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An On-Line Self-Constructing Neural Fuzzy
Inference Network and Its Applications

Chia-Feng Juang and Chin-Teng Lin

Abstract—A self-constructing neural fuzzy inference network
(SONFIN) with on-line learning ability is proposed in this pa-
per. The SONFIN is inherently a modified Takagi–Sugeno–Kang
(TSK)-type fuzzy rule-based model possessing neural network’s
learning ability. There are no rules initially in the SONFIN. They
are created and adapted as on-line learning proceeds via simul-
taneous structure and parameter identification. In the structure
identification of the precondition part, the input space is parti-
tioned in a flexible way according to a aligned clustering-based
algorithm. As to the structure identification of the consequent
part, only a singleton value selected by a clustering method
is assigned to each rule initially. Afterwards, some additional
significant terms (input variables) selected via a projection-based
correlation measure for each rule will be added to the consequent
part (forming a linear equation of input variables) incrementally
as learning proceeds. The combined precondition and consequent
structure identification scheme can set up an economic and
dynamically growing network, a main feature of the SONFIN.
In the parameter identification, the consequent parameters are
tuned optimally by either least mean squares (LMS) or recursive
least squares (RLS) algorithms and the precondition parameters
are tuned by backpropagation algorithm. Both the structure
and parameter identification are done simultaneously to form a
fast learning scheme, which is another feature of the SONFIN.
Furthermore, to enhance the knowledge representation ability
of the SONFIN, a linear transformation for each input variable
can be incorporated into the network so that much fewer rules
are needed or higher accuracy can be achieved. Proper linear
transformations are also learned dynamically in the parameter
identification phase of the SONFIN. To demonstrate the capa-
bility of the proposed SONFIN, simulations in different areas
including control, communication, and signal processing are done.
Effectiveness of the SONFIN is verified from these simulations.

Index Terms—Equalizer, noisy speech recognition, projection-
based correlation measure, similarity measure, TSK fuzzy rule.

I. INTRODUCTION

T HE problem of system modeling is encountered in many
areas such as control, communications, and pattern recog-

nition, etc. Recently, the neural fuzzy approach to system
modeling has become a popular research focus [1]–[4]. The
key advantage of neural fuzzy approach over traditional ones
lies on that the former doesn’t require a mathematical de-
scription of the system while modeling. Moreover, in contrast
to pure neural or fuzzy methods, the neural fuzzy method
possesses both of their advantages; it brings the low-level
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learning and computational power of neural networks into
fuzzy systems and provides the high-level human-like thinking
and reasoning of fuzzy systems into neural networks [5]–[7].

A fuzzy system consists of a bunch of fuzzy if-then rules.
Conventionally, the selection of fuzzy if-then rules often relies
on a substantial amount of heuristic observation to express
proper strategy’s knowledge. Obviously, it is difficult for
human experts to examine all the input–output data from a
complex system to find a number of proper rules for the fuzzy
system. To cope with this difficulty, several approaches to
generating fuzzy if-then rules from numerical data, an active
research topic in the neural fuzzy area, have been proposed
[6]–[15]. Generally, these approaches consist of two learning
phases, the structure learning phase and the parameter learning
phase. Traditionally, these two phases are done sequentially;
the structure learning phase is employed to decide the structure
of fuzzy rules first and then the parameter learning phase is
used to tune the coefficients of each rule (like the shapes
and positions of the membership functions). One disadvantage
of this sequential learning scheme is that it is suitable only
for off-line instead of on-line operation. Moreover, to adopt
this scheme a large amount of representative data should be
collected in advance. Also, the independent realization of the
structure and parameter learning usually each spends a lot
of time. Owning to these problems, the structure as well
as the parameter learning phases are done simultaneously in
the proposed self-constructing neural fuzzy inference network
(SONFIN). This ability makes the SONFIN suitable for fast
on-line learning.

One important task in the structure identification of a neural
fuzzy network is the partition of the input space, which
influences the number of fuzzy rules generated. The most
direct way is to partition the input space into grid types with
each grid representing a fuzzy if-then rule [see Fig. 1(a)]. The
major problem of such kind of partition is that the number
of fuzzy rules increases exponentially as the dimension of
the input space increases. Another frequently used method
for input space partitioning is to cluster the input training
vectors in the input space [24], [25]. Such a method provides
a more flexible partition, as shown in Fig. 1(b). The resulting
fuzzy rule is of the form, Rule: IF is , THEN is ,
where denotes the input vector with
dimension and the th cluster formed in the input space.
One problem of this partition is that what means and what
are the corresponding fuzzy terms in each input variable are
always opaque to the user, especially in the case of high-
input dimensions. This violates the spirit of fuzzy systems
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Fig. 1. Fuzzy partitions of two-dimensional input space. (a) Grid-type par-
titioning. (b) Clustering-based partitioning. (c) GA-based partitioning. (d)
Proposed aligned clustering-based partitioning.

that what a fuzzy rule means and how it works should be easy
to understand. We may solve this problem by projecting the
generated cluster onto each dimension of the input space to
form a projected one-dimensional (1-D) membership function
for each input variable and represent a cluster by the product of
the projected membership functions, as illustrated in Fig. 1(b).
Compared with the grid-type partition, the clustering-based
partition does reduce the number of generated rules, but not
the number of membership functions of each input variable. To
verify this, suppose there areinput variables and each input
variable is partitioned into parts ( fuzzy terms). Then the
total number of membership functions used is for the grid-
type partition. As to the clustering-based partition, if there are

clusters formed, then the number of membership functions
generated is . In general, is larger than , meaning
that the clustering-based partition creates more membership
functions than the grid-type one dose. In fact, by observing
the projected membership functions in Fig. 1(b), we find that
some membership functions projected from different clusters
have high similarity degrees. These highly similar membership
functions should be eliminated. This phenomenon occurs not
only in the clustering-based partitioning methods, but also
in other approaches like those based on the orthogonal least
square (OLS) method [16], [17].

Another flexible input space partitioning method is based
on the genetic algorithm (GA) [28], which has the partition
result as shown in Fig. 1(c). The major disadvantage of this
method is that it is very time consuming; the computation
cost to evaluate a partition result encoded in each individual
is very high and many generations are needed to find the final
partition. Hence, this scheme is obviously not suitable for on-
line operation. Moreover, the GA-based partitioning methods
might not find meaningful fuzzy terms for each input variable,

as illustrated in Fig. 1(c). In this paper, we develop a novel
on-line input space partitioning method, which is an aligned
clustering-based approach. This method can produce a parti-
tion result like the one shown in Fig. 1(d). Basically, it aligns
the clusters formed in the input space, so it reduces not only the
number of rules but also the number of membership functions
under a prespecified accuracy requirement. The proposed
method creates only the significant membership functions on
the universe of discourse of each input variable by using
a fuzzy measure algorithm. It can thus generate necessary
fuzzy rules from numerical data dynamically. In [17], the most
significant rules are selected based upon OLS method. To use
this method, the learning data should be collected in advance
and the parameters of the fuzzy basis functions are fixed. The
generated fuzzy rules by this method are significant only for
the fixed input–output training pairs collected in advance, so
it is not suitable for on-line learning. Since our objective is
on-line learning, and the input membership functions are all
tunable, a rule is considered to be necessary and is generated
when it has a low overlapping degree with others.

Another objective of this paper is to provide an optimal
way for determining the consequent part of fuzzy if-then
rules during the structure learning phase. Different types of
consequent parts (e.g., singletons, bell-shaped membership
functions, or a linear combination of input variables) have been
used in fuzzy systems [22]. It was pointed out by Sugeno and
Tanaka [20] that a large number of rules are necessary when
representing the behavior of a sophisticated system by the ordi-
nary fuzzy model based on Mamdani’s approach. Furthermore,
they reported that the Takagi–Sugeno–Kang (TSK) model can
represent a complex system in terms of a few rules. However,
even though fewer rules are required for the TSK model, the
terms used in the consequent part are quite considerable for
multi-input/multi-output systems or for the systems with high-
dimensional input or output spaces. Hence, we encounter a
dilemma between the number of fuzzy rules and the number of
consequent terms. A method is proposed in this paper to solve
this dilemma, which is, in fact, a combinational optimization
problem. A fuzzy rule of the following form is adopted in our
system initially

Rule IF is and and is

THEN is (1)

where and are the input and output variables, respec-
tively, is a fuzzy set, and is the position of a symmetric
membership function of the output variable with its width
neglected during the defuzzification process. This type of fuzzy
rule is used as the main body of the SONFIN. We call a
SONFIN consisting of such kind of rules abasic SONFIN. By
monitoring the change of the network output errors, additional
terms (the linear terms used in the consequent part of the
TSK model) will be added when necessary to further reduce
the output error. If it is decided that some auxiliary terms
should be added to the consequent part during the on-line
learning process, a projection-based correlation measure using
Gram–Schmidt orthogonalization algorithm will be performed
on each rule to select the most significant terms to be incor-
porated into the rule. This consequent identification process is
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Fig. 2. Structure of the proposed SONFIN.

employed in conjunction with the precondition identification
process to reduce both the number of rules and the number
of consequent terms.

Associated with the structure identification scheme is the
parameter identification scheme used in the SONFIN. In the
parameter identification scheme, the consequent parameters
(coefficients of the linear equations) are tuned by either least
mean squares (LMS) or recursive least squares (RLS) algo-
rithms and the precondition parameters (membership functions
of input variables) are tuned by the backpropagation algorithm
to meet the required output accuracy. Furthermore, to enhance
the knowledge representation capability of the SONFIN, a
linear transformation of the input variables can be incorporated
into the network to further reduce the rule number or to achieve
higher output accuracy. Proper linear transformation is also
tuned automatically during the parameter learning phase. Both
the structure and parameter learning are done simultaneously
for each incoming training pattern to form a fast on-line
learning scheme.

This paper is organized as follows. Section II describes
the basic structure and functions of the SONFIN. The on-
line structure/parameter learning algorithms of the SONFIN
is presented in Section III. In Section IV, the SONFIN is
applied to solve several problems covering the areas of control,
communication, and signal processing. Finally, conclusions are
summarized in the last section.

II. STRUCTURE OF THESONFIN

In this section, the structure of the SONFIN (as shown in
Fig. 2) is introduced. This six-layered network realizes a fuzzy
model of the following form:

Rule IF is and and is

THEN is

where is a fuzzy set, is the center of a symmetric
membership function on, and is a consequent parameter.
It is noted that unlike the traditional TSK model where all the
input variables are used in the output linear equation, only the
significant ones are used in the SONFIN, i.e., some’s in
the above fuzzy rules are zero. With this six-layered network
structure of the SONFIN, we shall define the function of each
node in Section II-A and then introduce an enhanced structure
of the SONFIN in Section II-B.

A. Structure of the SONFIN

The SONFIN consists of nodes, each of which has some
finite “fan-in” of connections represented by weight values
from other nodes and “fan-out” of connections to other nodes.
Associated with the fan-in of a node is an integration function

, which serves to combine information, activation, or evi-
dence from other nodes. This function provides the net input
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for this node

net-input

where are inputs to this node and
are the associated link weights. The

superscript in the above equation indicates the layer
number. This notation will also be used in the following
equations. A second action of each node is to output an
activation value as a function of its net-input

output net-input

where denotes the activation function. We shall next
describe the functions of the nodes in each of the six layers
of the SONFIN.

Layer 1: No computation is done in this layer. Each node
in this layer, which corresponds to one input variable, only
transmits input values to the next layer directly. That is

and

(2)

From the above equation, the link weight in layer one
is unity.

Layer 2: Each node in this layer corresponds to one lin-
guistic label (small, large, etc.) of one of the input variables
in Layer 1. In other words, the membership value which
specifies the degree to which an input value belongs a fuzzy
set is calculated in Layer 2. There are many choices for the
types of membership functions for use, such as triangular,
trapezoidal, or Gaussian ones. In this paper, a Gaussian
membership function is employed for two reasons. First, a
fuzzy system with Gaussian membership function has been
shown to be an universal approximator of any nonlinear
functions on a compact set [16]. Second, a multidimensional
Gaussian membership function generated during the learning
process can be decomposed into the product of 1-D Gaussian
membership functions easily. With the choice of Gaussian
membership function, the operation performed in this layer is

and

(3)

where and are, respectively, the center (or mean) and
the width (or variance) of the Gaussian membership function
of the th term of the th input variable . Hence, the
link weight in this layer can be interpreted as . Unlike
other clustering-based partitioning methods, where each input
variable has the same number of fuzzy sets, the number of
fuzzy sets of each input variable is not necessarily identical
in the SONFIN.

Layer 3: A node in this layer represents one fuzzy logic
rule and performs precondition matching of a rule. Here, we
use the following AND operation for each Layer-3 node

and

(4)

where is the number of Layer-2 nodes participating in the
IF part of the rule and

. The link weight in Layer 3
is then unity. The output of a Layer-3 node represents

the firing strength of the corresponding fuzzy rule.
Layer 4: The number of nodes in this layer is equal to that

in Layer 3 and the firing strength calculated in Layer 3 is
normalized in this layer by

and

(5)

Like Layer 3, the link weight in this layer is unity, too.
Layer 5: This layer is called the consequent layer. Two

types of nodes are used in this layer and they are denoted
as blank and shaded circles in Fig. 2, respectively. The node
denoted by a blank circle (blank node) is the essential node
representing a fuzzy set (described by a Gaussian membership
function) of the output variable. Only the center of each
Gaussian membership function is delivered to the next layer
for the local mean of maximum (LMOM) defuzzification
operation [23] and the width is used for output clustering only.
Different nodes in Layer 4 may be connected to a same blank
node in Layer 5, meaning that the same consequent fuzzy set is
specified for different rules. The function of the blank node is

and

(6)

where , the center of a Gaussian membership
function. As to the shaded node, it is generated only when
necessary. Each node in Layer 4 has its own corresponding
shaded node in Layer 5. One of the inputs to a shaded node is
the output delivered from Layer 4 and the other possible inputs
(terms) are the input variables from Layer 1. The shaded node
function is

and

(7)

where the summation is over the significant terms connected to
the shaded node only, and is the corresponding parameter.



16 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 1, FEBRUARY 1998

(a) (b)

Fig. 3. (a) The region covered by the original input membership functions.
(b) The covered region after space transformation.

Combining these two types of nodes in Layer 5, we obtain the
whole function performed by this layer as

(8)

Layer 6: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layer 5 and acts as a defuzzifier with

and

(9)

B. Enhanced Structure of the SONFIN

For the structure of the SONFIN introduced in the last
subsection, the region that the input membership functions
cover is restricted to be of an elliptic shape with the axes
of the ellipse parallel to the corresponding input coordinate
axes as shown in Fig. 3(a). Such an elliptic region usually
cannot cover the distribution of a cluster of input data well.
For example, if the distribution of the input data is like the
shaded region shown in Fig. 3(a) indicating that the input
variables are highly correlated each other, then we usually
need more than one rule to map such kind of input region to its
corresponding output region. To use as fewer rules as possible,
linear transformation is performed on the input variables in the
SONFIN. The transformation can be regarded as a change of
input coordinates, while the parameters of each membership
function are kept unchanged, i.e., the center and width of each
membership function on the new coordinate axes are the same
as the old ones. In mathematical form, we have

Rule (10)

where are the newly generated input variables and
is the transformation matrix for rule. After

transformation, the region that the input membership functions
cover is shown in Fig. 3(b). It is observed that the rotated
ellipse covers the input data distribution well and, thus, a
single fuzzy rule can associate this region with its proper
output region (consequent).

With the transformation of input coordinates, the firing
strength calculated in Layer 3 (i.e., the function of a Layer-3

node) is changed to

and

(11)

It is noted that basically all the parameters of the transforma-
tion matrix in (10) are free parameters. However, if we set
the additional constraint that , then in geometric
view, the operation is equivalent to a rotation of the region
covered by the original membership functions. In this situation,

is responsible for the location of the membership function
for the spread and for the orientation of each input

coordinate axis. After transformation, the rule in (1) becomes

Rule IF is and

and is

THEN is

where the th element of . The linguistic impli-
cation of the original variable is now implicated by
the new variable (see Fig. 3 for clarity), which is a linear
combination of the original variables. Note that when ,
then the transformed rules are the same as the original ones.

Generally speaking, the flexibility provided by can re-
duce the number of rules needed or can increase the modeling
accuracy of the SONFIN. This transformation is extremely
useful for low-input dimension problems. For high-input di-
mension problems, these advantages may be traded off by the
additional memories required for storing .

III. L EARNING ALGORITHMS FOR THESONFIN

Two types of learning—structure and parameter learn-
ing—are used concurrently for constructing the SONFIN.
The structure learning includes both the precondition and
consequent structure identification of a fuzzy if-then rule.
Here the precondition structure identification corresponds
to the input-space partitioning and can be formulated as a
combinational optimization problem with the following two
objectives: to minimize the number of rules generated and
to minimize the number of fuzzy sets on the universe of
discourse of each input variable. As to the consequent structure
identification, the main task is to decide when to generate a
new membership function for the output variable and which
significant terms (input variables) should be added to the
consequent part (a linear equation) when necessary. For the
parameter learning based upon supervised learning algorithms,
the parameters of the linear equations in the consequent
parts are adjusted by either LMS or RLS algorithms and
the parameters in the precondition part are adjusted by the
backpropagation algorithm to minimize a given cost function.
The SONFIN can be used for normal operation at any time
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during the learning process without repeated training on the
input–output patterns when on-line operation is required.
There are no rules (i.e., no nodes in the network except
the input–output nodes) in the SONFIN initially. They are
created dynamically as learning proceeds upon receiving
on-line incoming training data by performing the following
learning processes simultaneously:

1) input/output space partitioning;
2) construction of fuzzy rules;
3) optimal consequent structure identification;
4) parameter identification.

In the above, learning process 1), 2), and 3) belong to
the structure learning phase and 4) belongs to the parameter
learning phase. The details of these learning processes are
described in the rest of this section.

A. Input–Output Space Partitioning

The way the input space is partitioned determines the
number of rules extracted from training data as well as the
number of fuzzy sets on the universal of discourse of each
input variable. Geometrically, a rule corresponds to a cluster
in the input space, with and representing the center
and variance of that cluster. For each incoming patternx the
strength a rule is fired can be interpreted as the degree the
incoming pattern belongs to the corresponding cluster. For
computational efficiency, we can use the firing strength derived
in (4) directly as this degree measure

(12)

where . In the above equation, the term
is, in fact, the distance between

and the center of cluster. Using this measure, we can
obtain the following criterion for the generation of a new
fuzzy rule. Let be the newly incoming pattern. Find

(13)

where is the number of existing rules at time. If
, then a new rule is generated where is a

prespecified threshold that decays during the learning process.
Once a new rule is generated, the next step is to assign initial
centers and widths of the corresponding membership functions.
Since our goal is to minimize an objective function and the
centers and widths are all adjustable later in the parameter
learning phase, it is of little sense to spend much time on the
assignment of centers and widths for finding a perfect cluster.
Hence, we can simply set

(14)

(15)

according to the first-nearest-neighbor heuristic [10] where
decides the overlap degree between two clusters. Similar

methods are used in [18], [19] for the allocation of a new radial
basis unit. However, in [18] the degree measure doesn’t take
the width into consideration. In [19], the width of each unit
is kept at a prespecified constant value, so the allocation result
is, in fact, the same as that in [18]. In the SONFIN, the width is
taken into account in the degree measure, so for a cluster with
larger width (meaning a larger region is covered), fewer rules
will be generated in its vicinity than a cluster with smaller
width. This is a more reasonable result. Another disadvantage
of [18] is that another degree measure (the Euclid distance) is
required, which increases the computation load.

After a rule is generated, the next step is to decompose
the multidimensional membership function formed in (14) and
(15) to the corresponding 1-D membership function for each
input variable. For the Gaussian membership function used in
the SONFIN, the task can be easily done as

(16)

where and are, respectively, the projected center
and width of the membership function in each dimension. To
reduce the number of fuzzy sets of each input variable and to
avoid the existence of highly similar ones, we should check the
similarities between the newly projected membership function
and the existing ones in each input dimension. Before going to
the details on how this overall process works, let us consider
the similarity measure first. Since bell-shaped membership
functions are used in the SONFIN, we use the formula of
the similarity measure of two fuzzy sets with bell-shaped
membership functions derived previously in [11]. Suppose
the fuzzy sets to be measured are fuzzy setsand
with membership function
and , respectively. Assume

as in [11], we can compute by

(17)

where . So the approximate similarity
measure is

(18)

where we use the fact that .
Let represent the Gaussian membership function

with center and width . The whole algorithm for the
generation of new fuzzy rules as well as fuzzy sets in each
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input variable is as follows. Suppose no rules are existent
initially:

IF is the first incoming pattern THEN do
PART 1. Generate a new rule

with center =

width

where is a prespecified constant.
After decomposition, we have one-

dimensional membership functions,
with and .

ELSE for each newly incoming, do
PART 2. find

IF
do nothing

ELSE

generate a new fuzzy rule, with
, =

After decomposition, we have
, ,
.

Do the following fuzzy measure for each
input variable :

degree

,
where is the number of partitions of

the th input variable.
IF degree
THEN adopt this new membership

function, and set
ELSE set the projected membership

function as the closest one.

In the above algorithm, the threshold determines the
number of rules generated. For a higher value of, more
rules are generated and, in general, a higher accuracy is
achieved. determines the number of output clusters
generated and a higher value of will result in a higher
number of output clusters. is a scalar similarity criterion
which is monotonically decreasing such that higher similarity
between two fuzzy sets is allowed in the initial stage of
learning. For the output space partitioning, the same measure
in (13) is used. Since the criterion for the generation of a
new output cluster is related to the construction of a rule, we
shall describe it together with the rule construction process in
learning process below.

It is mentioned in Section II-B that we can enhance the
performance of the SONFIN by incorporating a transformation
matrix into the structure. To construct the transformation
matrix, if we have noa priori knowledge about it, we
can simply set the matrix to be an identity one initially
for a new generated rule. The identity assignment means

that the transformed rule is the same as the original one
(without transformation) initially and the influence of the
transformation starts when afterward parameter learning is
performed. However, if we havea priori knowledge about the
transformation matrix, e.g., from the distribution of the input
data as shown in Fig. 3, we can incorporate this transformation
into the rule initially.

B. Construction of Fuzzy Rules

As mentioned in learning process 1), the generation of a new
input cluster corresponds to the generation of a new fuzzy
rule, with its precondition part constructed by the learning
algorithm in process 1). At the same time, we have to decide
the consequent part of the generated rule. Suppose a new
input cluster is formed after the presentation of the current
input–output training pair ( ); then the consequent part is
constructed by the following algorithm:

IF there are no output clusters
do PART 1in Process A,

with replaced by
ELSE

do
find
IF
connect input cluster to the

existing output cluster
ELSE
generate a new output cluster
connect input cluster to the newly

generated output cluster.
.

The algorithm is based on the fact that different precondi-
tions of different rules may be mapped to the same consequent
fuzzy set. Since only the center of each output membership
function is used for defuzzification, the consequent part of
each rule may simply be regarded as a singleton. Compared
to the general fuzzy rule-based models with singleton output
where each rule has its own individual singleton value, fewer
parameters are needed in the consequent part of the SONFIN,
especially for the case with a large number of rules.

C. Optimal Consequent Structure Identification

Up until now, the SONFIN contains fuzzy rules in the form
of (1). Even though such a basic SONFIN can be used directly
for system modeling, a large number of rules are necessary
for modeling sophisticated systems under a tolerable modeling
accuracy. To cope with this problem, we adopt the spirit of
TSK model [21] into the SONFIN. In the TSK model, each
consequent part is represented by a linear equation of the input
variables. It is reported in [20] that the TSK model can model
a sophisticated system using a few rules. However, even for
the TSK model, if the dimension of the input or output space
is high, the number of terms used in the linear equation is
large even though some terms are, in fact, of little significance.
Hence, instead of using the linear combination of all the input
variables as the consequent part, only the most significant input
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variables are used as the consequent terms of the SONFIN.
The significant terms will be chosen and added to the network
incrementally any time when the parameter learning cannot
improve the network output accuracy any more during the
on-line learning process. To find the significant terms used in
the consequent part, we shall first discuss some strategies that
can be used on-line for this purpose before present our own
approach.

1) Sensitivity Calculation Method [26]:This is a network
pruning method based on the estimation of the sensitivity of
the global cost function to the elimination of each connection.
To use this method, all the input variables are used in the linear
equation of the consequent part. After a period of learning, the
coefficients of the linear equation are ordered by decreasing
sensitivity values so that the least significant terms in the
linear equation can be efficiently pruned by discarding the
last terms on the sorted list. One disadvantage of this method
is that the correlation between candidate terms is not detected.
Hence, after a term is removed the remaining sensitivities are
not necessarily valid for the pruned network and the whole
sensitivity estimation process should be performed from the
beginning again.

2) Weight Decay Method [26]:This is also a network
pruning method. Like strategy 1, to adopt this method all input
variables are used in the linear equation of the consequent part
initially. By adding a penalty term to the cost function, the
weights of the fewer significant terms will decay to zero under
backpropagation learning. The disadvantage of this method is
that only the backpropagation learning algorithm can be used
and, thus, the computation time is quite long for a weight to
decay to zero. Besides, the terms with higher weights are not
necessarily the most significant ones and, thus, this method
usually chooses more terms than necessary.

3) Competitive Learning:The link weight (coefficient of
consequent linear equation) can be considered as an
indicator of the correlation strength between the input variables
and output variables in the consequent part. The competitive
learning rule can thus be used to update [10]. After
competitive learning, the terms with larger weights are kept
and those with smaller ones are eliminated. As in strategy 1,
no correlation between the inputs is considered, so the result
is not optimal.

In the choice of the significant terms participated
in the consequent part, since the dependence between
the candidates and the desired output is
linear [ ], we can consider the

training sequences
and as vectors and find the
correlation between and

. The correlation between two vectors
and is estimated by the cosine value of their angle

. If vectors
and are dependent, then , otherwise if

and are orthogonal then . The main idea of the
choice scheme is as follows. Suppose we have chosen
vectors from (the number of input variables) candidates to
form a space . To find the next

important vector from the remaining vectors, we
first project each of the remaining vectors to the null
space of , find the correlation value between the

projected vectors and, then choose the maximum
one which is the th important term of the candidates,
and finally set . Here, is
the vector formed by the essential singleton values. To find
the projected vector , the Gram–Schmidt orthogonalization
procedure [27] is adopted as

(19)

(20)

If there are rules, then we have candidate vectors, a
large number that may lead to high computation load in the
calculation of the projected vectors in the above. To reduce
the computation cost and to keep the parallel-processing
advantage assumed in fuzzy rule-based systems, the terms in
the consequent part are selected independently for each rule;
that is, the projection operation is done only for thecandidate
vectors in each rule, not for other rules. This computation
process is based upon the local property of a fuzzy rule-
based system, so the vectors from other rules usually have less
influence than the vectors in the same rule and are ignored for
computational efficiency.

For on-line learning, to calculate the correlation degree,
we have to store all the input/output sequences before these
degrees are calculated. To do this, the size of memory required
is of order , where , and are the number
of rules, input, and output variables, respectively. Hence,
the memory requirement is huge for large. To cope with
this problem, instead of storing the input–output sequences,
we store the correlation values only. Let denote the

correlation between the sequence and the
auto correlation of the sequence and the correlation

between the sequence and . For each incoming
data, these values are on-line calculated, respectively, for each
rule by

(21)

(22)

(23)

where and
and are initially equal

to zero. For normal correlation computation,
is used, but for computation efficiency and for changing
environment where the recent calculations dominate, a
constant value, say , can be used. Using the
stored correlation values in (21) and (22), we can compute
the correlation values and choose the significant ones. The



20 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 1, FEBRUARY 1998

algorithm for this computation is described as follows. In the
following, denotes the number of terms to be selected from
the candidates, , denotes the terms already
selected by the algorithm, and denotes the essential
singleton term for each rule.

Projection-Based Correlation Measure Algorithm

For each rule and output variable do

For

For

Compute

(24)

(25)

(26)

(27)

where

(28)

(29)

.

(30)

(31)

Then find such that

(32)

The procedure is terminated at theth step when

(33)

where is the tolerable dependence degree and
terms are added to the consequent part of the rule.

The consequent structure identification scheme in the SON-
FIN is a kind of node growing method in neural networks.
For the node growing method, in general, there is a question
of when to perform node growing. The criterion used in the
SONFIN is by monitoring the learning curve. When the effect
of parameter learning diminished (i.e., the output error does not
decrease over a period of time), then it is the time to apply the
above algorithm to add additional terms to the consequent part.
Some other methods for selecting significant consequent terms

are proposed in [2] and [24]. In [2], the forward selection of
variables (FSV) method is proposed. In this method, different
combinations of candidate consequent terms (input variables)
are chosen for test. Finally, the one resulting in the minimal
error is chosen. This method requires repeated tests and is
inefficient. In [24], the OLS learning algorithm is used to
select the significant terms as well as their corresponding
coefficients. To use this method, a block of measured data
should be prepared and the input space should be partitioned
in advance and kept unchanged. This is not suitable for on-
line operation. Moreover, to store the input/output sequence,
the memory required is of order for each rule.

D. Parameter Identification

After the network structure is adjusted according to the
current training pattern, the network then enters the parameter
identification phase to adjust the parameters of the network
optimally based on the same training pattern. Notice that
the following parameter learning is performed on the whole
network after structure learning, no matter whether the nodes
(links) are newly added or are existent originally. The idea of
backpropagation is used for this supervised learning. Consider-
ing the single-output case for clarity, our goal is to minimize
the error function

(34)

where is the desired output and is the current output.
For each training data set, starting at the input nodes, a forward
pass is used to compute the activity levels of all the nodes in
the network to obtain the current output . Then, starting at
the output nodes, a backward pass is used to compute
for all the hidden nodes. Assuming that is the adjustable
parameter in a node (e.g., , , and in the SONFIN),
the general update rule used is

(35)

(36)

where is the learning rate and

activation function
activation function

(37)

To show the learning rules, we shall show the computations
of layer by layer, and start the derivation from the
output nodes.

Layer 6: There is no parameter to be adjusted in this
layer. Only the error signal [ ] needs to be computed and
propagated. The error signal is derived by

(38)
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Layer 5: Using (8) and (37), the update rule for is

(39)

and

(40)

(41)

where the summation is over the number of links from Layer
4 for the th node. Hence, the parameter is updated by

(42)

where . In addition to the LMS-like algorithm in (42),
to improve the learning speed, the RLS learning algorithm [30]
can be used instead in Layers 5 and 6 (as below)

(43)

(44)

where is the forgetting factor, is the current
input vector, is the corresponding parameter vector, and
is the covariance matrix. The initial parameter vector is
determined in the structure learning phase and
where is a large positive constant. To cope with changing
environment, in general, is used. Also, to avoid
the unstable effect caused by a small, we may reset as

after a period of learning.
No matter which tuning method (LMS or RLS) is used in

Layers 5 and 6, the error propagated to the preceding layer is

(45)

Layer 4: As in Layer 6, only the error signal need be
computed in this layer. According to (5) and (37), this error
signal can be derived by

(46)

where

(47)

If there are multiple outputs, then the error signal becomes
where the summation is performed over the

consequents of a rule node; that is, the error of a rule node is
the summation of the errors of its consequents.

Layer 3: As in Layer 4, only the error signal need be
computed in this layer

(48)

(49)

where

if

if .

(50)

So, we have

(51)

Layer 2: Using (3) and (37), the update rule of is
derived as in the following:

(52)

where

(53)

if term node is
connected to rule node
otherwise.

(54)

So, the update rule of is

(55)

Similarly, using (3) and (37), the update rule of is derived
as

(56)

where

if term node is connected
to rule node
otherwise.

(57)
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So, the update rule of is

(58)

If the transformation matrix introduced in Section II-B is
used, then for rule we have

(59)

where . Then the update rules for
and are

(60)

(61)

(62)

where

and (63)

(64)

(65)

Hence, we have

(66)

(67)

(68)

If the role played is the rotation operation, then after the
updating in (68), may no longer satisfy the constraint

. To modify to satisfy this constraint after
tuning, the orthogonalization algorithm introduced in [29] can
be adopted.

IV. SIMULATIONS

To verify the performance of the SONFIN, several examples
are presented in this section. These examples cover the areas
of control, communication, and signal processing.

Example 1—Identification of the Dynamic System:In this
example, the SONFIN is used to identify a dynamic system.
The identification model has the form

(69)

Since both the unknown plant and the SONFIN are driven by
the same input, the SONFIN adjusts itself with the goal of
causing the output of the identification model to match that
of the unknown plant. Upon convergence, their input–output
relationship should match. The plant to be identified is guided
by the difference equation

(70)

(a)

(b)

Fig. 4. Simulation results of the SONFIN without performing fuzzy measure
on the membership functions of each input variable in Example 1. (a) The
input training patterns and the final assignment of rules. (b) The distribution
of the membership functions on theu(k) andy(k) dimensions.

The output of the plant depends nonlinearly on both its past
values and inputs, but the effects of the input and output values
are additive. In applying the SONFIN to this identification
problem, the learning rate ,

, and are chosen, where and are the
threshold parameters used in the input and output clustering
processes, respectively. At first, we use the SONFIN without
performing fuzzy measure on the membership functions of
each input variable, so the number of fuzzy sets of each input
variable is equal to the number of rules. The training patterns
are generated with . The training is
performed for 50 000 time steps, where the consequent part
is tuned by the LMS algorithm. After training, ten input
and five output clusters are generated. Fig. 4(a) illustrates the



JUANG AND LIN: ON-LINE SELF-CONSTRUCTING NEURAL FUZZY INFERENCE NETWORK 23

(a)

(b)

Fig. 5. Simulation results of the SONFIN in Example 1 where the dotted
line denotes the output of the SOFIN and the solid line denotes the actual
output. (a) Result without fuzzy measure performed. (b) Result with fuzzy
measure performed.

distribution of the training patterns and the final assignment of
fuzzy rules (i.e., distribution of input membership functions)
in the plain. In Fig. 4(a) and succeeding similar
figures, the boundary of each ellipse represents a rule with
firing strength . The input data not covered by the ellipse
are the data with a maximum corresponding firing strength less
than but higher than , so no additional rules have to
be generated to cover them. The corresponding membership
functions on the and dimensions are shown in
Fig. 4(b). From Fig. 4(b), we can see that some membership
functions have high similarity degrees and some of them can
be eliminated. Fig. 5(a) shows the outputs of the plant and the
identification model after 50 000 time steps. In this figure, the
outputs of the SONFIN are presented as the dotted curve while
the plant outputs are presented as the solid curve. Since perfect
identification result is achieved with the basic SONFIN [i.e.,
the SONFIN with fuzzy rules in the form of (1)], no additional
terms need to be added to the consequent part.

In the above simulation, the parameter , , and
need to be selected in advance. To give a clear understanding
of the influence of these parameters on the structure and
performance of the SONFIN, different values of them are
tested. The generated network structure and corresponding root
mean square (rms) errors are listed in Table I. From Table I,
we can see that in certain ranges of the parameters, the rms
error has no much change. A higher value of results in a
lower rms error at the cost of larger rule number. Since the

(a)

(b)

Fig. 6. Simulation results of the SONFIN with fuzzy measure performed
on the membership functions of each input variable in Example 1. (a) The
input training patterns and the final assignment of rules. (b) The distribution
of the membership functions on theu(k) and y(k) dimensions where less
membership functions are generated.

Fig. 7. The use of the SONFIN as an adaptive equalizer.

desired output values change smoothly, a low value of
resulting in small output clusters is enough. Since a higher
value of means higher overlapping between rules and a



24 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 1, FEBRUARY 1998

(a) (b)

(c) (d)

Fig. 8. Decision regions in Example 2. (a) Optimal decision region. (b) Decision region of network A. (c) Decision region of network B. (d) Decision
region of network C.

TABLE I
INFLUENCES OF THEPARAMETERS. (a) F out, (b) F

in
, (c) � ON THE

STRUCTURE OF THESONFIN AND ITS CORRESPONDING RMSERROR

(a)

(b)

(c)

larger initial width is assigned to each rule, fewer rules are
generated and larger rms error is obtained. From the table, we
see that with the same structure a lower value ofperforms
better on the matching task than a higher one.

To reduce the number of membership functions generated
in each dimension, we have also applied the fuzzy-measure
method on each input dimension during the learning process.
The same training task as above is done and is chosen.
After 50 000 time steps of training, again, ten input and five

output clusters are generated, but the number of fuzzy sets on
the and dimensions are five and seven, respectively.
Fig. 6(a) shows the distribution of the generated input clusters
in the plain. Fig. 6(b) shows the fuzzy sets on the

and dimensions. The identification result is shown
in Fig. 5(b), a result very similar to Fig. 5(a), while fewer
fuzzy sets (input membership functions) are needed in total.
The same structure is obtained when is chosen. If

is chosen, then the number of fuzzy sets on the
and dimensions are eight and ten, respectively.

Example 2—Nonlinear Channel Equalization:Nonlinear
channel equalization is a technique used to combat some im-
perfect phenomenon (mainly refers to intersymbol interference
in the presence of noise) in high-speed data transmission over
channels like the high-speed modems [30]. The structure of
the system is shown in Fig. 7. The transmitted input signal

is a sequence of statistically independent random binary
symbols taking values of zero or one with equal probability. If

denotes the output of the channel, then the channel function
can be described as

(71)

At the receiving end, a channel noise presents and the
observed signal is

(72)

The task of the equalizer is to reconstruct the transmitted
signal from the observed information sequence

(where and denote the
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(a) (b)

(c)

Fig. 9. The input training patterns and the final assignment of rules in Example 2, where the labeled number of each rule denotes the generation order. (a)
Rule assignment in network A where 17 rules are generated. (b) Rule assignment in network B where nine rules are generated with transformation operation
incorporated in each rule. (c) Rule assignment in network C where nine rules are generated.

lag and order, respectively) such that greater speed and higher
reliability can be achieved. Suppose the channel function is

(73)

where and noise is zero-
mean colored Gaussian distributed with and

. Suppose and . The
optimal decision boundary is plotted in Fig. 8(a). Choosing

and (i.e.,
no fuzzy measure performed on each input dimension), we
trained the SONFIN for each on-line incoming training pattern
and stopped the training at . Since the desired output
is either 1 or 1, there are only two clusters centered at

and in the output space. Hence, during the training

we tune the parameters in the precondition part only and keep
the two consequent parameters and unchanged. After
training, 17 clusters (rules) are generated. Fig. 9(a) illustrates
the distribution of the 5000 training patterns as well as the
generated clusters. The decision region of the trained SONFIN
(network ) is shown in Fig. 8(b). To see the actual bit-error
rate (BER), a realization of 10points of the sequence
and are used to test the BER of the trained network.
The resulting BER curve of the network is shown in Fig. 10,
denoted by “ .”

To reduce the number of rules generated, we incorporate the
transformation matrix for each rule into the SONFIN. Ini-
tially, the transformation matrix is set as an identity matrix
for each rule. Choosing ,
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Fig. 10. Comparison of bit-error-rate curves for the optimal equalizer (“�”),
network A (“�”), network B (“�”), network C (“+”), network D (“�”), and
network E (“ ”) in Example 2.

and doing the same training task as above, we
obtain the generated rules (clusters) shown in Fig. 9(b), where
only nine rules are generated and the numbers of membership
functions in the and dimensions are seven
and six, respectively. The decision region of this SONFIN
(network B) is shown in Fig. 8(c) and its BER is shown in
Fig. 10, denoted by “.” The performance is similar to that
of network A, but fewer rules are generated. Using the same
structure of network B except that no transformation matrix

is incorporated, we have a third SONFIN (network C) with
the generated rule distribution shown in Fig. 9(c). The decision
region is shown in Fig. 8(d) and the BER curve is shown in
Fig. 10 denoted by “+.” A worse result than that of network B
is obtained, verifying that a higher accuracy is achieved with
the incorporation of . To give a more clear view on the effect
of , two networks (D and E) with the same structure as
network B are tested. For network D, no parameter learning is
performed and the resulting BER is shown in Fig. 10 denoted
by “ .” For network E, all parameters are fixed during learning
except the transformation matrix . The resulting BER is
shown in Fig. 10 denoted by “.” Contribution of can be
seen more clearly from this comparison.

In the above SONFIN’s, only two values—“1” and
“ 1”—are assigned to the consequent part of each rule
after structure learning. For comparison, we test other three
networks A, B , and C using the same number of rules and
membership functions as those of networks A, B, and C,
respectively, except that each rule has its own corresponding
singleton value in the consequent part, which is adjustable
during the learning process. The training task is the same as
that for networks A, B, and C. After training, the decision
regions of networks A, B , and C are shown in Fig. 11 and
the BER curves are shown in Fig. 12 where “,” “ ,” and

(a)

(b)

(c)

Fig. 11. Decision region in Example 2. (a) Decision region of network A0.
(b) Decision region of network B0. (c) Decision region of network C0.

“ ” curves denote the BER curves of network A, B , and C,
respectively. The results are similar to those obtained from
network A, B, and C, even though more parameters are used
in the consequent parts of network A, B , and C.

Example 3—Water Bath Temperature Control:The objec-
tive of this example is to control the temperature of a water
bath at specified temperatures between 25–80C using the
SONFIN. To achieve this purpose, the SONFIN is trained to
learn the inverse dynamic model of the water bath temperature
control system. The trained SONFIN is then configured as a
direct controller to the system. Learning an inverse dynamic
model is currently one of the most viable techniques in
the application of neural networks for control. The system
configuration is shown in Fig. 13, where represents
time steps delay and is the desired output of the plant. By
applying random inputs within a desired range to the plant, the
corresponding outputs are gathered to form a set of training
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Fig. 12. Comparison of BER curves for the optimal equalizer (“�”), network
A0 (“�”), network B0 (“�”), and network C0 (“+”) in Example 2.

Fig. 13. The direct inverse control configuration where the SONFIN is used
as the controller.

data. After training, the SONFIN is used to produce control
signals as a function of the desired plant output. The water
bath plant used here is governed by

(74)

where

(75)

(76)

The system parameters used in this example are
, , , and C ,

which were obtained from a real water bath plant in [31].
The plant input is limited between zero and five and the
sampling period is . To generate the training data,
the temperature control system is operated in an open-loop
fashion and 50 random signalsare injected directly to the
plant described by (74). The 50 generated patterns are used

(a)

(b)

Fig. 14. Simulation results of using the SONFIN with only a singleton in
the consequent part of each rule in Example 3. (a) The actual output (denoted
as the solid line) and the desired output (denoted as the dotted line). (b)
The desired temperature (denoted as the solid line)ŷr(k) and the controlled
temperaturey(k) (denoted as the dotted line).

to train the SONFIN, with being the input
and the desired output.

Since the desired outputs change sharply even for similar
inputs in this example, we shall first show that the general
fuzzy rules with separate output singleton for each rule (i.e.,
a basic SONFIN) cannot handle this task, even though a large
number of rules are used. The learning rate ,

, , , and are chosen to
train a basic SONFIN. The consequent parameters are tuned
by the LMS algorithm. After 1000 epochs of training, the
learning result is shown in Fig. 14(a) where 23 rules are
generated. The temperate control result is shown in Fig. 14(b),
indicating a failure control. Next, we use fewer rules but add
additional terms to the consequent part (i.e., we use the TSK-
type rules). Since only two input variables are used in this
example, both input variables are used in the consequent part
of each rule. The parameters used for learning are ,

, , and . The consequent parameters
are tuned by the RLS algorithm with . After five
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(a) (b)

(c) (d)

Fig. 15. Simulation results of using the SONFIN with a linear equation in the consequent part of each rule in Example 3. (a) The actual output (denoted
as the solid line) and the desired output (denoted as the dotted line). (b) The input training patterns and the final assignment of rules. (c) The desired
temperatureyr(k) (denoted as the solid line) and the controlled temperaturey(k) (denoted as the dotted line). (d) The input training patterns and the
final assignment of rules with linear transformationsR

i
incorporated. (e) The desired temperatureyr(k) (denoted as the solid line) and the controlled

temperaturey(k) (denoted as the dotted line).

epochs of training, the learning result is shown in Fig. 15 (a).
Fig. 15(b) illustrates the distribution of the training patterns
and the final assignment of fuzzy rules in the
plain. The number of generated rules is seven and the numbers
of fuzzy sets in the and dimensions are four and
four, respectively. The control result is shown in Fig. 15(c),
indicating a perfect control. To further reduce the number of
rules generated, a linear transformation of the input variables

is incorporated and is set as a rotation of 45initially
based on the observation of the input data distribution. With
the choice of , , and , only
three rules are generated [see Fig. 15(d)] and a perfect control
is achieved, as shown in Fig. 15(e).

Example 4—Prediction of the Chaotic Time-Series:In the
above examples, the problems to be solved are either simple
or have low-dimension inputs, so a basic SONFIN or the
SONFIN with all input variables in the consequent part is
used. In this example, we shall show a more complex problem

which has high-dimension inputs and the SONFIN with output
terms selected via the projection-based correlation measure is
used. The performance of the SONFIN will be compared to
that of other approaches at the end of this example.

Let be a time series. The problem of
time-series prediction can be formulated as: given

, we are to determine ,
where and are fixed positive integers, i.e., determine a
mapping from
to . In this example, the Mackey–Glass chaotic
time series is generated from the following delay differential
equation:

(77)

where . In our simulation, is chosen. The values
of and are chosen as and in this simulation,
i.e., nine point values in the series are used to predict the value
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Fig. 16. The error curves for different types of networks in Example 4 during
on-line learning where each point represents the value oflog 10(error sum
over 500 points).

of the next time point. The learning parameters ,
, , and are chosen.

The consequent part is updated by the RLS algorithm with
.

At first, the on-line learning is performed on the basic
SONFIN. Three input and three output clusters are generated
during the learning process. The learning curve [ (error
sum over 500 points)] is shown in Fig. 16, denoted by “.”
The final error does not satisfy our requirement. Instead
of using more rules to meet the requirement, we plan to
add some additional terms into the consequent part of the
basic model. Since the dimension of the input space is high,
the consequent structure identification scheme introduced in
Section III-C is used and is chosen. This on-line
identification scheme is performed at the time the error curve
stops descending. The resulting learning curve, denoted as “”
is shown in Fig. 16 where the terms are added until the 1000th
time steps. A total of 15 terms (seven, five, and three for the
three rules, respectively) are added to the consequent part. To
test the significance of the selected terms, we assume the terms
are existent once the corresponding rules are generated. The
resulting learning curve is shown in Fig. 16 denoted as “.”
It is observed that the “” curve and the “” curve match
after 2500 time steps. For comparison, the same number of
consequent terms are used in another SONFIN (i.e., seven,
five, and three terms for the three rules, respectively) with the
terms randomly selected. The learning curve for this SONFIN
is shown in Fig. 16, denoted as “” showing a worse result.
Moreover, the network with all the input variables used in the
consequent part (30 terms in total) is also used for comparison.
The resulting learning curve is shown in Fig. 16, denoted as
“ .” This result is similar to that (the “” curve) of the network
with only 18 significant terms in the consequent part.

Instead of adding a set of terms into the consequent part at
once (as we did in the above), we can add the consequent terms
stage by stage. This can be done by setting a largervalue

Fig. 17. The error curve during on-line learning in Example 4 where
(�; �; �) represents the associated number of additional terms added to
the existing three rules, respectively, and each point represents the value of
log 10(error sum over 500 points).

Fig. 18. The desired values (denoted as the solid line) and the predicted
values (denoted as the circle line) in Example 4. The difference between the
desired and actual values is also shown in the figure, which is denoted as the
solid line below the two magnitude curves.

in the beginning and then decreasinggradually during the
consequent structure identification process untilis smaller
than a prespecified meaningful value or the accuracy satisfies
the requirement. By setting initially and
during the consequent structure identification process, we
obtain the learning curve in Fig. 17 where each sharp drop
in the curve is caused by the addition of additional terms
to the linear equation of the consequent part. After 19 000
time steps, eight terms are added to the consequent part and
the prediction result is shown in Fig. 18 where the predicted
values of the SONFIN are presented as a dotted curve and
the actual values as a solid curve. The difference between the
actual and predicted values is also shown in Fig. 18, which is
presented as a solid curve below the two magnitude curves.
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TABLE II
PERFORMANCE COMPARISON OF VARIOUS RULE GENERATION METHODS ON THE TIME SERIES PREDICTION PROBLEM

Fig. 19. Simulation results of the time series prediction fromx(701) to
x(1000) using the SONFIN with four rules when 200 training data [from
x(501) to x(700)] are used.

To test the generalization ability and compare the perfor-
mance of the SONFIN with other methods that can generate
rules from numerical data, the same chaotic time series training
and testing data in [32] are used. In [32], 200 points of the
series from to are used as training data and
the succeeding 300 points from to are used
as testing data. After off-line training on the 200 points using
the SONFIN, four rules are generated and the additional terms
added to the four rules are 2, 5, 2, and 3, respectively. Fig. 19
shows the prediction of the chaotic time series from
to where the predictions of the SONFIN are denoted
as “ ,” and the true values as “.” The rms error over the 700
predicted points is 0.018. If no additional terms are added to
the consequent part, a rms error of 0.07 is achieved.

To give a clear understanding of the performance of the
SONFIN, the ART-based fuzzy adaptive learning control net-
work (FALCON-ART) and other approaches discussed in
[32] are compared. These approaches include: Wang and
Mendel’s approach [17], [33] based upon direct matching;
the data distribution method, which generates fuzzy rules
according to the training data distribution in the input–output
product space; the generation of fuzzy associative memory
(FAM) rules based on adaptive vector quantization (AVQ)
algorithms which contain unsupervised competitive learning
(UCL) and differential competitive learning (DCL), proposed
by Kosko [5]; and the combination of the UCL (DCL)–AVQ
and backpropagation algorithms method. The generated rule
number as well as rms errors of these approaches are listed in
Table II. As to the detailed construction schemes and actual

Fig. 20. The structure of the noisy speech recognizer using the SONFIN.

TABLE III
THE RECOGNITION RATES UNDER CLEAN AND NOISY

ENVIRONMENT AT DIFFERENT SNR VALUES WITHOUT

USING THE NOISE REDUCTION NETWORK IN EXAMPLE 5

predicted outputs of these models, the reader is referred to
[32]. From Table II, we find that the SONFIN not only needs
much fewer rules and membership functions but also achieves
much smaller rms error.

Example 5—Noisy Speech Recognition:A well-performed
speech recognition system under noise-free conditions usually
show marked degradation in performance when background
noise is present. To overcome this problem, the SONFIN
is used in this example as a noise reduction network in
the cepstral domain. The SONFIN here can be considered
to perform a nonlinear mapping from a noisy feature space
to a noise-free feature space [34]. The architecture of the
enhancement recognition system is shown in Fig. 20. In this
example, the database contains ten isolated Mandarin digits
“0,” , “9.” They were spoken by the same speaker, with
30 noise-free repetitions for each word. Among these 30
repetitions, ten are used for training, ten for cross validation
during the training, and the left ten for testing. The time delay
neural network (TDNN) is used as the recognizer. The features
extracted are the cepstral coefficients with order 12 for each
frame and 20 constant frames are used for each word. The
noisy speech is generated by adding white Gaussian noise
to the clean speech with different signal-to-noise ratio (SNR).

Without the noise reduction network, the recognition rates
under clean and noisy environment at different SNR values are
listed in Table III. In training, the SONFIN as a noise reduction
network at a specific SNR value, the 12 noisy cepstral features
of each frame are used as the inputs and the corresponding
12 noise-free cepstral features as the desired outputs. All
the 100 words in the training set are used for training.
The parameters used for learning are
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TABLE IV
THE NUMBER OF RULES GENERATED, TOTAL NUMBER OF MEMBERSHIP

FUNCTIONS, AND THE NUMBER OF CONSEQUENTPARAMETERS

FOR DIFFERENT SNR VALUES AND MODES IN EXAMPLE 5

(a)

(b)

Fig. 21. The recognition rates on testing data by using the noise reduction
network A (“�”), B (“ �”), C (“�”), and without using the noise reduction
network (“+”) in Example 5. (a) Results for the network trained at SNR
= 0; 6; 12; and18. (b) The generalization ability test for the network trained
at SNR= 18.

and . The consequent
part is tuned by the RLS algorithm with . Using
the above parameters, three types of SONFIN models are
used for comparison. Model A is the basic model with the
consequent part of each rule being a singleton value. Model
B is constructed by adding some significant terms to the
consequent part of model A by the consequent structure
identification scheme described in Section III-C, with

. Model C is a general TSK model whose consequent
part is a linear combination of all the input variables. Each
model is trained at SNR and , respectively. In
training these models, only about eight epochs are needed
via cross validation test. The number of rules generated,
total number of membership functions and the number of
consequent parameters for different SNR values and models
are listed in Table IV. The corresponding noise reduction

(a)

(b)

(c)

Fig. 22. Cepstral features of speech signal in Example 5. (a) The clean
cepstral features of word “0.” (b) The noisy cepstral features wrongly
recognized as word “7.” (c) The filtered cepstral features by using network
B, recognized as word “0” correctly.

effects on the test data for the models trained at each specific
SNR value are shown in Fig. 21(a) where symbols “,” “ ,”
and “ ” denote the recognition rates of model A, B, and C,
respectively, and the symbol “” denotes the recognition rate
without the noise reduction network. To see the generalization
ability for a model trained at a specific SNR value, we may test
it on the speech signals with different SNR values. The noise
reduction network trained at SNR is illustrated. After
trained at SNR , the performance of the noise reduction
network is tested at SNR and and is shown
in Fig. 21(b).

Comparing the performance of model B and C, we find that
their noise reduction effects are very similar, but the number
of parameters used in the consequent part of model B is only
one third of that used in model C. To see the training result,
we use model B for illustration. The clean features for word
“0” are shown in Fig. 22(a) and the extracted noisy features
at SNR are shown in Fig. 22(b), which is wrongly
recognized as word “7.” The filtered features by using model
B are shown in Fig. 22(c), which results in correct recognition.
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V. CONCLUSION

A neural fuzzy inference network SONFIN, with on-line
self-constructing capability, is proposed in this paper. The
SONFIN is a general connectionist model of a fuzzy logic
system, which can find its optimal structure and parameters
automatically. Both the structure and parameter identification
schemes are done simultaneously during on-line learning, so
the SONFIN can be used for normal operation at any time
as learning proceeds without any assignment of fuzzy rules
in advance. A novel network construction method for solving
the dilemma between the number of rules and the number
of consequent terms is developed. The number of generated
rules and membership functions is small even for modeling a
sophisticated system. As a summary, the SONFIN can always
find itself an economic network size, and the learning speed as
well as the modeling ability are all appreciated. Simulations
in different areas including control, communication, and signal
processing have demonstrated the on-line learning capability
of the SONFIN.

REFERENCES

[1] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using
fuzzy neural networks with the backpropagation algorithm,”IEEE Trans.
Neural Networks,vol. 3, pp. 801–806, Sept. 1992.

[2] K. Tanaka, M. Sano, and H. Watanabe, “Modeling and control of carbon
monoxide concentration using a neuro-fuzzy technique,”IEEE Trans.
Fuzzy Syst., vol. 3, pp. 271–279, Aug. 1995.

[3] Y. Lin and G. A. Cunningham, “A new approach to fuzzy-neural system
modeling,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 190–197, May 1995.

[4] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qual-
itative modeling,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 7–31, Feb.
1993.

[5] B. Kosko,Neural Networks and Fuzzy Systems.Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[6] C. T. Lin, Neural Fuzzy Control Systems with Structure and Parameter
Learning. New York: World Scientific, 1994.

[7] C. T. Lin and C. S. G. Lee,Neural Fuzzy Systems: A Neural-Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall,
1996.

[8] J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern.,vol. 23, pp. 665–685, May 1993.

[9] C. T. Sun, “Rule-based structure identification in an adaptive-network-
based fuzzy inference,”IEEE Trans. Fuzzy Syst., vol. 2, pp. 64–73, Feb.
1994.

[10] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and decision system,”IEEE Trans. Comput.,vol. 40, pp. 1320–1336,
Dec. 1991.

[11] , “Reinforcement structure/parameter learning for neural-network-
based fuzzy logic control systems,”IEEE Trans. Fuzzy Syst., vol. 2, pp.
46–63, Feb. 1994.

[12] C. J. Lin and C. T. Lin, “Reinforcement learning for ART-based fuzzy
adaptive learning control networks,” accepted for publication inIEEE
Trans. Neural Networks,vol. 7, pp. 709–731, May 1996.

[13] C. T. Lin, “A neural fuzzy control system with structure and parameter
learning,” Fuzzy Sets Syst., vol. 70, pp. 183–212, 1995.

[14] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning
from examples,”IEEE Trans. Syst., Man, Cybern.,vol. 22, no. 6, pp.
1414–1427, Nov./Dec. 1992.

[15] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
if-then rules for classification problems using genetic algorithms,”IEEE
Trans. Fuzzy Syst., vol. 3, pp. 260–270, Aug. 1995.

[16] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal
approximation, and orthogonal least-squares learning,”IEEE Trans.
Neural Networks,vol. 3, pp. 807–814, Sept. 1992.

[17] L. X. Wang, Adaptive Fuzzy Systems and Control.Englewood Cliffs,
NJ: Prentice-Hall, 1994.

[18] J. Platt, “A resource allocating network for function interpolation,”
Neural Computat., vol. 3, pp. 213–225, 1991.

[19] J. Nie and D. A. Linkens, “Learning control using fuzzified self-
organizing radial basis function network,”IEEE Trans. Fuzzy Syst., vol.
40, pp. 280–287, Nov. 1993.

[20] M. Sugeno and K. Tanaka, “Successive identification of a fuzzy model
and its applications to prediction of a complex system,”Fuzzy Sets Syst.,
vol. 42, no. 3, pp. 315–334, 1991.

[21] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,”IEEE Trans. Syst., Man, Cybern.,
vol. 15, pp. 116–132, Jan. 1985.

[22] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller—Part
II,” IEEE Trans. Syst., Man, Cybern.,vol. 20, pp. 419–435, Mar./Apr.
1990.

[23] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic
controllers through reinforcements,”IEEE Trans. Neural Networks,vol.
3, no. 5, pp. 724–740, Sept. 1992.

[24] L. Wang and R. Langari, “Building Sugeno-type models using fuzzy
discretization and orthogonal parameter estimation techniques,”IEEE
Trans. Fuzzy Syst., vol. 3, pp. 454–458, Nov. 1995.

[25] E. H. Ruspini, “Recent development in fuzzy clustering,”Fuzzy Set and
Possibility Theory. New York: North Holland, 1982, pp. 113–147.

[26] R. Reed, “Pruning algorithms—A survey,”IEEE Trans. Neural Net-
works, vol. 4, pp. 740–747, Sept. 1993.

[27] B. Noble and J. W. Daniel,Applied Linear Algebra,3rd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[28] C. T. Sun and J. S. Jang, “A neuro-fuzzy classifier and its applications,”
in Proc. IEEE Int. Conf. Fuzzy Syst., San Francisco, CA, Mar. 1993,
vol. I, pp. 94–98.

[29] B. Philippe, “An algorithm to improve nearly orthonormal sets of vectors
on a vector processor,”SIAM J. Alg. Disc. Meth.vol. 8, no. 3, pp.
396–403, July 1987.

[30] B. Widrow and S. D. Stearns,Adaptive Signal Processing.Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[31] J. Tanomaru and S. Omatu, “Process control by on-line trained neural
controllers,” IEEE Trans. Indust. Electrons,vol. 39, pp. 511–521, Dec.
1992.

[32] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control
network,” IEEE Trans. Fuzzy Syst., to be published.

[33] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning
from examples,”IEEE Trans. Syst., Man, Cybern.,vol. 22, no. 6, pp.
1414–1427, Nov./Dec. 1992.

[34] H. B. D. Sorensen, “A cepstral noise reduction multilayer neural
network,” in Proc. Int. Conf. Acoust., Speech, Signal Processing,New
York, May, 1991, pp. 933–936.

Chia-Feng Juangreceived the B.S. degree in con-
trol engineering from the National Chiao-Tung Uni-
versity, Taiwan, R.O.C., in 1993. He is currently
working toward the Ph.D. degree in the Department
of Control Engineering at the same university.

His current research interests are neural networks,
learning systems, fuzzy control, noisy speech recog-
nition, and signal processing.

Chin-Teng Lin received the B.S. degree in control
engineering from the National Chiao-Tung Univer-
sity, Taiwan, R.O.C., in 1986, and the M.S.E.E. and
Ph.D. degrees in electrical engineering from Purdue
University, West Lafayette, IN, in 1989 and 1992,
respectively.

Since August 1992, he has been with the College
of Electrical Engineering and Computer Science,
National Chiao-Tung University, Hsinchu, Taiwan,
R.O.C., where he is currently an Associate Professor
of Control Engineering. He is the coauthor ofNeural

Fuzzy Systems—A Neuro-Fuzzy Synergism to Intelligent Systems(Englewood
Cliffs, NJ: Prentice-Hall, 1996) and the author ofNeural Fuzzy Control
Systems with Structure and Parameter Learning(New York: World Scientific,
1994). His current research interests are fuzzy systems, neural networks,
intelligent control, human-machine interface, and video and audio processing.

Dr. Lin is a member of Tau Beta Pi, Eta Kappa Nu, the IEEE Computer
Society, the IEEE Robotics and Automation Society, and the IEEE Systems,
Man, Cybernetics Society.


