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An On-Line Self-Constructing Neural Fuzzy
Inference Network and Its Applications

Chia-Feng Juang and Chin-Teng Lin

Abstract—A self-constructing neural fuzzy inference network learning and computational power of neural networks into
(SONFIN) with on-line learning ability is proposed in this pa-  fuzzy systems and provides the high-level human-like thinking
per. The SONFIN is inherently a modified Takagi-Sugeno—-Kang g reasoning of fuzzy systems into neural networks [5]-[7].
(TSK)-type fuzzy rule-based model possessing neural network’s A f . fab h of f if-th |
learning ability. There are no rules initially in the SONFIN. They uzzy system Cons'St_S‘ ora unc_ of fuzzy it-then ru ?S'
are created and adapted as on-line learning proceeds via simul- Conventlonally, the selection of fuzzy if-then rules often relies
taneous structure and parameter identification. In the structure on a substantial amount of heuristic observation to express
identification of the precondition part, the input space is parti- proper strategy’s knowledge. Obviously, it is difficult for

tioned in a flexible way according to a aligned clustering-based 1, o experts to examine all the input-output data from a
algorithm. As to the structure identification of the consequent

part, only a singleton value selected by a clustering method complex system to find a number of proper rules for the fuzzy
is assigned to each rule initially. Afterwards, some additional System. To cope with this difficulty, several approaches to
significant terms (input variables) selected via a projection-based generating fuzzy if-then rules from numerical data, an active
correlation measure for each rule will be added to the consequent esearch topic in the neural fuzzy area, have been proposed
part (forming a linear equation of input variables) incrementally . :

as learning proceeds. The combined precondition and consequent [6]-[15]. Generally, these gpproaches consist of two 'eam'”g
structure identification scheme can set up an economic and phases, the structure learning phase and the parameter learning
dynamically growing network, a main feature of the SONFIN. phase. Traditionally, these two phases are done sequentially;
In the parameter identification, the consequent parameters are the structure learning phase is employed to decide the structure
lt““etd optimall;(/F?gS?ithler 'ﬁﬁSt mea:jn tiquares (L(;\/I_t_S) or recurstive of fuzzy rules first and then the parameter learning phase is
east squares algorithms and the precondition parameters .- .

are tuned by backpropagation algorithm. Both the structure used to.Fune the coefficients _Of each rule (like _the shapes
and parameter identification are done simultaneously to form a and positions of the membership functions). One disadvantage
fast learning scheme, which is another feature of the SONFIN. of this sequential learning scheme is that it is suitable only
Furthermore, to enhance the knowledge representation ability for off-line instead of on-line operation. Moreover, to adopt
of the SONFIN, a linear transformation for each input variable this scheme a large amount of representative data should be

can be incorporated into the network so that much fewer rules . . N
are needed or higher accuracy can be achieved. Proper linear collected in advance. Also, the independent realization of the

transformations are also learned dynamically in the parameter Structure and parameter learning usually each spends a lot
identification phase of the SONFIN. To demonstrate the capa- of time. Owning to these problems, the structure as well

bility of the proposed SONFIN, simulations in different areas as the parameter learning phases are done simultaneously in
E‘g'“d.'“g Comrof" (lfuomsn(])ur\w:cl%upn' ar?fq Sc'igf”a' prﬁcess'r.‘g alre_done. the proposed self-constructing neural fuzzy inference network
ectiveness of the is verified from these simulations. . o .
(SONFIN). This ability makes the SONFIN suitable for fast
Index Terms—Equalizer, noisy speech recognition, projection- gn-line learning.
based correlation measure, similarity measure, TSK fuzzy rule. One important task in the structure identification of a neural
fuzzy network is the partition of the input space, which
|. INTRODUCTION influences the number of fuzzy rules generated. The most
jrect way is to partition the input space into grid types with
ch grid representing a fuzzy if-then rule [see Fig. 1(a)]. The

HE problem of system modeling is encountered in mal

areas such as control, communications, and pattern rec . .
nition, etc. Recently, the neural fuzzy approach to systemaOr problem of such kind of partition is that the number
fuzzy rules increases exponentially as the dimension of

modeling has become a popular research focus [1]-[4]. T&gﬁ : X
key advantage of neural fuzzy approach over traditional ong INPUt space increases. Another frequently used method

lies on that the former doesn’t require a mathematical gler input space partitioning is to cluster the input training

scription of the system while modeling. Moreover, in contradctors in the input space [24], [25]. Such a method provides

to pure neural or fuzzy methods, the neural fuzzy methiMmore er>.<ibIe partition, as shown in Fig. 1(b). The' resulting
possesses both of their advantages; it brings the low-leféf2y rule is of the form, Rule: IF x is Cj, THEN y is - -+,
wherex = (z1, 2, -+, ,,) denotes the input vector with
Manuscript received July 10, 1996; revised January 7, 1997. This work V\ggmensmn” andci_ the Zth _Cluster formed in the input space.
supported by the National Science Council, Republic of China, under Grdone problem of this partition is that whé&t, means and what
NSC 85-2212-E-009-044. o __are the corresponding fuzzy terms in each input variable are
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as illustrated in Fig. 1(c). In this paper, we develop a novel
on-line input space partitioning method, which is an aligned
clustering-based approach. This method can produce a parti-
tion result like the one shown in Fig. 1(d). Basically, it aligns
the clusters formed in the input space, so it reduces not only the
number of rules but also the number of membership functions
under a prespecified accuracy requirement. The proposed
method creates only the significant membership functions on
m m the universe of discourse of each input variable by using
@ (b) a fuzzy measure algorithm. It can thus generate necessary
fuzzy rules from numerical data dynamically. In [17], the most
; g significant rules are selected based upon OLS method. To use

this method, the learning data should be collected in advance
and the parameters of the fuzzy basis functions are fixed. The
generated fuzzy rules by this method are significant only for
the fixed input—output training pairs collected in advance, so
it is not suitable for on-line learning. Since our objective is

on-line learning, and the input membership functions are all

m m tunable, a rule is considered to be necessary and is generated
(©) (d)

when it has a low overlapping degree with others.

Another objective of this paper is to provide an optimal
Fig. 1. Fuzzy partitions of two-dimensional input space. (a) Grid-type pajyay for determining the consequent part of fuzzy if-then
titioning. (b)' CIustenng-based partitioning. _(c) GA-based partitioning. (dr)ules during the structure Iearning phase. Different types of
Proposed aligned clustering-based partitioning.

consequent parts (e.g., singletons, bell-shaped membership

functions, or a linear combination of input variables) have been
that what a fuzzy rule means and how it works should be eagyeq in fuzzy systems [22]. It was pointed out by Sugeno and
to understand. We may solve this problem by projecting th@naka [20] that a large number of rules are necessary when
generated cluster onto each dimension of the input spacerd@resenting the behavior of a sophisticated system by the ordi-
form a projected one-dimensional (1-D) membership functigigry fuzzy model based on Mamdani's approach. Furthermore,
for each input variable and represent a cluster by the producftpéy reported that the Takagi—-Sugeno—Kang (TSK) model can
the projected membership functions, as illustrated in Fig. 1(kgpresent a complex system in terms of a few rules. However,
Compared with the grid-type partition, the clustering-basefl,en though fewer rules are required for the TSK model, the
partition does reduce the number of generated rules, but f&ims used in the consequent part are quite considerable for
the number of membership functions of each input variable. Fulti-input/multi-output systems or for the systems with high-
verify this, suppose there areinput variables and each inputdimensional input or output spaces. Hence, we encounter a
variable is partitioned inter. parts (n fuzzy terms). Then the dilemma between the number of fuzzy rules and the number of
total number of membership functions usedia for the grid- consequent terms. A method is proposed in this paper to solve
type partition. As to the clustering-based partition, if there athis dilemma, which is, in fact, a combinational optimization
k clusters formed, then the number of membership functiopgoblem. A fuzzy rule of the following form is adopted in our
generated isnk. In general, k is larger thanm, meaning system initially
that 'Fhe clustering-bqsed partition creates more memberghip Rulei: IF 2, is A and - andz, is A;,
functions than the grid-type one dose. In fact, by observing i
the projected membership functions in Fig. 1(b), we find that THEN y; is m; (1)
some membership functions projected from different clustefghere »; andy,; are the input and output variables, respec-
have high similarity degrees. These highly similar membershigely, 4;, is a fuzzy set, aneh; is the position of a symmetric
functions should be eliminated. This phenomenon occurs naembership function of the output variable with its width
only in the clustering-based partitioning methods, but alsfeglected during the defuzzification process. This type of fuzzy
in other approaches like those based on the orthogonal leagé is used as the main body of the SONFIN. We call a
square (OLS) method [16], [17]. SONFIN consisting of such kind of rulesbasic SONFINBy

Another flexible input space partitioning method is basa@lonitoring the change of the network output errors, additional
on the genetic algorithm (GA) [28], which has the partitiomerms (the linear terms used in the consequent part of the
result as shown in Fig. 1(c). The major disadvantage of tHi-sK model) will be added when necessary to further reduce
method is that it is very time consuming; the computatiothe output error. If it is decided that some auxiliary terms
cost to evaluate a partition result encoded in each individusiould be added to the consequent part during the on-line
is very high and many generations are needed to find the filkegdirning process, a projection-based correlation measure using
partition. Hence, this scheme is obviously not suitable for oGram—Schmidt orthogonalization algorithm will be performed
line operation. Moreover, the GA-based partitioning methods each rule to select the most significant terms to be incor-
might not find meaningful fuzzy terms for each input variablgyorated into the rule. This consequent identification process is
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Fig. 2. Structure of the proposed SONFIN.

employed in conjunction with the precondition identification [I. STRUCTURE OF THESONFIN
process to reduce both the number of rules and the numbef, his section, the structure of the SONFIN (as shown in

of consequent terms. S _ Fig. 2) is introduced. This six-layered network realizes a fuzzy
Associated with the structure identification scheme is ﬂ?ﬁodel of the following form:

parameter identification scheme used in the SONFIN. In the

parameter identification scheme, the consequent parameters  Ryle;: IF zis A;; and --- andxz,, is A,
(coefficients of the linear equations) are tuned by either least
mean squares (LMS) or recursive least squares (RLS) algo-
rithms and the precondition parameters (membership funCti‘WﬁereA
of input varlables_) are tned by the backpropagation algorlthrWembership function op, anda;; is a consequent parameter.
to meet the required output accuracy. _F_urthermore, to enhar&cl% noted that unlike the traditional TSK model where all the
t.he knowledge rgpresentapon capz_ablhty of the .SONFIN' ifiput variables are used in the output linear equation, only the
linear transformation of the input variables can be incorporat

. ; nificant ones are used in the SONFIN, i.e., sames in
into the network to further reduce the rule number or to achley e above fuzzy rules are zero. With this six-laye?end network
higher output accuracy. Proper linear transformation is alg :

. . . ucture of the SONFIN, we shall define the function of each
tuned automatically during the pargmeter Iearnmg phase. B?lt de in Section II-A and then introduce an enhanced structure
the structgre anq paramgter learning are done S|multane_0 ¥he SONFIN in Section II-B.
for each incoming training pattern to form a fast on-line
learning scheme.

This paper is organized as follows. Section Il describds Structure of the SONFIN
the basic structure and functions of the SONFIN. The on- The SONFIN consists of nodes, each of which has some
line structure/parameter learning algorithms of the SONFlIfihite “fan-in” of connections represented by weight values
is presented in Section Ill. In Section IV, the SONFIN igrom other nodes and “fan-out” of connections to other nodes.
applied to solve several problems covering the areas of contid§sociated with the fan-in of a node is an integration function
communication, and signal processing. Finally, conclusions afe which serves to combine information, activation, or evi-
summarized in the last section. dence from other nodes. This function provides the net input

THEN Yy is mo; + ;i 5 =+ ...

ij 1S a fuzzy setimyg; is the center of a symmetric
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for this node Layer 3: A node in this layer represents one fuzzy logic
rule and performs precondition matching of a rule. Here, we
net-input= ful®, u{?, .. u (k) sl Wl w;}k)] use the following AND operation for each Layer-3 node
‘ Tl =] w?
where ug)k) (’“) uék) are inputs to this node and 1:[
wg’“), wé" , w](,k) are the associated link weights. The — o [Pix=m)]T[D; (x—my)]

superscrlpt( ) in the above equation indicates the Iaye{!ln
number. This notation will also be used in the following ®)
equations. A second action of each node is to output an a(f)=f (4)

activation value as a function of its net-input wheren is the number of Layer-2 nodes participating in the

*) _ IF part of the ruleD; = diag(1/5;1, 1/042, ---, 1/0y,) and
output= 0;"’ = a(net-inpu} = a(f) m; = (m1, M2, -+, mip)T. The link weight in Layer 3
[wg?’)] is then unity. The outpuf of a Layer-3 node represents
where a(-) denotes the activation function. We shall nexthe firing strength of the corresponding fuzzy rule.
describe the functions of the nodes in each of the six layers_ayer 4: The number of nodes in this layer is equal to that

of the SONFIN. in Layer 3 and the firing strength calculated in Layer 3 is
Layer 1: No computation is done in this layer. Each nod@ormalized in this layer by

in this layer, which corresponds to one input variable, only

transmits input values to the next layer directly. That is (4)] Z U(4)
o and
f=u e
and a(f) = o 5)
a =1 2)
Like Layer 3, the link weigh(w§4)] in this layer is unity, too.
is unity. types of nodes are used in this layer and they are denoted

Layer 2: Each node in this layer corresponds to one lirAS blank and shaded circles in Fig. 2, respectively. The node
guistic label (small, large, etc.) of one of the input variabledenoted by a blank circle (blank node) is the essential node
in Layer 1. In other words, the membership value whickePresenting a fuzzy set (described by a Gaussian membership
specifies the degree to which an input value belongs a fuz#ction) of the output variable. Only the center of each
set is calculated in Layer 2. There are many choices for tkeussian membership function is delivered to the next layer
types of membership functions for use, such as trianguld@r the local mean of maximum (LMOM) defuzzification
trapezoidal, or Gaussian ones. In this paper, a Gaussferation [23] and the width is used for output clustering only.
membership function is employed for two reasons. First, Rifferent nodes in Layer 4 may be connected to a same blank
fuzzy system with Gaussian membership function has beB@de in Layer 5, meaning that the same consequent fuzzy setis
shown to be an universal approximator of any nonlinespecified for different rules. The function of the blank node is
functions on a compact set [16]. Second, a multidimensional _ )

Gaussian membership function generated during the learning f= Z “
process can be decomposed into the product of 1-D Gaussij a
membership functions easily. With the choice of Gaussian

membership function, the operation performed in this layer is a®(f) =f - ao (6)
@) ) where ag; = mygi, the center of a Gaussian membership
flu (2)] _ [U‘ — mij] function. As to the shaded node, it is generated only when
afj necessary. Each node in Layer 4 has its own corresponding
and shaded node in Layer 5. One of the inputs to a shaded node is
a(2)(f) — 3) the output delivered from Layer 4 and the other possible inputs
(terms) are the input variables from Layer 1. The shaded node
wherem,;; andg;; are, respectively, the center (or mean) anf netion Is
the width (or variance) of the Gaussian membership function = Z ik

of the jth term of theith input variablex;. Hence, the

link weight in this layer can be interpreted as;;. Unlike and

other clustering-based partitioning methods, where each input a(5)(f) =f. uz(é) 7)
variable has the same number of fuzzy sets, the number of

fuzzy sets of each input variable is not necessarily identicahere the summation is over the significant terms connected to
in the SONFIN. the shaded node only, ang; is the corresponding parameter.
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o ) o ) node) is changed to
@D Y. 4 A= T
L ) = [ D ([
? __& — ¢~ [DiRi(x—m))"[D; R; (x—m;)]
E and
: a®(f) =F. (11)

(@ (b)
Fig. 3. (a) The region covered by the original input membership functiong_. IS ”Ote‘?' that baSICa”y all the parameters of the tré_meorma'
(b) The covered region after space transformation. tion matrix in (10) are free parameters. However, if we set
the additional constraint thaRi;r”Ri = I, then in geometric
- . . view, the operatiorR; is equivalent to a rotation of the region
Combining t_hese two types of n(_)des in Layer 5, we obtain ﬂ&%vered by the original membership functions. In this situation,
whole function performed by this layer as m, is responsible for the location of the membership function
D; for the spread andz; for the orientation of each input

a®(f) = Z ajit; + aoi u® (8) coordinate axis. After transformation, the rule in (1) becomes
J

T

n
] ) Rulei: IF ¢;; = Z7ik($k - mzk) +m;1 is A;1 and - - -
Layer 6: Each node in this layer corresponds to one output =1

variable. The node integrates all the actions recommended by no
Layer 5 and acts as a defuzzifier with andt;, = Z roel@r — mug) + M 1S Agy
k=1
Flu®=3" ul® THEN , is m;
and ' wherer?, the (n, k)th element ofR’. The linguistic impli-
a((;)(f) —f ) cation 4;, of the original variablet,, is now implicated by

the new variable;; (see Fig. 3 for clarity), which is a linear
B. Enh 4s ¢ the SONFIN combination of the original variables. Note that whign= 1,
- Enhanced Structure of the then the transformed rules are the same as the original ones.
For the structure of the SONFIN introduced in the last Generally speaking, the flexibility provided ky; can re-
subsection, the region that the input membership functiodace the number of rules needed or can increase the modeling
cover is restricted to be of an elliptic shape with the axegcuracy of the SONFIN. This transformation is extremely
of the ellipse parallel to the corresponding input coordinatgseful for low-input dimension problems. For high-input di-
axes as shown in Fig. 3(a). Such an elliptic region usualiyension problems, these advantages may be traded off by the
cannot cover the distribution of a cluster of input data welhdditional memories required for storirg;.
For example, if the distribution of the input data is like the
shaded region shown in Fig. 3(a) indicating that the input IIl. LEARNING ALGORITHMS FOR THE SONFIN
variables are highly correlated each other, then we usually. .
. . : .Two types of learning—structure and parameter learn-
need more than one rule to map such kind of input region to its .

. . ing—are used concurrently for constructing the SONFIN.
corresponding output region. To use as fewer rules as poss@ﬁé structure learning includes both the precondition and
linear transformation is performed on the input variables intrg:e sequent structuregidentification of a quz)z ii-then rule
SONFIN. The transformation can be regarded as a chang psed " . a luzzy '

; . . re the precondition structure identification corresponds
input coordinates, while the parameters of each members |8 . e
. . : the input-space partitioning and can be formulated as a
function are kept unchanged, i.e., the center and width of eaé: mbinational optimization problem with the following two
membership function on the new coordinate axes are the saO eectiveS' to mri)nimize thepnumber of rules enera?ed and
as the old ones. In mathematical form, we have jectives. gener
to minimize the number of fuzzy sets on the universe of
Rulei: t; = R;(x — m;) + m; (10) discourse of each input variable. As to the consequent structure
identification, the main task is to decide when to generate a
wheret; € R™ are the newly generated input variables andew membership function for the output variable and which
R, € ®X" is the transformation matrix for rulé. After significant terms (input variables) should be added to the
transformation, the region that the input membership functionensequent part (a linear equation) when necessary. For the
cover is shown in Fig. 3(b). It is observed that the rotatquhrameter learning based upon supervised learning algorithms,
ellipse covers the input data distribution well and, thus, the parameters of the linear equations in the consequent
single fuzzy rule can associate this region with its propg@arts are adjusted by either LMS or RLS algorithms and
output region (consequent). the parameters in the precondition part are adjusted by the
With the transformation of input coordinates, the firindgpackpropagation algorithm to minimize a given cost function.
strength calculated in Layer 3 (i.e., the function of a Layer-Bhe SONFIN can be used for normal operation at any time
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during the learning process without repeated training on thecording to the first-nearest-neighbor heuristic [10] where
input—output patterns when on-line operation is require@.> 0 decides the overlap degree between two clusters. Similar
There are no rules (i.e., no nodes in the network excegpiethods are used in [18], [19] for the allocation of a new radial
the input-output nodes) in the SONFIN initially. They aréasis unit. However, in [18] the degree measure doesn’t take
created dynamically as learning proceeds upon receivitige width D into consideration. In [19], the width of each unit
on-line incoming training data by performing the followings kept at a prespecified constant value, so the allocation result

learning processes simultaneously: is, in fact, the same as that in [18]. In the SONFIN, the width is
1) input/output space partitioning; taken into account in the degree measure, so for a cluster with
2) construction of fuzzy rules; larger width (meaning a larger region is covered), fewer rules
3) optimal consequent structure identification; will be generated in its vicinity than a cluster with smaller
4) parameter identification. width. This is a more reasonable result. Another disadvantage

In the above, learning process 1), 2), and 3) belong &f [18] is that another degree measure (the Euclid distance) is
the structure learning phase and 4) belongs to the parameesuired, which increases the computation load.
learning phase. The details of these learning processes arAfter a rule is generated, the next step is to decompose
described in the rest of this section. the multidimensional membership function formed in (14) and
(15) to the corresponding 1-D membership function for each
input variable. For the Gaussian membership function used in

. ) » ) the SONFIN, the task can be easily done as
The way the input space is partitioned determines the

number of rules extracted from training data as well as the (D, (x—m,)|7[D: (x—m,)] _ [ e tesmma®/eil (ae)
J

A. Input—Output Space Partitioning

number of fuzzy sets on the universal of discourse of each

input variable. Geometrically, a rule corresponds to a cluster

in the input space, witm; and D; representing the centeryhere m,;; and o,; are, respectively, the projected center
and variance of that cluster. For each incoming patiethe  anq width of the membership function in each dimension. To
strength a rule is fired can be interpreted as the degree fBfuce the number of fuzzy sets of each input variable and to
incoming pattern belongs to the corresponding cluster. Fggqid the existence of highly similar ones, we should check the
computational efficiency, we can use the firing strength deriveghijarities between the newly projected membership function

in (4) directly as this degree measure and the existing ones in each input dimension. Before going to
the details on how this overall process works, let us consider

Fi(x) = H ug?’) the similarity measure first. Since bell-shaped membership

i functions are used in the SONFIN, we use the formula of

— o [Di(x=m)]T[D; (x—my)] (12) the similarity measure of two fuzzy sets with bell-shaped

membership functions derived previously in [11]. Suppose
where F* € [0,1]. In the above equation, the termth.e fuzzy sets 1o be 'measured are fuzzy sﬂtsaQndQB
[D;(x — m)]7[D;(x — m;)] is, in fact, the distance between'/Ith membership funcUomA(a;) > exp {=(z = m)’/or}

x and the center of cluster Using this measure, we canand p(x) :.eXp{_(x — m2)”/o3}, respectively. Assume
obtain the following criterion for the generation of a new! 2 mz as in [11], we can computed N B] by

fuzzy rule. Letx(t) be the newly incoming pattern. Find 1h2[m2 N C

2 V(o1 + 02)
hQ[mQ —my + \/%(0'1 - 0'2)]
) V(o2 —01)

|ANB| =

= arg ba J
J =arg 1%?;3:(@) F7(x) (13)

wherec(t) is the number of existing rules at timelf I/ < h*[my —my — /7(01 + 02)]
I'(t), then a new rule is generated wherét) € (0, 1) is a Vr(oy — o9)
prespecified threshold that decays during the learning process.

Once a new rule is generated, the next step is to assign inindiere h(x) = max {0, x}. So the approximate similarity
centers and widths of the corresponding membership functionsasure is

Since our goal is to minimize an objective function and the

centers and widths are all adjustable later in the parameter E(A, B) =
learning phase, it is of little sense to spend much time on the |[AU B|

assignment of centers and widths for finding a perfect cluster. _ |AN B (18)
Hence, we can simply set © o1/T + oo /T — |AN B

1
2
1
= 17
: a7)

mn x (14) where we use the fact thatl| + |B| = [AN B| +|A U B].

[e()+1] = . . . Let 1(mi, 0;) represent the Gaussian membership function
Diety+1] = - - diag R (15) with centerm; and width ;. The whole algorithm for. the
& n (F7) n(F7) generation of new fuzzy rules as well as fuzzy sets in each
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input variable is as follows. Suppose no rules are existeh@at the transformed rule is the same as the original one
initially: (without transformation) initially and the influence of the
transformation starts when afterward parameter learning is
performed. However, if we hawe priori knowledge about the
transformation matrix, e.g., from the distribution of the input

IF x is the first incoming pattern THEN do
PART 1.{ Generate a new rule
with centerm; = x

1 1 data as shown in Fig. 3, we can incorporate this transformation
width D, = diag(a. it o into the rule initially.
whereo;,;; is a presHBécified cglrlltstant.
After decomposition, we have one- B. Construction of Fuzzy Rules
dimensional membership functions, As mentioned in learning process 1), the generation of a new
with my; = z; andoy; = o, 4 = 1--- 7. input cluster corresponds to the generation of a new fuzzy
rule, with its precondition part constructed by the learning
ELSE for each newly incoming, do algorithm in process 1). At the same time, we have to decide
PART 2.{ find J = arg max;<j<.q) F” (%), the consequent part of the generated rule. Suppose a new
IF FV > Fia(t) input cluster is formed after the presentation of the current
do nothing input—output training pairx, d); then the consequent part is
ELSE constructed by the following algorithm:

{ct+1)=c(t)+1
generate a new fuzzy rule, with
met1) = X, Degeyr) =

IF there are no output clusters
do { PART 1in Process A,
with x replaced byd }
ELSE
do{
find J = arg max; F(x)
IF F/ > Fou(t)
connect input cluste(t + 1) to the
existing output clustey
ELSE
generate a new output cluster
connect input clustet(¢ + 1) to the newly
generated output cluster.

1 diae 1

BN m@ED m@ED

After decomposition, we have

Mupew—i = Liy Onew—i = _/3 -In (FJ)y
t=1---m.

Do the following fuzzy measure for each
input variables:

{degre¢:, t) =
maxi<j<k; E[N(mnew—ia O—new—i)
p(mgi, 053],

wherek; is the number of partitions of
the ith input variable. Iz

IF degreéi, t) < p(¢)

THEN adopt this new membership
function, and sek; = k; +1

ELSE set the projected membership
function as the closest ong.

The algorithm is based on the fact that different precondi-
tions of different rules may be mapped to the same consequent
fuzzy set. Since only the center of each output membership
function is used for defuzzification, the consequent part of
each rule may simply be regarded as a singleton. Compared
t to the general fuzzy rule-based models with singleton output
where each rule has its own individual singleton value, fewer

In the above algorithm, the thresholH;, determines the .
number of rules generated. For a higher valueFgf, more parameters are needed in the consequent part of the SONFIN,
esgemally for the case with a large number of rules.

rules are generated and, in general, a higher accuracy 1
achieved. I, determines the number of output clusters . o
generated and a higher value Bf,,. will result in a higher ©: OpPtimal Consequent Structure Identification
number of output clustersy(¢) is a scalar similarity criterion ~ Up until now, the SONFIN contains fuzzy rules in the form
which is monotonically decreasing such that higher similarityf (1). Even though such a basic SONFIN can be used directly
between two fuzzy sets is allowed in the initial stage dbr system modeling, a large number of rules are necessary
learning. For the output space partitioning, the same meastoemodeling sophisticated systems under a tolerable modeling
in (13) is used. Since the criterion for the generation of @curacy. To cope with this problem, we adopt the spirit of
new output cluster is related to the construction of a rule, viltsSK model [21] into the SONFIN. In the TSK model, each
shall describe it together with the rule construction processdonsequent part is represented by a linear equation of the input
learning process3 below. variables. It is reported in [20] that the TSK model can model
It is mentioned in Section II-B that we can enhance the sophisticated system using a few rules. However, even for
performance of the SONFIN by incorporating a transformaticdhe TSK model, if the dimension of the input or output space
matrix R into the structure. To construct the transformatiois high, the number of terms used in the linear equation is
matrix, if we have noa priori knowledge about it, we large even though some terms are, in fact, of little significance.
can simply set the matrix to be an identity one initialljHence, instead of using the linear combination of all the input
for a new generated rule. The identity assignment meaveariables as the consequent part, only the most significant input
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variables are used as the consequent terms of the SONFRHportant vector from the remaining — k£ + 1 vectors, we
The significant terms will be chosen and added to the netwdikst project each of the remaining— £+ 1 vectors to the null
incrementally any time when the parameter learning canrggace ofP;_1, find the correlation valuéeg between the
improve the network output accuracy any more during the— k + 1 projected vectors angl, then choose the maximum
on-line learning process. To find the significant terms used éme which is thekth important term of then candidates,
the consequent part, we shall first discuss some strategies #vat finally setP, = p; & p2 & -+ d pr. Here,p; = X is
can be used on-line for this purpose before present our otte vector formed by the essential singleton values. To find
approach. the projected vectop;, the Gram—Schmidt orthogonalization
1) Sensitivity Calculation Method [26]This is a network procedure [27] is adopted as

pruning method based on the estimation of the sensitivity of pT%
_ Pi Xk

the global cost function to the elimination of each connection. Ak = 7 (19)

To use this method, all the input variables are used in the linear P; Pi

equation of the consequent part. After a period of learning, the . k=l

coefficients of the linear equation are ordered by decreasing Pr =Xk — 2 ik Pi- (20)
i=

sensitivity values so that the least significant terms in the
linear equation can be efficiently pruned by discarding theIf there arec rules, then we haven candidate vectors, a
last terms on the sorted list. One disadvantage of this methagge number that may lead to high computation load in the
is that the correlation between candidate terms is not detecteslculation of the projected vectors in the above. To reduce
Hence, after a term is removed the remaining sensitivities ahe computation cost and to keep the parallel-processing
not necessarily valid for the pruned network and the whollvantage assumed in fuzzy rule-based systems, the terms in
sensitivity estimation process should be performed from tliee consequent part are selected independently for each rule;
beginning again. that is, the projection operation is done only for theandidate

2) Weight Decay Method [26]:This is also a network vectors in each rule, not for other rules. This computation
pruning method. Like strategy 1, to adopt this method all inpptrocess is based upon the local property of a fuzzy rule-
variables are used in the linear equation of the consequent grased system, so the vectors from other rules usually have less
initially. By adding a penalty term to the cost function, thénfluence than the vectors in the same rule and are ignored for
weights of the fewer significant terms will decay to zero undeomputational efficiency.
backpropagation learning. The disadvantage of this method id~or on-line learning, to calculate the correlation degree,
that only the backpropagation learning algorithm can be uset have to store all the input/output sequences before these
and, thus, the computation time is quite long for a weight @egrees are calculated. To do this, the size of memory required
decay to zero. Besides, the terms with higher weights are ®of orderO(Nnt+ Mt), whereN, n, andM are the number
necessarily the most significant ones and, thus, this meth@drules, input, and output variables, respectively. Hence,
usually chooses more terms than necessary. the memory requirement is huge for largeTo cope with

3) Competitive Learning:The link weight (coefficient of this problem, instead of storing the input—output sequences,
consequent linear equation);; can be considered as arWwe store the correlation values only. L€t , ~denote the
indicator of the correlation strength between the input variablesrrelation between the sequervfcgé?)a:j and y,,,, Cy, .. the
and output variables in the consequent part. The competitixgto correlation of the sequengg, andC:,_, the correlation

learning rule can thus be used to updatg [10]. After between the sequen@és)xj andugs)a:p. For each incoming

competitive learning, the terms with larger weights are keghy, these values are on-line calculated, respectively, for each
and those with smaller ones are eliminated. As in strategy ;i i by

no correlation between the inputs is considered, so the result )
is not optimal. CL, (t+1)=CL () + DM+ Day(t+1)
In the choice of the significant terms participated ) i
in the consequent part, since the dependence between Ym(t+1) = Cayy, () (21)
the candidatesu!” - z; and the desired outpuy,, is Crgm +1) =Cypy. (&) + L) [y (t + 1)

linear [y, = 3, ut” (X, alz;)], we can consider the Ym(t+1) = Cy,y,, ()] (22)
training  sequences u\”z;(1), ulz;(2), -+, W z;(t) Cra,(t+1)=C3 , () + D(8)[u® (¢ + Da(t+1)
and ym.(l), Ym(2), s Ym (t) 2? vectors and find the _ugs)(tJrl)xp(tJrl) —C ()] (23)
correlation betweenx; = u;”[z;(1), -+, z;(#)]* and I

[Ym (1), -+, ym(t)]F. The correlation between two vectorswhere j,p = 0,---,n,m = 1,---,M, and

%x; and y is estimated by the cosine value of their angle,‘;jym(o), Cy,.4..(0), and C;jwp(o) are initially equal

0, Deg(j) = cos®(0) = (X]y)?/(x]%;)(y"y). If vectors to zero. For normal correlation computatidi(#) = 1/(t +1)

%, andy are dependent, theDeg(j) = 1, otherwise ifx; is used, but for computation efficiency and for changing
andy are orthogonal theeg(j) = 0. The main idea of the environment where the recent calculations dominate, a
choice scheme is as follows. Suppose we have chésel constant value, sayy < I' < 1, can be used. Using the
vectors fromn (the number of input variables) candidates tetored correlation values in (21) and (22), we can compute

form a spacel,_; = p1 Dp2P--- P pr—_1- T0 find the next the correlation values and choose the significant ones. The
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algorithm for this computation is described as follows. In thare proposed in [2] and [24]. In [2], the forward selection of
following, K denotes the number of terms to be selected fromariables (FSV) method is proposed. In this method, different

the n candidates,sq, ---, sx—1, denotes the terms alreadycombinations of candidate consequent terms (input variables)
selected by the algorithm, ang = 0 denotes the essentialare chosen for test. Finally, the one resulting in the minimal
singleton termz, for each rule. error is chosen. This method requires repeated tests and is

inefficient. In [24], the OLS learning algorithm is used to

Projection-Based Correlation Measure Algorithm select the significant terms as well as their corresponding

For each rule/ and output variablg do coefficients. To use this method, a block of measured data
{ should be prepared and the input space should be partitioned
Fork—=1.--K in advance and kept unchanged. This is not suitable for on-
Forim1.-om,issy s line operation. Moreover, to store the input/output sequence,
- ’ Lyttt ok=l the memory required is of ord€p(nt + Mt) for each rule.
Compute
alm, i) = M7 0<m<k-—1 (24) D. Parameter Identification
B(m,m) . . .
1 After th(_e .network struhcture is idjﬁsted accorr::img to the
I . . current training pattern, the network then enters the parameter
E(i, 5) = C”’?yﬂ 7;) a(m, ) E(sm, ) (25) identification phase to adjust the parameters of the network
optimally based on the same training pattern. Notice that
G, i) =CL Z alm, i)A(m, i) the following parameter learning is performed on the whole
o =0 network after structure learning, no matter whether the nodes
1 k—1 (links) are newly added or are existent originally. The idea of
+ Z Z a(m, ))alq, i)B(m, q)  (26) backpropagation is used for this supervised learning. Consider-
m=0 g=0 ing the single-output case for clarity, our goal is to minimize
. E2(i, §) the error function
Degy(i) = W (27)
) YiY; E= %[y(t) - yd(t)]Q (34)
where
Elso, j) =C! (28) wherey“(t) is the desired output anglt) is the current output.
0, J Toy; For each training data set, starting at the input nodes, a forward
. ml ) pass is used to compute the activity levels of all the nodes in
A(m, 1) =Cp, o, = Z all, sm)A(¢, 1) (29)  the network to obtain the current outpy(tt). Then, starting at
; =0 the output nodes, a backward pass is used to condptlf@w
Crozor m=q= for all the hidden nodes. Assuming thatis the adjustable
G(sm, Sm)vm . m=q#0 parameter in a node (e.@i;;, m;;, ando;; in the SONFIN),
B(m, q) =3 A(g, sm) - Z all, sm) (30) the general update rule used is
£=0 JF
B(¢, q), 0<g<m-—1 Aw x —=—— (35)
B(q, m), 0<m<qg-1. Fw 5E
(31) w(t+1) =w(t)+ 77<—%> (36)

Then find s, € {1, 2, ---, n} such that

Degy(sw) = max Degi(0].  (32)

where 7 is the learning rate and

oE OF d(activation function
The procedure is terminated at tfé&h step when dw ~ d(activation function Sw
Degye(si) <7 (33) _ 08 a. 37)
da Ow

where0 < v < 1 is the tolerable dependence degree d@hd

terms are added to the consequent part of the rule. To show the learning rules, we shall show the computations
The consequent structure identification scheme in the SON-JE/0w layer by layer, and start the derivation from the

FIN is a kind of node growing method in neural networksQutput nodes.

For the node growing method, in general, there is a questior-ayer 6: There is no parameter to be adjusted in this

of when to perform node growing. The criterion used in thiayer. Only the error Slgnaléf ] needs to be computed and

SONFIN is by monitoring the learning curve. When the effegiropagated. The error S|gné§ is derived by

of parameter learning diminished (i.e., the output error does not

decrease over a period of time), then it is the time to apply the 5O — _ ok

above algorithm to add additional terms to the consequent part. ¢ 9a®)

Some other methods for selecting significant consequent terms =y4(t) — y(t). (38)
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Layer 5: Using (8) and (37), the update rule foy; is Layer 3: As in Layer 4, only the error signal need be
computed in this layer
OF  OF 9a® §a® 39 SE
" Oa;  9a© 000 day; (39) 58 =— & (48)
and © o )
Hal® _ a;
Wi?; —1 (40) EJ: 50 5 (49)
aaa T Z“EO) (41)  where
Qi -
(Y — o
where the summation is over the number of links from Layer ; ‘ ! o
4 for theith node. Hence, the parametey; is updated by c 7 =i
. dat? [Z agg)]
ajit +1) = a;i(t) +nly’ () -y, D u”  (42) e =) b=y (50)
' ' S B
wherezy = 1. In addition to the LMS-like algorithm in (42), ° 3)
to improve the learning speed, the RLS learning algorithm [30] [Z @
can be used instead in Layers 5 and 6 (as below) v L=t
o } So, we have
Pt +1) = L | ey - POWY (E+ DU+ DI Pal
A A4+ u®"(t+ 1)PE)ud (¢t + 1) 8@ — Z s % (51)
(43) T e

t+1) =a(t) + P(t+ D)u® (¢ 4+ D[y(t) — y(t 44
alt +1) =a(t) + P(t+ Du(t+ Diy"(H) - ()] (44) Layer 2: Using (3) and (37), the update rule @rigf) is

where0 < \ < 1 is the forgetting factorn(® is the current derived as in the following:
input vector,a is the corresponding parameter vector, dnd OE OF 9a® 8@22)

is the covariance matrix. The initial parameter veai®) is -— & = 3 @ ) (52)
determined in the structure learning phase dh@) = o/ om;;y 90 S 9aY om,;
where o is a large positive constant. To cope with changin\%h
environment, in general).9 < A < 1 is used. Also, to avoid ere
the unstable effect caused by a smalwe may reseP(t) as 9a®  a® £3
P(t) = oI after a period of learning. PRORNCO) (53)
No matter which tuning method (LMS or RLS) is used in ~ * b o -
Layers 5 and 6, the error propagated to the preceding layer isyq(? a;f)w7 if term nodej is
5 = i connected to rule node
SE 8m(.) L
5B — _ © 0, otherwise.
Aa(3) (54)
=y(t) - y(®). (45) ,
So, the update rule om§j> is
Layer 4: As in Layer 6, only the error signal need be 5E
cpmputed in this I_ayer. According to (5) and (37), this error mz(?)(tJr 1) = mgf)(t) - (55)
signal can be derived by om;;
52(4) = _% Similarly, using (3) and (37), the update ruleag(f) is derived
a as
OE 9a'®
— 2
= 9a® Ja® (46) _OB OB <~ 00 o0 (56)
2 3) 2 5.3
where do;; Oa w Oy Oog;
. here
9a® w
— = jily. 47
9a® zj:aj Ly (47) aag)
9o
If there are multiple outputs, then the error signal becomes " 2 s — mis)?
5 = 3, 6t where the summation is performed over the | a{? ZX "0 if term nodey is connecte(%57
consequents of a rule node; that is, the error of a rule node is— i to rule .nodek )
the summation of the errors of its consequents. 0, otherwise.



22 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 1, FEBRUARY 1998

So, the update rule of{; is 2 .
) e oF
Tij t+1)= Tij (t) - 7780(2) (58) L5F 4
]
If the transformation matrix® introduced in Section II-B is 1+ .
used, then for rule we have
a(3)(f) _ e—[DiRg (x—m,)]T[D;R; (x—m;)] 0.5} 4
= & o 1
=
=¢(s) (59)
wheres = D; R;(x—m;). Then the update rules fen;, o; = 05F .
(0s1---0s) and R; are
OF OE 9a® r 7
“dm;  9a® Om; (60) sl ]
_OE __ OE 0a® (61) )
do;  8a® Oo; 2 . . . . , , .
9E  OE 0a® o 2 15 -1 05 0 05 1 15 2
COR; 3a® OR; (62) u(k)
where - @
da ° T / / d(/)(s)
o, = B Dt/ (5) and e (s) = = 63) ]
Ha® 5. , osf 1
0o, = Didiag [i(x —my)]¢'(s) 64)
a3 , T 0.4
G =~ Do) -m)". (65) |
Hence, we have 0 . . : .
OE -2 -1.5 -1 05 o] 0.5 1 15 2
m;(t+ 1) =my(t) — U (66) u(k)
_ oF 1 l / I I ' ‘ ‘ ]
oi(t+1)=0;(t) — naai (67) o
JF
Ri(t+1) = Rilt) =g (68) os
If the role R; played is the rotation opezration, then after the ®]
updating in (68),R; may no longer satisfy the constraint %2

RIR; = I. To modify R; to satisfy this constraint after o, o5 o o5 p e )

tuning, the orthogonalization algorithm introduced in [29] can ¥(K)
be adopted. (b)

Fig. 4. Simulation results of the SONFIN without performing fuzzy measure
on the membership functions of each input variable in Example 1. (a) The
IV. SIMULATIONS input training patterns and the final assignment of rules. (b) The distribution
To verify the performance of the SONFIN, several exampl@éthe membership functions on thetk) andy(k) dimensions.

are presented in this section. These examples cover the areas

of control, communication, and signal processing. The output of the plant depends nonlinearly on both its past

ExanIehl—ldentificgtion %f thngyﬁamicdSystdm:this values and inputs, but the effects of the input and output values
example, the SONFIN is used to identify a dynamic SYysteire additive. In applying the SONFIN to this identification

The |dent|f|cat|onAm0deI has the form problem, the learing ratg = 0.003, Fy, = 0.03, Foyt =

gk +1) = flu(k), u(k = 1), -+, u(k —p+1) 0.04, and 3 = 0.37 are chosen, wheré’;, and F,; are the
y(k), y(k=1), -, y(k—q+1)]. (69) threshold parameters used in the input and output clustering
Since both the unknown plant and the SONFIN are driven Ipyocesses, respectively. At first, we use the SONFIN without
the same input, the SONFIN adjusts itself with the goal gferforming fuzzy measure on the membership functions of
causing the output of the identification model to match thakch input variable, so the number of fuzzy sets of each input
of the unknown plant. Upon convergence, their input-outpyriable is equal to the number of rules. The training patterns
relationship should match. The plant to be identified is guidefle generated withu(k) = sin (2xk/100). The training is
by the difference equation performed for 50000 time steps, where the consequent part
y(k+1) = y(k) +u3(k). (70) is turjed by the LMS algorithm. After Fraining,. ten input
1+ y*(k) and five output clusters are generated. Fig. 4(a) illustrates the
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Fig. 5. Simulation results of the SONFIN in Example 1 where the dotted 0 oy I o5 0 o5 p 15 2
line denotes the output of the SOFIN and the solid line denotes the actual ’ ' u(k) ’ ’
output. (a) Result without fuzzy measure performed. (b) Result with fuzzy
measure performed. : T T T . T T
1 -
distribution of the training patterns and the final assignment d¥8 ]
fuzzy rules (i.e., distribution of input membership functions)osy ]
in the [u(k), y(k)] plain. In Fig. 4(a) and succeeding similar o.4} 1
figures, the boundary of each ellipse represents a rule witfy,; ]
firing strengthl/e. The input data not covered by the ellipse , . ,
are the data with a maximum corresponding firing strength less- -15 -1 0.5 y&) 05 1 1.5 2
than 1/¢ but higher than#';,,, so no additional rules have to
be generated to cover them. The corresponding membership ()

functions on theu(k) and y(k) dimensions are shown in Fig. 6. Simulation results of the SONFIN with fuzzy measure performed

. . the membership functions of each input variable in Example 1. (a) The
Fig. 4(b)' From Fig. 4(b)’ we can see that some members'ﬁ‘(but training patterns and the final assignment of rules. (b) The distribution

functions have high similarity degrees and some of them cafthe membership functions on thek) andy(k) dimensions where less
be eliminated. Fig. 5(a) shows the outputs of the plant and tiiembership functions are generated.

identification model after 50 000 time steps. In this figure, the

outputs of the SONFIN are presented as the dotted curve while elk)
the plant outputs are presented as the solid curve. Since perfect /
identification result is achieved with the basic SONFIN [i.e.sk) X (k) I+ x(k) S (k—d)
the SONFIN with fuzzy rules in the form of (1)], no additional channel SONFIN @’
terms need to be added to the consequent part. / -
In the above simulation, the parametBy,, Fo., and 3 )
need to be selected in advance. To give a clear understanding Delay i
of the influence of these parameters on the structure and —d s(k-d)
performance of the SONFIN, different values of them are z

tested. The generated network structure and corresponding i89t7. The use of the SONFIN as an adaptive equalizer.

mean square (rms) errors are listed in Table I. From Table I,

we can see that in certain ranges of the parameters, the desired output values change smoothly, a low valud gf;
error has no much change. A higher valueff, results in a resulting in small output clusters is enough. Since a higher
lower rms error at the cost of larger rule number. Since thalue of 3 means higher overlapping between rules and a
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Fig. 8. Decision regions in Example 2. (a) Optimal decision region. (b) Decision region of network A. (c) Decision region of network B. (d) Decision
region of network C.

TABLE | output clusters are generated, but the number of fuzzy sets on

INFLUENCES OF THEPARAMETERS. (8) Foout, (b) Fin, (C) 3 ON THE
STtRUCTURE OF THESONFIN AND ITS CORRESPONDING RMSERROR

thew(k) andy(k) dimensions are five and seven, respectively.
Fig. 6(a) shows the distribution of the generated input clusters
in the [u(k), y(k)] plain. Fig. 6(b) shows the fuzzy sets on the

s OZg:tclusm) (01-8031) (1%-02) (1%15) (1%26) (1%38) (18‘410) y(k)_andy(k) dimensions. T_he_ identific_ation result _is shown
RMS orror 0031 T 002 T o013 Tooi3 Toos T ooz in Fig. 5(b), a result very similar to Fig. 5(a), while fewer
*F, =003,B=03,p=1 fuzzy sets (input membership functions) are needed in total.

@ The same structure is obtained when= 0.4 is chosen. If
p = 0.5 is chosen, then the number of fuzzy sets onfk)
FF 00001 1 0002 T o001 | 0021 003 | o004 andy(k) dimensions are eight and ten, respectively.
(rule, outputcluster) | (3,3) | (4.4 | (6,3) | (7,3) | (10,4) | (13,9) Example 2—Nonlinear Channel EqualizationNonlinear
— R":SO";"; — 0:’615 0.042 | 0.024 | 0024 | 0.016 | 0.014 channel equalization is a technique used to combat some im-
out T e perfect phenomenon (mainly refers to intersymbol interference
(b) in the presence of noise) in high-speed data transmission over
channels like the high-speed modems [30]. The structure of
B* 0.33 0.47 0.57 0.77 0.87 0.97 . . . . . .
(rule, output cluster) | (15,5) | (6,3) | G,3) | G,3) | (5.3) | 4,2) the system is shown in Fig. 7. The transmitted input signal
RMS error 0017 0022 | 0.024 | 0036 | 0.042 | 0.054 s(k) is a sequence of statistically independent random binary
*Fip = 003 F,,, = 003p =1 symbols taking values of zero or one with equal probability. If
© Z denotes the output of the channel, then the channel function

larger initial width is assigned to each rule, fewer rules are
generated and larger rms error is obtained. From the table, we

can be described as

(k) = fls(k), s(k—1), ---, s(k = N)]. (71)

see that with the same structure a lower valugfqferforms At the receiving end, a channel noisék) presents and the
better on the matching task than a higher one.

To reduce the number of membership functions generated

observed signak(k) is

(k) = &(k) + e(k). (72)

in each dimension, we have also applied the fuzzy-measure
method on each input dimension during the learning proce3fie task of the equalizer is to reconstruct the transmitted
The same training task as above is done are0.3 is chosen. signal s(k — d) from the observed information sequence
After 50000 time steps of training, again, ten input and five(k), «(k—1), ---, 2(k— N +1) (whered and N denote the
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Fig. 9. The input training patterns and the final assignment of rules in Example 2, where the labeled number of each rule denotes the generajion order. (a
Rule assignment in network A where 17 rules are generated. (b) Rule assignment in network B where nine rules are generated with transfornaiion operati
incorporated in each rule. (c) Rule assignment in network C where nine rules are generated.

lag and order, respectively) such that greater speed and higlvertune the parameters in the precondition part only and keep
reliability can be achieved. Suppose the channel function ighe two consequent parametens andrm; unchanged. After
A A training, 17 clusters (rules) are generated. Fig. 9(a) illustrates

z(k) = O(k) +0.10°(k) (73) the distribution of the 5000 training patterns as well as the
where O(k) = 0.5s(k) + s(k — 1) and noisec(k) is zero- generated clusters. The decision region of the trained SONFIN
mean colored Gaussian distributed wilic?(k)] = 0.2 and (network A) is shown in Fig. 8(b). To see the actual bit-error
Ele(k)e(k — 1)] = 0.1. Supposed = 0 and N = 2. The rate (BER), a realization of fOpoints of the sequencek)
optimal decision boundary is plotted in Fig. 8(a). Choosingnd e(k) are used to test the BER of the trained network.
n = 0.005, 3 =0.25, F;, = 0.015, Foys = 1,andp = 1 (i.e., The resulting BER curve of the network is shown in Fig. 10,
no fuzzy measure performed on each input dimension), wenoted by 8.”
trained the SONFIN for each on-line incoming training pattern To reduce the number of rules generated, we incorporate the
and stopped the training &t= 5000. Since the desired outputtransformation matrix?; for each rule into the SONFIN. Ini-
is either 1 or—1, there are only two clusters centeredraf = tially, the transformation matri®; is set as an identity matrix
1 andm; = —1 in the output space. Hence, during the traininépr each rule. Choosing = 0.005, F;,, = 0.002, F,,; = 1,
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network A (“o”), network B (“+”), network C (“+"), network D (“¢”), and 2 1 0 1
network E (‘01") in Example 2.

p = 0.5 and doing the same training task as above, we
obtain the generated rules (clusters) shown in Fig. 9(b), where 2
only nine rules are generated and the numbers of membership , )
functions in thez(k) and z(k — 1) dimensions are seven 1 i
and six, respectively. The decision region of this SONFIN = i '
(network B) is shown in Fig. 8(c) and its BER is shown in =2 0
Fig. 10, denoted by £.” The performance is similar to that
of network A, but fewer rules are generated. Using the same
structure of network B except that no transformation matrix 2t X
R; is incorporated, we have a third SONFIN (network C) with
the generated rule distribution shown in Fig. 9(c). The decision x(K)
region is shown in Fig. 8(d) and the BER curve is shown in ©
Fig. 10 denoted by “+.” A worse result than that of network B N o N _
s obtained, veriying that  higher accuracy is achieved il 0= 5951 1 el 2 @) i fogon o rert
the incorporation of?;. To give a more clear view on the effect
of R;, two networks (D and E) with the same structure as
network B are tested. For network D, no parameter learning“ig’ curves denote the BER curves of network &', and C,
performed and the resulting BER is shown in Fig. 10 denotéeispectively. The results are similar to those obtained from
by “o.” For network E, all parameters are fixed during learningetwork A, B, and C, even though more parameters are used
except the transformation matrik;. The resulting BER is in the consequent parts of networK,A’, and C.
shown in Fig. 10 denoted by."” Contribution of R; can be Example 3—Water Bath Temperature Contrdlhe objec-
seen more clearly from this comparison. tive of this example is to control the temperature of a water
In the above SONFIN's, only two values—“1" andbath at specified temperatures between 25280using the
“—1"—are assigned to the consequent part of each rdONFIN. To achieve this purpose, the SONFIN is trained to
after structure learning. For comparison, we test other thrke@rn the inverse dynamic model of the water bath temperature
networks A, B’, and C using the same number of rules andontrol system. The trained SONFIN is then configured as a
membership functions as those of networks A, B, and @irect controller to the system. Learning an inverse dynamic
respectively, except that each rule has its own correspondimgdel is currently one of the most viable techniques in
singleton value in the consequent part, which is adjustalitee application of neural networks for control. The system
during the learning process. The training task is the sameamfiguration is shown in Fig. 13, wher8—* represents;
that for networks A, B, and C. After training, the decisiortime steps delay angl. is the desired output of the plant. By
regions of networks A B’, and C are shown in Fig. 11 and applying random inputs within a desired range to the plant, the
the BER curves are shown in Fig. 12 where,” “«,” and corresponding outputs are gathered to form a set of training

BHH
SH
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) ) ) ) ) ) Fig. 14. Simulation results of using the SONFIN with only a singleton in
Fig. 13. The direct inverse control configuration where the SONFIN is usgs}g consequent part of each rule in Example 3. (a) The actual output (denoted
as the controller. as the solid line) and the desired output (denoted as the dotted line). (b)

The desired temperature (denoted as the solid lin¢k) and the controlled
temperaturey(k) (denoted as the dotted line).
data. After training, the SONFIN is used to produce control

signals as a function of the desired plant output. The water | ] ) )
bath plant used here is governed by to train the SONFIN, with[y(k), y¥(k + 1)] being the input
and (k) the desired output.
W)

Since the desired outputs change sharply even for similar

ylk+1) =a(Te)y(k) + 1+ e0-3u(k)—r u(k) inputs in this example, we shall first show that the general
+[1 - a(TH)]Y, (74) fuzzy rules with separate output singleton for each rule (i.e.,
a basic SONFIN) cannot handle this task, even though a large
where number of rules are used. The learning rate= 0.0001,
T B =07 Fi, =03, Foue = 1, andp = 1 are chosen to
als) = e (75) train a basic SONFIN. The consequent parameters are tuned
b(T,) :2(1 — 70Ty, (76) by the LMS algorithm. After 1000 epochs of training, the

learning result is shown in Fig. 14(a) where 23 rules are

The system parameters used in this example are= generated. The temperate control result is shown in Fig. 14(b),
1.00151e¢™%, b = 8.67973¢™3, » = 40.0, andY, = 25.0 (°C), indicating a failure control. Next, we use fewer rules but add
which were obtained from a real water bath plant in [31pdditional terms to the consequent part (i.e., we use the TSK-
The plant inputu(k) is limited between zero and five and thdype rules). Since only two input variables are used in this
sampling period isI, = 60. To generate the training data,example, both input variables are used in the consequent part
the temperature control system is operated in an open-logipeach rule. The parameters used for learningrexe0.005,
fashion and 50 random signaisare injected directly to the 3 = 0.7, F';, = 0.02, andp = 0.3. The consequent parameters
plant described by (74). The 50 generated patterns are useel tuned by the RLS algorithm with = 0.9. After five
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Fig. 15. Simulation results of using the SONFIN with a linear equation in the consequent part of each rule in Example 3. (a) The actual output (denoted
as the solid line) and the desired output (denoted as the dotted line). (b) The input training patterns and the final assignment of rules. (c) The desired
temperaturey,-(k) (denoted as the solid line) and the controlled temperapte (denoted as the dotted line). (d) The input training patterns and the

final assignment of rules with linear transformatioRs incorporated. (e) The desired temperatytgk) (denoted as the solid line) and the controlled
temperaturey(k) (denoted as the dotted line).

epochs of training, the learning result is shown in Fig. 15 (akhich has high-dimension inputs and the SONFIN with output
Fig. 15(b) illustrates the distribution of the training patternerms selected via the projection-based correlation measure is
and the final assignment of fuzzy rules in fhék), y(k+1)] used. The performance of the SONFIN will be compared to
plain. The number of generated rules is seven and the numbiéas of other approaches at the end of this example.
of fuzzy sets in they(k) andy(k+ 1) dimensions are four and Let p(k), k = 1,2, --- be a time series. The problem of
four, respectively. The control result is shown in Fig. 15(cjime-series prediction can be formulated as: giyeh— N +
indicating a perfect control. To further reduce the number &8, p(k — N + 2), ---, p(k), we are to determing(k + ¢),
rules generated, a linear transformation of the input variablgéere N and £ are fixed positive integers, i.e., determine a
R; is incorporated and is set as a rotation of 4Bitially Mapping fromp(k — N +1), p(k = N +2), ---, p(k)] € RV
based on the observation of the input data distribution. WilR [P(F +£)] € R. In this example, the Mackey—Glass chaotic
the choice ofy = 0.005, # = 0.5, and Fim = 0.005, only time series is generated from the following delay differential
three rules are generated [see Fig. 15(d)] and a perfect conffation:
is achieved, as shown in Fig. 15(e).

Example 4—Prediction of the Chaotic Time-Serigs:the
above examples, the problems to be solved are either simple
or have low-dimension inputs, so a basic SONFIN or thgherer > 17. In our simulationy = 30 is chosen. The values
SONFIN with all input variables in the consequent part ief N and/ are chosen a® = 9 and/ = 1 in this simulation,
used. In this example, we shall show a more complex probléra., nine point values in the series are used to predict the value

de(t)  0.2x(t—7)
dt 1410t —71)

— 0.1x(¢) 77)
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Fig. 16. The error curves for different types of networks in Example 4 durirfgd- 17.  The error curve during on-line learning in Example 4 where

on-line learning where each point represents the valuegfl0(error sum (—> — —) represents the associated number of additional terms added to

over 500 points). the existing three rules, respectively, and each point represents the value of
log 10(error sum over 500 points).

of the next time point. The learning parameters= 0.005, 14
8 =06, Fi, = 0.002, Foy = 0.9 andp = 0.6 are chosen.
The consequent part is updated by the RLS algorithm with 1.2 , 1
A = 0.995. ;
At first, the on-line learning is performed on the basic 1 . 1
SONFIN. Three input and three output clusters are generated
during the learning process. The learning curlw], (error o8
sum over 500 points)] is shown in Fig. 16, denoted by “
The final error does not satisfy our requirement. Instea
of using more rules to meet the requirement, we plan t6
add some additional terms into the consequent part of the
basic model. Since the dimension of the input space is high,,,
the consequent structure identification scheme introduced in
Section I1I-C is used ang = 5x 10~° is chosen. This on-line DA A AAAAMAA A A A A A A AA A A~
identification scheme is performed at the time the error curve
stops descending. The resulting learning curve, denoted’as “ .2 ; - . - : . . . .
is sF;]own in Fig. g136 where the tgrms aregadded until the 1000th =~ M e 1E L tin:égsiep 1 ner nss nes “0.2
time steps. A total of 15 terms (seven, five, and three for the _ o _
three rules, respectively) are added to the consequent partf#1% The Sesres valies Genoled a2 e sod ) and e predited
test the significance of the selected terms, we assume the teggged and actual values is also shown in the figure, which is denoted as the
are existent once the corresponding rules are generated. ¥diig line below the two magnitude curves.
resulting learning curve is shown in Fig. 16 denoted a$ “

It is observed that thex” curve and the &” curve match in the beginning and then decreasiﬂggradua”y during the
after 2500 time steps. For comparison, the same numbercghsequent structure identification process untis smaller
consequent terms are used in another SONFIN (i.e., sev@fan a prespecified meaningful value or the accuracy satisfies
five, and three terms for the three rules, respectively) with tiige requirement. By setting = 0.005 initially and v = v/10
terms randomly selected. The learning curve for this SONFIfNiring the consequent structure identification process, we
is shown in Fig. 16, denoted as<" showing a worse result. obtain the learning curve in Fig. 17 where each sharp drop
Moreover, the network with all the input variables used in thig the curve is caused by the addition of additional terms
consequent part (30 terms in total) is also used for comparis@s.the linear equation of the consequent part. After 19000
The resulting learning curve is shown in Fig. 16, denoted @me steps, eight terms are added to the consequent part and
“+.” This result is similar to that (the#” curve) of the network the prediction result is shown in Fig. 18 where the predicted
with only 18 significant terms in the consequent part. values of the SONFIN are presented as a dotted curve and
Instead of adding a set of terms into the consequent paritla¢ actual values as a solid curve. The difference between the
once (as we did in the above), we can add the consequent teatisial and predicted values is also shown in Fig. 18, which is
stage by stage. This can be done by setting a laygeslue presented as a solid curve below the two magnitude curves.

tude

0.6 b

a0
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TABLE 1l
PERFORMANCE COMPARISON OF VARIOUS RULE GENERATION METHODS ON THE TIME SERIES PREDICTION PROBLEM
Kosko(AVQ) Kosko (AVQ)
SONFIN FALCON-ART | Wang&Mende! | Datadistribution | without backpropagation|  with backpropagation
UCL DCL UCL DCL
Rule number 4 4. *k
(200 training data) | (0,0,0.0) | (2,5.2,3) | 22 | 30 121 18 100 100 22| 100 | 22| 100
RMS error 0.07 0.018 0.08 | 0.04 0.08 0.08 0.17 02 0.16{ 0.09 [ 0.17| 0.09
* associated number of additional terms added to the existing 4 rules
** 700 training data are used
o:estimated output, *:true output noisy features tiltered features
speech signal
feature noise reduction word recognizer
extraction (SONFIN) (TDNN)
noise signat

Output

Fig. 20. The structure of the noisy speech recognizer using the SONFIN.

TABLE Il
THE ReECOGNITION RATES UNDER CLEAN AND NoIsy
ENVIRONMENT AT DIFFERENT SNR VALUES WITHOUT
UsING THE NoiSe REDUCTION NETWORK IN EXAMPLE 5

SNR 0 6 12 18 | clean

recognition | g 34 48 57 99
rate

Fig. 19. Simulation results of the time series prediction freg701) to
2(1000) using the SONFIN with four rules when 200 training data [from . .
x(501) to x(700)] are used. predicted outputs of these models, the reader is referred to

[32]. From Table Il, we find that the SONFIN not only needs

To test the generalization ability and compare the perfamuch fewer rules and membership functions but also achieves
mance of the SONFIN with other methods that can generatich smaller rms error.
rules from numerical data, the same chaotic time series trainingExample 5—Noisy Speech Recognitigh: well-performed
and testing data in [32] are used. In [32], 200 points of ttgpeech recognition system under noise-free conditions usually
series fromxz(501) to #(700) are used as training data andshow marked degradation in performance when background
the succeeding 300 points from(701) to 2(1000) are used noise is present. To overcome this problem, the SONFIN
as testing data. After off-line training on the 200 points using used in this example as a noise reduction network in
the SONFIN, four rules are generated and the additional terthe cepstral domain. The SONFIN here can be considered
added to the four rules are 2, 5, 2, and 3, respectively. Fig. {® perform a nonlinear mapping from a noisy feature space
shows the prediction of the chaotic time series fro(ff01) to a noise-free feature space [34]. The architecture of the
to 2(1000) where the predictions of the SONFIN are denotegnhancement recognition system is shown in Fig. 20. In this
as ,” and the true values a®." The rms error over the 700 example, the database contains ten isolated Mandarin digits
predicted points is 0.018. If no additional terms are added ‘©,” ---, “9.” They were spoken by the same speaker, with
the consequent part, a rms error of 0.07 is achieved. 30 noise-free repetitions for each word. Among these 30

To give a clear understanding of the performance of thepetitions, ten are used for training, ten for cross validation
SONFIN, the ART-based fuzzy adaptive learning control netluring the training, and the left ten for testing. The time delay
work (FALCON-ART) and other approaches discussed imeural network (TDNN) is used as the recognizer. The features
[32] are compared. These approaches include: Wang amdracted are the cepstral coefficients with order 12 for each
Mendel's approach [17], [33] based upon direct matchinframe and 20 constant frames are used for each word. The
the data distribution method, which generates fuzzy rulesisy speech is generated by adding white Gaussian ngige
according to the training data distribution in the input—outpub the clean speech with different signal-to-noise ratio (SNR).
product space; the generation of fuzzy associative memoryWithout the noise reduction network, the recognition rates
(FAM) rules based on adaptive vector quantization (AVQ)nder clean and noisy environment at different SNR values are
algorithms which contain unsupervised competitive learnirigted in Table Ill. In training, the SONFIN as a noise reduction
(UCL) and differential competitive learning (DCL), proposechetwork at a specific SNR value, the 12 noisy cepstral features
by Kosko [5]; and the combination of the UCL (DCL)-AVQof each frame are used as the inputs and the corresponding
and backpropagation algorithms method. The generated rfe noise-free cepstral features as the desired outputs. All
number as well as rms errors of these approaches are listethim 100 words in the training set are used for training.
Table Il. As to the detailed construction schemes and actidle parameters used for learning aye= 0.0005, 3 =
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TABLE IV
THE NuMBER OF RULES GENERATED, TOTAL NUMBER OF MEMBERSHIP
FuNcTIONS, AND THE NUMBER OF CONSEQUENT PARAMETERS
FOR DIFFERENT SNR VALUES AND MODES IN EXAMPLE 5 g
3
SNR SNR =6 NR = 12 NR = 18 =
DQ'% Sf > tput &
2 o, fi output| uzzy | output le | fuzzy |outpu
ey 5| mule | TEY | rerms | ™€ | sets |terms| "¢ | 'sote | terms E
model A 17 {100 | 204 | 16 | 110 | 192 | 14 | 87 |168 20
model B 17 | 100 | 912 | 16 | 110 | 803 | 14 87 | 785 -
model C 17 | 100 |2652 | 16 | 110 [2496 | 14 | 87 |2184 frame number 00 order
(@
100
o 80 o
= 3
5 60 *é
= @
j o
S
> 40
3]
g
20
0 frame number
5 10 15 20
SNR
(@)
100
(]
©
=
o 80 [
g 2
5 60
g’ 40
8 5
o 20 frame number 00 order
(c)
0 Fig. 22. Cepstral features of speech signal in Example 5. (a) The clean
0 5 10 15 20 cepstral features of word “0.” (b) The noisy cepstral features wrongly
SNR recognized as word “7.” (c) The filtered cepstral features by using network
(b) B, recognized as word “0” correctly.

Fig. 21. The recognition rates on testing data by using the noise reduction

network A (“x”), B (“%"), C (“0”), and without using the noise reduction . ie
network (“+") in Example 5. (a) Results for the network trained at sneeffects on the test data for the models trained at each specific

=0, 6, 12, and18. (b) The generalization ability test for the network trainedSNR value are shown in Fig. 21(a) where symbels™* «,”
at SNR= 18. and “” denote the recognition rates of model A, B, and C,
respectively, and the symbok™ denotes the recognition rate
0.9, Fiy ~ 0.26, Fou, = 0.95, and p = 0.8. The consequent without the noise reduction network. To see the generalization
part is tuned by the RLS algorithm with = 0.999. Using ability for a model trained at a specific SNR value, we may test
the above parameters, three types of SONFIN models d@ren the speech signals with different SNR values. The noise
used for comparison. Model A is the basic model with theeduction network trained at SNR 18 is illustrated. After
consequent part of each rule being a singleton value. Modedined at SNR= 18, the performance of the noise reduction
B is constructed by adding some significant terms to theetwork is tested at SNR= 0, 6, 12, and 18 and is shown
consequent part of model A by the consequent structure Fig. 21(b).
identification scheme described in Section IlI-C, with= Comparing the performance of model B and C, we find that
0.009. Model C is a general TSK model whose consequetiteir noise reduction effects are very similar, but the number
part is a linear combination of all the input variables. Eaobf parameters used in the consequent part of model B is only
model is trained at SNR= 6, 12, and 18, respectively. In one third of that used in model C. To see the training result,
training these models, only about eight epochs are needeel use model B for illustration. The clean features for word
via cross validation test. The number of rules generaté®’ are shown in Fig. 22(a) and the extracted noisy features
total number of membership functions and the number af SNR = 12 are shown in Fig. 22(b), which is wrongly
consequent parameters for different SNR values and modedsognized as word “7.” The filtered features by using model
are listed in Table IV. The corresponding noise reductidd are shown in Fig. 22(c), which results in correct recognition.
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V. CONCLUSION [20]

A neural fuzzy inference network SONFIN, with on-line
self-constructing capability, is proposed in this paper. THell
SONFIN is a general connectionist model of a fuzzy logic
system, which can find its optimal structure and parametgps;
automatically. Both the structure and parameter identification
schemes are done simultaneously during on-line learning, 59
the SONFIN can be used for normal operation at any time
as learning proceeds without any assignment of fuzzy rules
in advance. A novel network construction method for soIvinE2
the dilemma between the number of rules and the number

of consequent terms is developed. The number of genera@lﬂ

rules and membership functions is small even for modelingz)
sophisticated system. As a summary, the SONFIN can always
find itself an economic network size, and the learning speed
well as the modeling ability are all appreciated. Simulatiornas]
in different areas including control, communication, and signal
processing have demonstrated the on-line learning capabi[gg]
of the SONFIN.
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