(cx) (13)

information (MI) betweenA and B, denoted byI(A, B) is
defined by [19]

Nr

where N(v,,) denotes the number of observations of the word
P(A|B) 9 vm in all classes N (¢, ) denotes the number of observations
P(4) () of sentences in class;,, N(v,v,) denotes the number of

observations of the word pait,,,, in all classesN (v, ¢)
where conditional probability?( A|B) represents the amountdenotes the number of observations of the weyd in all
of uncertainty remaining about the system inpltafter the sentences of class,, N(vmvy, ¢r) denotes the number of
system outpub3 has been observed, and probabilityA) rep- observations of the word pair,,», in the classcy, and
resents our uncertainty about the system input before observikig = Ei‘zl N(ey,) denotes the total number of all sentences
the system output. Thé(A, B) represents the uncertaintyobserved in all of the){ classes. It is noted that the above
about the system input that is resolved by observing tlestimate can converge asymptomatically, but if the number of
system output. We shall use Ml to define and adjust the crispservations is small, the estimate will produce quantization
connection weights and biases of the CCNO in Fig. 3. noise. To overcome this problem, smoothing the presence of a

Rather than viewing the information weights and biases small number of observations by interpolating the measured

(6) as abstract parameters, we give them explicit meanirgative frequencies with a prior belief is adopted in this
by the following definitions proposed by Goret al. [10], paper. Moreover, for the purpose of accelerating the unlearning
[11]. As shown in the MlI-supervised learning part of thef false connections, we appropriately set a center clipping
flowchart in Fig. 6, the training database is preprocessed thyeshold so that a single counterexample drives the probability
word detectors and phrase detectors (in layer one of tbstimate back to the prior and the connection weight to zero.
AFCAN) and then the MI theory is applied to do the MI-The details of the smoothing and center clipping scheme can
supervised learning task. Finally, we can get the associatiba found in Gorinet al. [10], [11].

I(A, B) =log
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MI Supervised Learning
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for FCLO
wl4 yl = (qwl4 Adjust weights of

hidden layer
W2 W2 +ndiy?

o=

B. Fuzzy Backpropagation Learning The training input data of the FCLO are the mutual information

The proposed fuzzy backpropagation (FBP) learning ruy@lues calculated from_the multiplicz_;\tion qf the outputs of
serves as the supervised learning algorithm of the FcLleyer one and the as;somated con_nectlon weights between layer
subnetwork in the AFCAN (see Fig. 4). The FBP learningn® and layer four (|.§., the net inputs to Iaygr-four .nod('as.of
rule is derived by generalizing the traditional (crisp) backprop® AFCAN). The desired output of the FCLO is the linguistic
agation rule to its fuzzy counterpart [20]-[24]. The flowchaifformation associated with the selected semantic action by
of this learning algorithm is shown in the fuzzy supervisef® CCNO. The linguistic information is represented doy
learning part of Fig. 6. For the FBP learing, the weights f§Ve! Seéts. We denote the-level sets of the current fuzzy
be updated include those between layers two and three (sQUPUtY” and the desired fuzzy outpu? as
as the weightdV?, ..., W23, ..., WZ% shown in Fig. 4)
and those between layers three and four (such as the weights ¥ = | J afyt™, yi”], D= ofd{”, d’]  (14)

Wik, -, Wt -+, WL, . shown in Fig. 4) of the AFCAN. o -

Fig. 6. Block diagram of the supervised learning scheme of the AFCAN.
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where[- (L“) and[](a) denote the lower and the upper limit of Layer 3: In this layer, each node output is also a fuzzy
an a-level set, respectively. We train the FCLO with severalumber [Y;3]®) = J, a{[yk](L“), [yk](“)} The update rules

values ofa using the following error function: of W] =, Oé{[w]z?](L ', (w31} can be derived using
_ (4), (5), and (19) as follows, where only the derivation of
e =diff(Y, D) (w3} ) is shown
=1 (@) _ gle)y2 (@) _ gla)p2
=3 zo;{[yL AP+l = d Py (15) de. Oe Ayl aNet]

oY oY oNedlY  opilyY

Assume that o o
[yj1<L> d[Neg]

W= U afwt® | w! wb (16) [Netg](a) | (o)
o — 6 (a)[ 34 (La) (“){1 (a)}
°J
is the adjustable fuzzy parameter in the FCLO subnetwork. -[yi](L“). (23)

To uptzlg)te fuzzy weights megns to update the paramég@r The error signal termd produced by thejth node for this
and w;; . We shall next derive the update rules for thesl%yer is defined by
parameters layer by layer based on the general learning rule

53] — g de O
9] jlL. — = @) o @
wlt 1) = w(t) +n<_£) @7) oINeg[ oy 31< ) oINeg]
(a) ](a)} 64](a) 347() (24)
kL Weslr
wherew representsU(L“) or w(a) and is the learning rate. Z !
Layer 4: The output of a Iayer -four node is a fuzzy numypere
ber [Y4](® = |, oc{[yf (La), [yk](“)} The update rules of (a) (@) 1
W@ = U, of[w; ]L , [w? ]L } are derived as follows = f{[Net];"} = L+ ol (25)
€exX JiL
[see (7) and (8)] where only the derivation pfj? ](“) _ p. . .
shown: Then, from (17) and by performing similar derivation for

[wiP]; (<) , we have
de e Ails  aNet] 2310+ 1) = (w2 () + LAY (26)
o Al oNed] ) o o o ), 2q(a
il {[[y: (i) (a)}t%[]i](a){l[ kj[]i](a)} [wji](U)(t +1)= [wji](U)(t) +nlf A (@)
% fa) YilL Yile where [65’]2‘3) is in the same form of (24) except that the
'[yj]L . (18) subscriptL is replaced byl.

When fuzzy weights are adjusted by (18)—(27), an unde-
The error termé produced by theith node in this layer is sirable situation may occur. That is, the lower limits of the

defined by a-level sets of fuzzy weights may exceed the upper limits,
and the updated fuzzy weights may thus become nonconvex.

() e e a[yﬁ](L‘l) In order to deal with this situation, necessary modifications
[6 L = [Neﬁ](L‘l) = _8[2;%](;) a[NeQ](“) on the updated fuzzy weights to make sure that they are legal

(o) (@)1 r (o) (e fuzzy numbers after updating are performed. This process is
= —{lwily’ = dr” }udr {1 = wlc”’} (19) described as follows.
Procedure—Fuzzy Number Restoration:
where Inputs: Fuzzy weight$/ =, « [w(L“), wyy )] standing for
W2t and W23, which are updated by (18)—(27).
41(a) 41() 1 M s ) -
[l . = f{[Neg];"} = T el (20)  Outputs: The modified fuzzy weights W =
1+ exp™H e U, al@'®, %{], which are legal fuzzy

Then, from (17) and by performing similar derivation for Step 1 kngmlbers
w1}, we have it wl > wf®, thend® = wf® anda® = ),
(@) (g @) (@3 elsew A(’“) (’“) and w A(’“) w,(f“).
« _T,,,3471(c §a1le a .
w127 (8 + 1) = [wif] " () + &l [yl (1) Step 2. Fork = h — 1 down to zero, do ifwl*™ >
[t (¢ + 1) =[wz;*1£i“><t>+n[6é1£?>[yj1£f“> (22) WMV then @M = @M else
A(k/h) — w*® and if wge/h) < lk+1/R]

where [54*) is in the same form of (19) except that the thenw(bf“fh) = @l elseqpF/M) = o B/M)
subscriptL is replaced byU. Step 3. Output’” and stop.
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Fig. 7. The proposed RAFCAN system.
IV. REINFORCEMENT LEARNING OF THE AFCAN signal indicates that a particular output is wrong, it gives no

In this section, we shall derive reinforcement learningint s to what the right answer should be; in terms of a
algorithms for the on-line learning of the AFCAN. Since th&OSt function, there is no gradient information. It is, therefore,
outputs of the AFCAN have two forms—numerical numberénportant in a reinforcement learning network for there to
and fuzzy numbers—standing for semantic actions and line some source of randomness in this network, so that the
guistic information, respectively, the proposed reinforcemefpace of possible outputs can be explored until a correct
learning scheme has two learning phases. In phase one,vahie is found. This is usually done by usistpchastic units
MI-reinforcement learning algorithm is employed to tune thEurthermore, a reinforcement signal may only be available
CCNO with the numerical reinforcement signal (numeric#it a time long after a sequence of actions has occurred.
evaluative feedback). In phase two, a fuzzy reinforcemehe solve the long time-delay problem, prediction capabilities
learning algorithm is utilized to tune the FCLO with the fuzzyare necessary in a reinforcement learning system. With this
reinforcement signal (fuzzy evaluative feedback). To solve tigencept, we propose a reinforcement learning model as shown
reinforcement learning problems, we need a more powerfal Fig. 7, which integrates two previously proposed four-
network structure. We shall first set up such structure basedlayered networks (see Fig. 2) into a learning system. The new
the original structure of the AFCAN in Fig. 2 in the followingsystem is called reinforcement AFCAN (RAFCAN). As in the
subsection and then develop a reinforcement learning schesriginal AFCAN, each CCNO used in the RAFCAN maps a

for the AFCAN in Sections IV-B and C. sentence input to a desired action (presented as a numerical
number), and each FCLO maps a crisp MI-value input obtained
A. Structure of the Reinforcement AFCAN from the CCNO to a desired linguistic information (presented

For reinforcement learning problems, almost all existiny the form of a-level sets). o
learning methods of neural networks focus their attention on ' he original four-layered network in Fig. 2 serves as the
numerical evaluativénformation [25][31]. In this paper, we action networkwhich comprisesemantic action networéand
shall attack thefuzzy reinforcement learningroblem where fuzzy action networkThe semantic action network is built by
only fuzzy critic signal (e.g., “faster,” “slower,” “good,” @ CCNO in Fig. 3 and includes the word detectors, phrase
“bad”) is available. This problem is much closer to the expefietectors, and the semantic action selection layer. The fuzzy
instructing learning system in real world than the original on&ction network is realized by a FCLO in Fig. 4 and a newly
with scalar critic signal. addedfuzzy stochastic unifThe semantic action network and

In the reinforcement learning problems, it is common ttuzzy action network are used respectively to choose the
think of a network functioning in an environment. The enviproper semantic action and linguistic information with respect
ronment supplies the inputs to the network, receives its outptd, the current input sentence. For solving the reinforcement
and then provides the reinforcement signal. If a reinforcemdetrning problem, we use another CCNO to serve agtad
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uation networlof the semantic action network. This evaluatiomffirmative response; otherwisB'[s(t)] = —oo if the user
network is to perform the acquisition of the external user’s gjives negative response. The MI-reinforcement learning rule
environment’s responses on the selected semantic action andiven as follows:

produce numerical reinforcement signals. More clearly, the

CCNO can acquire the user’s or environment’s responses toi Ax(1) = ar[s(1)] , (28)
the selected semantic action and encode the negative feedbac A(t) = (¢ = ) Ak (t = 1) + aar[s(t)] + Rs(t)]
or affirmative feedback to a two-valued numb&f(t) € y(t) = arg max A(t) (29)

{—00, 0}, so the reinforcement signal is numerical. Similarly,

we use another FCLO to serve as thealuation network \yhere 4;(-) is the total activation value of semantic node

of the fuzzy action network. This evaluation network isn |ayer four of the semantic action networl[s(t)] is the

called fuzzy predictar which performs multistep prediction activation value of semantic nodefor s(t) [i.e., (6)], ¢ is the

of the external fuzzy reinforcement signal. The evaluatiafine step,« is a gain parameter which is assumed tolbe

network provides the action network with more informativg(t) denotes theth user input,R/[s(t)] (wheret > 2) is the

and beforehand internal reinforcement signals for learninginforcement signal, which is zero erc, andy(t) denotes

Because the reinforcement signal for the fuzzy action netwofie network’s selected action after ttté user input.

is a fuzzy number, a FCLO is used as the fuzzy predictor.  The learning process stops when the reinforcement signal
Like the supervised learning scheme introduced iR’[s(t)] = 0 and at that step, the correct actigty — 1) is

Section Ill, we need to do network initialization before th@xecuted. At the same time, since the RAFCAN has known the

reinforcement learning proceeds. The initialization procegger's desired action, it will apply the Mi-supervised learning

is exactly the same as that for the supervised learning (sfi§orithm developed in Section II-A to record (learn) the new
Section Ill). It should be done on both the action networapping: [s(1), y(t — 1)], [s(2), y(t — 1)], - -+, [s(t), y(t —

and the evaluation network. After the initialization process,)|. The above whole learning procedure is called Mg
the reinforcement learning algorithms are performed on boginforcement learning algorithm
subnetworks. Next, we shall derive the reinforcement learningt js noted that when the Mi-reinforcement learning pro-

algorithms in the following subsections. ceeds, the word detector and phrase detector nodes in layer one
become adaptive too. That is, if new words are observed and
necessary for the fuzzy command acquisition, the RAFCAN
will regard them as the new received reference words and

As shown in Fig. 7, the CCNO-based evaluation netwonkill add corresponding new word detector and phrase detector
performs the acquisition of the external environment’s rervodes. We have designed a word filter for the RAFCAN in
sponse to the action selected by the semantic action netwq&rforming the Ml-reinforcement learning. The function of the
In this section, we shall attack the problem of the semantiarord filter is to dismiss some usual use words suchvees he,
level error feedback acquired by this evaluation network amsthe, they, is, ar&This kind of words is not so important in the
consider the reinforcement sign&l(¢) as a crisp number, fuzzy command acquisition task and, if we accept them, they
zero, or—oo. Assume thatR/(¢) is the crisp signal available will result in time-consuming learning and memory-consuming
at time stept and caused by the input and semantic actiofisr implementation.
chosen at time step — 1.

In the Ml-reinforcement learning, there may need severgl Fuzzy Reinforcement Learning

steps for a user to induce the RAFCAN to perform hIS/herin this subsection, we shall attack the fuzzy reinforcement

desired action. At first, the user gives a command (senten%a ming oroblems by considering the reinforcement sianal
to the RAFCAN to execute his/her desired action. Let u 9p y 9 9

denote this command as(1) (e.g., ‘Please walk forward ﬁ(t) as a fuzzy number in the form ef-level sets. We also

at a very high speel). The output of the semantic action@SSume thaR(¢) is the fuzzy signal available at time stép

network indicates the RAFCAN’s understanding of the userasnd caused by the input and action chosen at time fste

command. Let us denote the current outputi@s) (e.g.. or even aﬁecteq by _earlier inputs and actions. Namely, the
. o ; reinforcement signal is a fuzzy number such that

assume the selected semantic action walk backward).

The user then responses with a message in accordance with R(t) € {R1, Ry, -+, Ry} (30)

the appropriateness of the network’s performance to his/her

command (e.g., My command iswalk forward; instead of and satisfies the following inequality relation

‘walk backward.”). The critic response should be represented -~ -~

as another more clarifying message. With such critic re- —1 <defuzzifiefR,) < defuzzifiefR,)

sponses, the RAFCAN will tune itself using the following < ... < defuzzifiefR,) < 0 (31)

MI-reinforcement learning rule. This process will continue

till the user give positive response (e.gYes!” “OK!,” “It where defuzzifiefR(t)] = [RY(#) + RY(t)]/2 represents

is right!”) and we denote this response as an affirmativéiscrete degree of reward or penalty, wh{aﬁ%)(t), R,(})(t)]

reinforcement signal. is the o cut of R(¢) at « = 1. For example, we may have
We useR'[s(t)] to denote the Ml-reinforcement signal atR(¢) € {very slow, slow, fast, very fast} with each fuzzy

time stept; if R'[s(t)] = 0, it represents that the user giveerm defined by a proper membership function. Exemplary

B. MI-Reinforcement Learning
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Membership a better exploration of output space and better generalization
A ability.

Once the amount of exploration(¢) has been decided, the
next problem is to generate the actual fuzzy output. Since the
output is a fuzzy number = [ J, a[y(L“), yé‘?)], the fuzzy sto-
chastic unit generates a fuzzy outplit= Ua a[gjL(a), ng(a)]
based on the amount of exploratieft). The parametey;, (%)
[/ ‘Y] is set as a uniform random variable with m
[4{*)] and width20(t). After the parameterg;,‘*) andy, )
are decided, we must then maintain the convex property of the
0 fuzzy output. We propose the following procedure to complete

0 1 the fuzzy stochastic exploration. In this procedure, the notation
h is the number of quantized membership grade.
Procedure. Fuzzy Stochastic Exploration:

Input: ¥ = U, afyy™, 9]

Output: Y = |, oc[yAL(a), yb(a)].

bad good very good

\j

Fig. 8. The exemplary fuzzy reinforcement signals used in the RAFCAN.

fuzzy reinforcement signals used in the RAFCAN are shown

in Fig. 8. AN

In the architecture of the proposed RAFCAN shown in Step 1. Fork =110 &, find yL(k) randomly such that
Fig. 7, three key components take care of the fuzzy reinforce- [?J(Lk) —o(t)] < i) < [y(Lk) +o(t)]
ment learning problems: 1) the fuzzy action network maps
a numerical vector (the MI values from the semantic-action and then findyy;®) randomly such that

network) into a linguistic informatiort”; 2) the evaluation
network (fuzzy predictor) maps a numerical vector (the Ml
values) and an external fuzzy reinforcement signal into astep 2. Fok = h— 1 down to zero, findj;,*/* randomly
predicted fuzzy reinforcement signal. This predicted signal is such that

used to produce internal reinforcement signal for helping the (/1) (kB ot (B4L/h
learning of fuzzy action network; and 3) the fuzzy stochastic v = o(®)] <g™™ < minfyp Y

max[yi? — o(t), 4y ®] < v ® < [ + o(2)].

unit uses boti” and the predicted reinforcement signal from A ()]
the fuzzy predictor to produce a fuzzy numbEr, which _ .
is sent out to the environment. We shall next describe the and findyi;*/" randomly such that
function of the stochastic unit and the reinforcement leaning o (k+1/R)  (R/R)

maxyy MM,y — (1)
of fuzzy predictor and fuzzy action network, respectively, in v ’ D;C ,
the following. < ® M < [y 4 o(t)).

Fuzzy Stochastic Unitin the fuzzy reinforcement learning N
mode, the output error gradient information of the fuzzy action St€P 3. Outputt” and stop.
network is not told, so it needs to be estimated. To estimaté-Uzzy Reinforcement Learning of Fuzzy Predictbr:a re-
the gradient information, the outpdf of the fuzzy action inforcement learning environment, the learning system usually
network is not directly sent out to the environment. Instead, th@ceives evaluation of its behavior only after a long sequence
stochastic unit uses the predicted fuzzy reinforcement sigdloutputs, calledielayed reinforcementVe shall now discuss
P(t) from the fuzzy predictor and the fuzzy informatian how the problem of learning with delayed reinforcement can
recommended by the fuzzy action network to stochasticalfg solved using the fuzzy predictor. In the delayed rein-
generate an actual fuzzy informatidh sent out to the envi- forcement learning problem, themporal credit assignment
ronment. The actual fuzzy informaticti is a random fuzzy Problem becomes severe because we have to assign credit
variable with fuzzy meart” and variances(t). The variance Or blame individually to each output in a sequence for an
(or width) o (¢) representing the amount of exploration is someventual success or failure. The solution to the temporal credit

nonnegative, monotonically decreasing functiom@f. In our ~assignment problem is to design a multistep fuzzy predictor
model, o(t) is chosen as that can predict the reinforcement signal at each time step.

To achieve this purpose, the technique based on the temporal
2k difference (TD) method is used. The TD method is a class
oft) = 14 e k (32) of incremental learning procedures introduced by Sutton [27].
The main characteristic of the TD method is that they learn
where p(t) = defuzzifiefP(¢)], A is a search-range scalingfrom successive predictions, whereas in the case of supervised
constant which can be simply set to one, aR¢) is the learning, learning occurs only when the difference between the
predicted fuzzy reinforcement signal used to predi¢t + 1) predicted outcome and the actual outcome is revealed. Hence,
for the network input at time. The magnitude of(¢) is large the learning in TD does not have to wait until the actual
whenp(t) is small. Because we restrict the highest degree ofitcome is known and can update its parameters within a
reward top(t) = 0, the value ofs(¢) is zero whenp(¢) = 0. trial period. In the proposed reinforcement learning system, we
The stochastic perturbation in the suggested approach leadgeneralize the TD method to its fuzzy counterpart for training
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the fuzzy predictor in the RAFCAN. We shall discuss threghere P(m + 1) = |J,, «[0, 0]. Thus, the update rules are
different cases of reinforcement learning problems below.

Case 1—Prediction of Final Fuzzy OutcomA@ssume we de () () ()
are given the numerical input sequences of the form aw(a)( ) —lr D+ p (1) —pp (2]
x(1), x(2), ---, x(m) where eachk(t) is an input vector of . (@)
real numbers available at time stefsom the environment and . Z Atk dpy (k) (38)
the fuzzy reinforcement signal B(m+1) at time stepn+1. Pt 8w(L“)(t)
For each input sequence, the fuzzy predictor produces a cor- e (@) (@) (@)
responding sequence of predictiof§1), P(2), ---, P(m), = o G+ D) g (1) —pp ()]
each of which is a fuzzy number and an estimaté&of. 4 1). dwy” (1)
Then based on the TR} procedure in [27] the update rule ¢ -k (?p(L )(k) 39
for the fuzzy weightsiW = (J, [wL ), wyy ] in the fuzzy ; 8w£‘3)(t) (39)

predictor can be derived as
e api) (k) Case 3—Prediction of Infinite Discounted Cumulative Fuzzy
T = —pt+1) - pi ()] Z -k pﬁa) Outcomes:In this case,P(t) predict the discounted sum:
wp " (#) =t OwR) () = T R R(t R, e, 2( (1) = S et (b4

(33) kt1), 2 (t) = 52wt (t+k+1), wherey, 0 < v < 1,

Je [p(a)(t +1) (a) ) Z ik apb (k) is the discounted rate parameter. If the prediction is accurate,
ay N WPu o we can write
Oy (1) =R D
(34) o0

Pt Z r (k4 1)
in which alterations to the predictions of input vectors occur- k=0
ring k steps in the past are weighted according\to® for

0<A<1. =4 1) —i—’nyyk Sl (R )
Case 2—Prediction of Finite Cumulative Fuzzy Outcomes: k=0
The TD method can be also used to predict a quantity that r 1)+ + 1) (40)

accumulates over a sequence. That is, each step of a sequgp
may incur a cost and we wish to predict the expected total cost
over the sequence. In this problem, the predictor oufp(

is to predict the remaining cumulative fuzzy cost given #the
observation rather than the overall fuzzy cost for the sequené8€ mismatch or TD error is the difference between the right-
In our system, we consider the cost to be the value of thand and left-hand sides of these equatioffs (t + 1) +
reinforcement signal. LeR(t+1) = [, a[r{™ (t+1), r{™ (t+ (4 1), ri (E+ 1) +4pi (14 1) and, thus, the update
1)] denote the actual fuzzy cost incurred between time stefses are

t andt¢ + 1. We would like P(¢) to be equal to the expected e

P =r{ 0+ 1)+t + 1), (41)

value of Z(t) = U, ol (1), 27 (0)] = DIl R(E+ 1. —— = = i+ )+l +1) - pi7 (1)
Hence, we have dwy (1)
t (@)
m m —k ap (k)
@ @ @ @ . )\t k L\ 42
A0 =30 kD), A0 =37 (k). (35) 2 42)
k=t k=t
e () (@) (@)
The prediction error can be represented in terms of temporal - - @ =—[ry "+ 1) +p; (E+1) —py (¢
difference as o)
api (k)
A = (1 AR —EU S (43)
00 - ) 2_: PWEITY
=3k +1) - p (@) o _
P Once the output-error gradient information of the fuzzy
m predictor is obtained using the methods discussed in the
Z Pk + ik +1) - p(k)]  (36) above three cases, its learning becomes a supervised learning
k=t problem. Hence, (18)—(27) can be used here directly to train
(“)(t) (a)( £) the fuzzy predictor if we replace the associated gradient terms
in those equations by the gradient terms derived in the above
- Z 7(a) k4 1) (?)(t) three cases properly. Notice that the system only receives an

external reinforcement signat(m + 1) after a sequence of

inputs at the time step: + 1. Hence, we can assume that the
= Z (k) +p8 (k+1) - p{ (k)] (37)  external reinforcement signai(t) is zero (nonexisting) at the

other time steps; that igz(t) = | J, «[0, 0], for 2 <t < m.
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TABLE |
THE ACTIONS AND Fuzzy TERMS USED IN THE ILLUSTRATED VOICE CONTROL SYSTEM
Action No. 1 2 3 4 5
flail, hold, turn, leap, move forward,
Action knap, catch, whirl, jump, shift forward,
strike, etc. seize, etc. | rotate, etc. | bound, etc | pass forward, etc
very heavy, | very tight, | very fast, | very high, very fast,
Fuzzy highly heavy, tight, fast high fast,
term slightly heavy, loose, slow, low, slow,
heavy very loose | very slow very low very slow
6 7 8
move backward, move right, move left,

shift backward, shift right, shift right,
pass backward, etc | pass right, etc | pass left, etc

very fast, very fast, very fast,
fast, fast, fast,
slow, slow, slow,

very slow very slow very slow

Fuzzy Reinforcement Learning of Fuzzy Action Network:In the proposed system, the fuzzy action network and the
We next develop a reinforcement learning algorithm for thieizzy predictor are trained together. However, since the fuzzy
fuzzy action network. The goal of the reinforcement learningction network relies on accurate prediction of the fuzzy
is to adjust the parameters!™ and w(® of the fuzzy predictor, it seems practical to train the fuzzy predictor first,
action network such that the fuzzy reinforcement sigRal at least partially or to let the fuzzy predictor have a higher
is maximum; that is learning rate than the fuzzy action network.

Aw x 8—7 (44)
Ow V. AN ILLUSTRATIVE EXAMPLE—FUZzzY COMMAND
wherew = w(L‘l) or wé‘?) andr = defuzzifiefR). ACQUISITION OF A VOICE CONTROL SYSTEM

We first derive the reinforcement learning algorithm for the |n this section, we shall establish a system based on the
crisp action network with numerical output instead of fuzzyyroposed RAFCAN that can acquire fuzzy commands given
output. This will help us to derive the reinforcement Iearningy users in voice or typed input form. The system can
algorithm for the fuzzy action network. To determiéie/dw, acquire only one semantic action at a time, so if it acquires
we need to knowdr/dy wherey is the output of the crisp several semantic actions at the same time, it will list them
action network. Since the fuzzy reinforcement signal doggong with their uncertainty factors, and the user should do
not provide any hint as to what the right answer should Bejudgement (maybe a positive answer or negative answer)
in terms of a cost function, the gradiedt /9y can only from the listed actions. The actions and associated linguistic
be estimated using the stochastic unit. According to [26hformation (fuzzy predicates) that this system can acquire are
the gradient information for the crisp action network can bigsted in Table I. After a command is acquired, the system will

estimated by show the selected action and linguistic information in the form
9¢  Or R of a-level sets. We can make use of such output information
oy Xy = [r(t+1) +yp(t + 1) —p@][4(t) — y(t)] to do thefuzzy controltask directly. |
—#(t+ D) = y(0)] (45) The voice control system uses the architecture of the RAF-
CAN in Fig. 7. Initially, we set up the detector nodes in layer
where one of the AFCAN according to the given reference words and
put random weights in the FCLO. The initial AFCAN has 41
Pt+1)=r(t+1)+p(t+1) — p(d). (46) word detector nodes (layer one), 1640 phrase detector nodes

élayer one), 1681 Ml-value nodes (layer two), 10 hidden nodes

When the output is linguistic (for fuzzy action network), wi :
can generalize the above update rule to its fuzzy Counterpg\?‘tyer three), and 8 semantic nodes (layer fou_r). Th_e 41 refer-
ence words for the word detector nodes are listed in Table II.

and obtag 5 We also design a word filter containing 36 words such as “the,”
_% x % =i+ D @) — V(1)) (@a7) ‘is” “are” “you,” ‘mine,” “hers,” etc. We train the system
dyy, Oy;. using the off-line learning scheme developed in Section Il
de r ) (o (@) on some input-output training paifésentence, fuzzy actign
_ay(a) x ay(a) =7t + 1)[96’( )(t) —yy (] (48)  \where the fuzzy action is represented by an action number
U U

(1-8) and ax-level set b = 0.2,0.4,0.6,0.8,1.0). The whole
Again, with the error gradient information available, the fuzzgff-line training data can be found in [32]. When the system
supervised learning algorithm developed in Section IlI-B cas set up and in use, the on-line learning scheme developed in
be applied here directly to train the fuzzy action network. Section IV is performed all the time. We next do some simu-
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TABLE I
THE ReEFERENCE WORDS FOR THEWORD DETECTOR NODES IN THE ILLUSTRATED VOICE CONTROL SYSTEM

node 1 | node 2 | node 3 | node 4 | node 5 | node 6 | node 7 | node 8
flail heavy light knap hit strike knock hold
node 9 |node 10 | node 11 | node 12 | node 13 | node 14 | node 15| node 16
catch gab grasp seize tight lux loose turn
node 17 { node 18 | node 19 | node 20 | node 21 | node 22 | node 23 | node 24
wheel rotate whirl speed low high fast slow
node 25 | node 26 | node 27 | node 28 | node 29 | node 30 | node 31 | node 32
leap jump hop skip bound | transfer pass move
node 33 | node 34 | node 35 | node 36 | node 37 | node 38 [ node 39 | node 40
ambulate shift forward | backward | right left very highly
node 41
slightly

Machine:> May I help you 7 Please enter your command!
USER  :> Move forward at a low velocity !
Machine:> Do you want [action 5]

USER  :> You can ansuwer (y/mly

Machine:> Your command is [action 5]

(@
Fuzzy Membership Function
Y_iouwar V_upper_
=1.0 0.246857 a.246857
h=0.8 0.221857 0.288324
h=0.6 0.196857 0.330190
h=0.4 0.171857 0.3218357
h=0.2 0.146837 0.413324
5o T T s T T T o
(b)

Machine:> Your critic for the lingquistic information :
If you want to give positive critic, press ¢ 1)
If you want to give negative critic, press ¢-1 )
If you want to give good critic, press ¢ @ >

Waiting for your critic input ........ => 8

©

Fig. 9. Screen copy of the voice control system—the first case.

lations to illustrate the power and specialist of the commarfte., agree the system’s output) [Fig. 9(c)]. Each of these three

acquisition system. We illustrate four cases in the followingcritic signals corresponds to one proper fuzzy term whose
The First Case: This case is shown in Fig. 9, which is amembership function is similar to that shown in Fig. 8. In

screen copy of the system interface. According to Fig. 9(ahe current case, the linguistic information matches the user’s

the system acquires the command correctly without furthdesire, so he/she chooses the “0” input.

iteration after the user gives the command. Hence, the usefSome other sentences that can be acquired correctly by the

replies “(y)es” as the next input to accept the selected actigyistem are as follows.

of the system. After the system recognizes the user’s desiredl have no more time. Please move forward in a very high

action, it then continues to acquire the linguistic information speed!”

as shown in Fig. 9(b). The user then makes a critic on the“My mother will come to my graduation. Would you please

shown membership function where we use “1” to stand for move forward at a very high velocity?”

positive critic, “—1" for negative critic, and “0” for good critic ~ “This vase is easily broken. You have to hold it very tightly.”
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Machine:> May I help you ? Please enter your command!
USER  :> It’s your turn to seize the hemp line.
Machine:> Do you want [action 21 or [action 3]
USER  :> You have to seize the linc !

Machine:> Do you want [action 21

USER :> (ysnly

Machine:> Your command is [action 2]

@)

Machine:> May I help you 7 Please enter your command!
USER  :> It is your turn to seize the line.
Machine:> Do you want [action 2]

USER  :> You can answer (y/nly

Machine:> Your commwand is [action 21

(b)

Fig. 10. Screen copy of the voice control system—the second case.

“The ground is sliding. You should whirl in a very lowso he/she gives a negative criticX) [see Fig. 11(c)]. At this
speed.” time, the system will perform on-line learning according to
The Second CaseThis case, as shown in Fig. 10(a), il-the user's critic [Fig. 11(d)]. If the user changes the mind
lustrates that the system cannot catch the user’s intent@pd has different thinking on the linguistic information, he/she
exactly, so it shows all the promising actions that it acquire&an again continue to give critics to the system. It is noted
After the user gives another command containing clarifyirigat the user can give the critics any time during the fuzzy
information, the system reduces its initial uncertainty ar@inforcement learning since we perform multistep prediction
appropriately recognize the command. This case shows tRethe fuzzy predictor of the RAFCAN.
power of the system’s on-line learning ability using the MI- The Fourth Case:In the above cases, all the input com-
reinforcement learning algorithm. As shown in Fig. 10(b)nands can be acquired to some extend, since the input words
the system can acquire the user's meaning correctly afte@itd phrases have existed in the initial detector nodes. In
receives the second command via on-line learning. AnotH&e fourth case, we shall illustrate that the system can learn
example belonging to this case is shown in the following: new words (phrases) and their semantic associations from
interactive command inputs. From Fig. 12(a), we observe that
the command, Go ahead very fastis not understood by the
system because the wordgd® and “ahead are not included
in the reference words originally (see Table Il). Hence, the
system replies with, The system cannot recognizand ask
very fast. . )
Machine : Do you want [action 2] or for the user to enter the command in other expression. When
[action 3]? the user gives the second commapuméan to go forward
very fast’ the system understands this command, and response
with, “Do you want [action 5]. Since action 5 is the user’s
desired action, the user presses tigeKey. When the above
process is finished, the system will add new detector nodes.
Before doing this, the new words should pass the word filter
to dismiss some usual use words (elie, she, and After
The Third Case:In this case (see Fig. 11), we aim at thadds new detector nodes, the system learns the weights (Ml
on-line learning of the acquired linguistic information. Afteweights and fuzzy weights) of the new network. When the
the action is acquired correctly, the system will show theslearning process is finished, we give the original command to
membership function of the acquired linguistic informatiortest the effect of the processes of new word adding and weight
The user then has three kinds of critic signals for use to expreskarning. Fig. 12(b) shows that the system after learning
his/her judgement on the acquired linguistic informatipas- can acquire correctly the commandizd ahead very fast.
itive (1), negative(—1) andgood (0). In the current case, theFig. 12(c) shows the acquired linguistic information of this
user feel the linguistic information in Fig. 11(b) i&b slow” command.

Machine : May | help you? Please enter
your command!

User : Seize the pinwheel very tightly
opposing wind and let it whirl

User : | mean to hold the pinwheel very
tightly when opposing the wind!

Machine : Do you want [action 2]?

User : You can answer (y/n) y

Machine : Your command is [action 2].
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Machine:> May I help you 7 Please enter your command?

USER  :> Please move in the foruward direction and be slow.
Machine:> Do you want [action 5]

USER  :> You can answer (y/nly

Machine:> Your command is [action 51

@

Fuzzy Menbarship Function

Y_ 1l over Y _Uppar
h=1.0 0.278327 0.278327
h=0.8 0.233327 0.319994
h=0.6 Q.228327 0.361660
h=0.4 0.,203327 0.403327
h=0,2 0.178327 0.444994

6.0‘ Y T T ol-s y T T T 1.10

(b)

Machine:> Your critic for the linguistic informatiom :
If you want to give positive critic, press ¢ 1)
If you want to give negative critic, press <-1 >
If you want to give good critic, press < 8>

Waiting for your critic input ........ = -1

©

Fuzzy Membarship Function

Y lowver Y_Uppar

h=1.0 0.306068 0.306068

h=0.8 0.281068 0.337318

h=0.6 0.256068 0.368568

h=0.4 0.231068 g.399818

h=0.2 0.206068 0.431068

b g "%
(d)
Fig. 11. Screen copy of the voice control system—the third case.
VI. 1SSUES ONCOMPUTATIONAL generating the commands is first-order Markovian, then the
EFFICIENCY AND CONVERGENCE PROPERTY CCNO is equivalent to anaximum a posteriordlecision rule

For the Mi-supervised learning algorithm proposed ihLOl. AIthoughthe hypothgses are rarely true in real cases, this
Section Ill-A, we observe from (13) that the weights an@roperty provides insight into the network’s characterlstlcs:
biases are totally determined by the count measurement®uring the Mi-reinforcement learning discussed in
N(vm), N(v,) and N(v., ). Because counts can peSection IV-B, the connection weights of the CCNO are
accumulated sequentially, the estimates of the weights d3@fd constant during the dialogue, and adapted using the
be adaptively and sequentially updated with each new inpi!-supervised learning algorithm after the dialogue converges
Since the definition of training procedure is sequential, tfd before commencing the next dialogue. Hence, as its
network only requires a single pass through the data arsgipervised version, the Mi-reinforcement learning algorithm
thus, it provides fast learning. This is in contrast to those &f fast and needs only a single pass through each new input.
stochastic gradient algorithms that may need many interactidri®@m (28), if R'[s(t)] = —oc we have Ax(t) = —oc,
through the data to converge only to some local minimumeaning that actiort is not the desired action and, thus, the
of the error function. As for the convergence of the MIRAFCAN will never let actionk be selected again in the
supervised learning algorithm, it is guaranteed to decreaggrent dialogue [see (29)]. The Mi-reinforcement learning
the single step-error function for nonzero input vectors arfte., dialogue) converges whel[s(¢)] = 0. The dialogue
converges asymptomatically [10]. Furthermore, it has beean be terminated and the user connected to a supervisor if it
shown that if the words are unambiguous such that all layementinues too long without convergence. If the dialogue fails
one outputs of the CCNO are zero or one and if the languaigeconverge, then the negative examples could be exploited
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Machine:> May I help you 7 Please enter your command!

USER  :> 6o ahead very fast !

Machine:> The system cannot recognize 1t

Machine:> Please input your command in another expressiont
USER > I meant that you should move forward very fast ¢
Machine:> Do you want [faction 5]

USER  :> (ysnly

Machine:> Your command is [action 51

(@)

Machine:> May I help you 7 Please enter your command!
USER  :> Hey! Go ahead - wvery fast!

Machine:> Do you want [action 51

USER  :> You can answer (y/mly

Machine:> Your command is [action 5]

(b)

Fuzzy Menbership Function

Y. lLover Y_Uppar
h=1.0 0.713638 0.7136358
h=0.8 0.671991 0.744908
h=0.6 0.630323% 0.?776158
h=0.4 0.588658 0.807408
h=0.2 0.346991 0.838638

©

Fig. 12. Screen copy of the voice control system—the fourth case.

for adaptation. In fact, it can be shown that the probabilitgtochastic exploration technique on the fuzzy action network.
P(k), that a dialogue converges ik steps (sentences) isHence, their convergence property basically inherits that of the
P(k) = p*~1(k — p) wherep is the probability of error on FBP algorithm mentioned in the above. On the side of fuzzy
each user’s input command. predictor, the TDK) method has been shown to converge in
The proposed FBP algorithm in Section 1lI-B is a gradiergxpected value to the idea predictions for general [0, 1]
descent procedure in which the (fuzzy) weights are modifiddised on the concept of dynamic programming [33]. In the two
along the negative direction of the gradienteoin (15) with extreme cases, TD(0) converges in the mean for observations
respective to the weights. Hence, it can be expected that tfean absorbing Markov chain and TD(1) reduces to the normal
weights will eventually converge to the values that minimize least-mean square (LMS) estimator as shown in [27]. The
to within some small fluctuations if there is adequate learnin§P(A) method is an efficient prediction procedure since the
adequate number of hiddens nodes, and a deterministic ratlearning in TD does not have to wait until the actual outcome
than a stochastic relation between input and desired outpstknown and can update the connection weights within a trial
The FBP algorithm is bounded by all of the problems of angeriod. On the side of fuzzy action network, being instructed
hill climbing procedure such as the problems of local minimiy the fuzzy predictor through an internal reinforcement signal,
and slow convergence. The average iteration number for ttine fuzzy stochastic unit can perform an efficient exploration
FCNO to learn a desired fuzzy output in our simulations i8n the output space to seek for better outputs. This shortens the
6000. However, the use of resolution principle to expre$sarning time of the fuzzy action network a lot as compared
a fuzzy set in terms of itsy-level sets has sped up theto normal reinforcement learning schemes [26].
convergence of the FBP algorithm already. Also, empirical The convergence property of the fuzzy reinforcement learn-
studies have shown that the poor local minima are rardlyg algorithm for the fuzzy action network is discussed as
encountered if the FCNO contains a few more hidden nodfedlows. According to (45), before the external reinforcement
than required for a learning task. Even though, since the FBRjnal occurs [i.e.y(t) = 0], the reinforcement sent to the
algorithm is a generalization of the BP algorithm, severatisp action network is the difference between the predicted
existent techniques for improving the local minima and sloveinforcement signal at the current time step (discounted by
convergence problems [13], [16] could be adopted. ~) and the predicted reinforcement signal at the previous
The fuzzy reinforcement learning algorithms presented time step [i.e.,vyp(t + 1) — p(¢)]. That is, (45) becomes
Section IV-C are derived based on the FBP algorithm Wyr/dy = [yp(t + 1) — p(H)][9(t) — y(t)] where p(t) is the
incorporating the TD method on the fuzzy predictor, and thgredicted reinforcement signal for the outpuit) of the crisp
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action network, ang(t + 1) is the predicted reinforcementapplications more considerate and friendly. One deficiency
signal for outputy(¢t + 1). Because external reinforcemenbf the proposed AFCAN is that the number of nodes in
signals and input patterns depend on the past histii), layers one and two increases exponentially as the number
will influence the predicted reinforcement signdt + 1) for of words increases. This restricts the generalization of the
output y(¢ + 1); that is, the outputj(¢) at time stept will proposed fuzzycommandacquisition network to a general
influence the outpug(¢+ 1) at time stept+ 1. Thus,p(t+1) fuzzy language acquisition network directly. This problem
can be viewed as the predicted reinforcement signal for tleealso due to the semantic complexity and context-sensitive
actual outputj(¢) at time stept. From the above description,structure of human languages. One promising approach to
we know that the value afr /3y is always positive. Namely, if solving this problem partially is to use the distributed rep-
~ = 1, increases in reinforcement prediction therefore becomesentation concept of neural networks in layers one and two
rewarding events (i.e, > 0) and decreases become penalizingf the proposed AFCAN. This will be our future research.
events (i.e.;7 < 0). When the external reinforcement signal
occurs, the situation is slightly different. When the external
reinforcement signal comes at time step- 1, we let the
corresponding predicted reinforcement sign@H- 1) be zero. The authors would like to thank the reviewers for their
In this situation, (45) becomés /0y = [r(¢+1)—p(¥)][g(t)— helpful suggestions in improving the quality of the final
y(t)]. The external reinforcement signelt + 1) is the actual manuscript.
critic score forj andp(¢) is the predicted reinforcement signal

of y(t). Thus, the value ofr/dy will be positive. From

the above observation, we understand that (47) and (48) are
appropriate for the fuzzy action network to estimate its outputtl] A. Waibel and K. F. Lee, “Speech recognition by machine: A review,” in
error gradient correctly. Since the error gradient information ?geg‘g'”gp'.”SS_ggeCh RecognitionSan Mateo, CA: Morgan Kaufmann,
can be estimated correctly in this way, the reinforcemeng] K. Fu and T. Booth, “Grammatical inference: Introduction and sur-

learning of the fuzzy action network can converge like the Vey—ngtS 1 and 2:'/’EEE ngnS; SVISt- Man, CybeWOSQSMZCa-& HIO-/
FBP algorithm analyzed in the above. ié?sp.' 5-111, Jan/Feb. 1975; vol. 5, no. 4, pp. 409-423, July/Aug.

[3] J. K. Baker, “Trainable grammars for speech recognition, Sipeech
Commun. Papers 97th Meet. Amer. Speech As$6g9, pp. 547-550.
[4] P. Langley, “Language acquisition through error recover,Cimgnition
VIl. ConcLusioN Brain Theory Cambridge, MA: MIT Press, 1982, vol. 5, pp. 211-255.
In this paper, the fuzzy command acquisition network, AF{5] K.LariandS. J. Young, “The estimation of stochastic context-free gram-

. . L . mars using the inside—outside algorithn@bmput. Speech, Language,
CAN, which consists of command acquisition and fuzzy infor- "4 "o 35-36, 1990.

mation acquisition, is proposed. Unlike the general languagie] J. R. Anderson, “Induction of augmented transition networkggnition
acquisition systems, the proposed system has the followirl? Sci, vol. 1, pp. 125-157, 1977.
r

L . : E. Vidal, P. Garcia, and E. Segarra, “Inductive learning of finite-state
characteristics: 1) the system is built as a neural netwo transducers,” irStructural Pattern AnalysisR. Mohr, T. Pavlidis, and

trained by users’ given data, so the system equips the abili(%J A. Sanfeliu, Eds. San Diego, CA: World Scientific, 1989.

: oot R. Miikkulainen and M. Dyer, “A modular neural network architecture
to tune its parameters and structure to match the applicati for sequential paraphrasing of script-based storiesPrioc. IEEE Int.

environment; 2) the system has the ability to acquire fuzzy Jjoint Conf. Neural Networksp. 11.49-11.56, June 1989.
command, which is a nature |anguage Comprising the desird®] M. St. John and J. McClelland, “Learning and applying contextual

. . L e . constraints in sentence comprehensiofrtificial Intell., vol. 46, pp.
actions and fuzzy linguistic information; 3) the input sentences ;7”557 "1 990,

(commands) of this system are unrestricted, but the kin@i®] A. L. Gorin, S. Levinson, A. Gertner, and E. Goldman, “Adaptive

of output semantic actions are quite restricted. Hence, the acquisition of language Comput. Speech, Languagal. 5, no. 2, pp.
. : ) . 101-132, Apr. 1991.
proposed AFCAN is suitable for constrained-action taskgi) A L. Gorin and A. Gertner, “Visual focus of attention in adaptive

That is, one can ask the machine to perform one of a language acquisition,” imArtificial Neural Networks for Speech and

small number of actions, but is allowed total freedom i Vision. London, U.K.: Chapman & Hall, 1993, pp. 324-356.
) ) 2][ K. Uehara and M. Fujise, “Fuzzy inference based on families-t#vel
making such requests; 4) the proposed system needs NOt setsIEEE Trans. Fuzzy Systol. 1, no. 2, pp. 111-124, May 1993.

any acoustic, prosodic, syntactic, and grammatical structuf&s] C. T. Lin and C. S. G. LeeNeural Fuzzy Systems: A Neural-Fuzzy
It is the network (connectionist) structure that enables it to Synergism to Intelligent SystemsEnglewood Cliffs, NJ: Prentice-Hall,

. . . May, 1996.
decode the intended information from a natural languages] A.Kaufmannand M. M. Guptdntroduction to Fuzzy Arithmetic. New
message and this structure makes the system be able to York: Van Nostrand Reinhold, 1985.

. L . [15] L. A. Zadeh, “Knowledge representation in fuzzy logi¢EEE Trans.
perform more human-like command acquisition and learning;™ «nowi. Data Eng.vol. 1, no. 1, pp. 89-100, Mar. 1989.

and 5) the system can acquire fuzzy command during tfig] S. Haykin,Neural Networks. New York: Macmillan, 1994, ch. 11, pp.

. . . P 444-471.
course of performing task. That is, it has the capacity ?I?] K. W. Church and P. Hanks, “Word association norms, mutual in-

on-line learning for seeking a more suitable network at any * formation and lexicography,” irProc. 27th Meet. Assoc. Computat.
time by accepting the critics from the users. There are many Linguistics, 1989, pp. 76-83.

L © it hI8] R. Sproat and C. Shih, “A statistical method for finding word boundaries
promising applications for the proposed command acqu|S|t|(§]ri3 in Chinese text.” inComput. Proc. Chinese Oriental Land.990.

system such as automated call routing in a telecommunicatigng R. M. Gray, Entropy and Information Theory.New York: Springer-
network, on-line information retrieval system, human voice-  Verlag, 1990. .

trol robot . trol t ti tc. Th é%P] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets and clas-
control robot, voice-control au Oma_l IC (?ar’ etc. . € propos sification,” IEEE Trans. Neural Networksyol. 3, pp. 683-696, May
AFCAN can make the man-machine interface in the above 1992.
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