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Brief Contributions
An Approach to Designing

Modular Extensible Linear Arrays
for Regular Algorithms

Pen-Yuang Chang and Jong-Chuang Tsay

Abstract —The purpose of this paper is to describe a new method to
design unidirectional modular extensible linear arrays for regular
algorithms. The time complexity of our method is polynomial and
depends only on the number of dimensions of the regular algorithm.
The designed linear array is asymptotically optimal in space and time.

Index Terms —Algorithm transformation, conflict-free mapping, data
dependency, linear array, modular extensible, optimal spacetime
mapping, regular algorithm, systolic array, unimodular matrix, VLSI.
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1 INTRODUCTION

LINEAR array is one of the most popular and important regular
arrays [1]. The attractive features of the linear array include
bounded I/O, fault tolerance, minimal communication pattern,
and modular extensibility. Previous research done in designing
linear arrays for the system of uniform recurrence equations
(SURE) fall into two categories. The first one [2], [3], [4], [5] de-
signed linear arrays for different problems case by case. The sec-
ond category [6], [7], [8], [9], [10] proposed procedures to design
systematically linear arrays for SUREs. On the design of modular
extensible linear arrays, four types of conflict-free conditions
should be satisfied. They are dependence, computation, link, and
memory conflict-free.

The major problem in designing modular extensible linear ar-
rays is to check the link conflicts, either the whole computation domain is
necessary to be examined or a diophantine equation needs to be solved
and enumerated. To avoid the time-consuming procedure, we pro-
pose a transformation matrix in a fixed form that is conflict-free.
The time complexity of our method is polynomial and depends
only on the number of dimensions of the regular algorithm.

Here is an outline of following sections: Definitions and design
concepts are given in Section 2. In Section 3, we propose a conflict-
free transformation matrix and prove that the linear arrays de-
signed by our method are asymptotically optimal in space and
time. Finally, our concluding remarks are presented in Section 4.

2 DEFINITION AND CONCEPT

An SURE [11] is a four-tuple $M = (Jn, V, F, D), where Jn is the
computation domain, V the set of variables, F the set of functions,
and D the set of uniform dependence vectors. For simplicity, we

consider only the case of Jn = {[j1, j2, �, jn]T|1 £ ji £ N, 1 £ i £ n},
with N >> n. D is represented as a matrix form in which each col-
umn 

&

d  corresponds to a dependence vector and rank(D) = n
should be satisfied. Without loss of generality, we assume every

dependence vector of an SURE is lexicographically positive. Wolf
and Lam in [12] showed that an SURE with lexicographically
positive dependence vectors can be made fully permutable by

skewing. That is, Xn¥n Dn¥m = Fn¥m, where X is the skew transfor-

mation matrix and "fij Œ F, fij ≥ 0. Thus, we have D = X-1F ∫ BF.
Since every element in F is greater than or equal to zero, B forms a
positive integral coordinate basis of the dependence matrix D.
That is, every dependence vector 

&

d Dj Œ  can be constructed by

positive integral combination of the column vectors 
&

bi s of B, or
& &

d f bj ij ii

n
=

=Â 1
. The matrix Bn¥n can be used to replace Dn¥m to form

a new dependence matrix of the SURE. Therefore, we consider

only that D is an n ¥ n and full rank matrix in the following.
An SURE $M = (Jn, V, F, D) is said to be fully connected (FC-

SURE) if any two index vectors in Jn are connected [13]. An im-
portant property of the FC-SURE is that the absolute value of the
determinant of its dependence matrix is one. An SURE is said to be
matrix-multiplication-like (MM-SURE) [14] if its dependence matrix
is an identity matrix. The first step of our method is to transform
an FC-SURE to an equivalent MM-SURE by a unimodular matrix.

THEOREM 1. By the unimodular matrix Tu = [uij]n¥n = D-1, an FC-SURE

$M = (Jn, V, F, D), where Jn = {[j1, j2, �, jn]T|1 £ ji £ N, 1 £ i £ n},

can be transformed to an equivalent MM-SURE $I
nJ V F I= ( , , , ) ,

where J u jn
n

T
i ik kk

n
= =

=Â{[ , , , ] }M M M M1 2 1
�  and I denotes an

identity matrix.

PROOF. See [15].

A linear array is a four-tuple $Y = (P, M, C, L), where P is a set
of PEs that are logically arranged in a sequence, M a set of mem-
ory storage in each PE, C a set of computational units in each PE,
and L a set of links in each PE in which each link connects two
neighboring PEs.

THEOREM 2. For a transformation matrix T s= [ ]
&
&

l T , where 
&

l  and 
&

s
are the time and space mapping, respectively, to be conflict-free on

mapping an FC-SURE $M = (Jn, V, F, D) to a linear array $Y =
(P, M, C, L), the necessary and sufficient conditions are as fol-
lows: Dependence conflict-free: iff " Œ >

& & &

d D di i, lT 0 . Computa-

tion conflict-free: iff " Œ
& &

j j J n
1 2, , if 

&
&

&
&

s j s jT T
1 2= , then

& & & &

l lT Tj j1 2π . Link conflict-free: iff " Œ
& &

j j J n
1 2, , for each 

&

d Dj Œ , if
& & &

&
&

&
& & & &

l lT T T T( ) ( )j j s d s j j dj j1 2 1 2- = -  then 
& & &

j j kdj1 2- =  or 
&

&

s dj
T = 0 .

Memory conflict-free: iff " Œ
& &

j j J n
1 2, , for each 

&

d Dj Œ , if

&
&

&
&

s j s jT T
1 2=  and 

& & & &

l lT Tj j1 2< , then 
& & & &

& &

&
&l l

lT T
T

Tj j
d

s d

j

j
1 2+ £  when

&
&

s dj
T π 0 , and 

& & & & & &

l l lT T Tj d jj1 2+ £  when 
&

&

s dj
T = 0 .

PROOF. The necessary and sufficient conditions of the first three
conflict-free have been proven by Lee and Kedem in [7].
Now, we want to prove the necessary and sufficient condi-
tions of memory conflict-free. [If part] From 

&
&

&
&

s j s jT T
1 2= , 

&

j1

and 
&

j2  are mapped to the same PE. Case 1 (
&

&

s dj
T π 0): (Fig. 1a)

Since 
&

&

s dj
T π 0, the computation result of an instance of vj

should be propagated to its neighboring PE. Let t j1 1=
& &

lT ,

0018-9340/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• The authors are with the Institute of Computer Science and Information Engi-
neering, College of Engineering, National Chiao Tung University, Hsinchu,
Taiwan 30050, Republic of China. E-mail: jctsay@ccsie.nctu.edu.tw.

Manuscript received 21 Dec. 1993; revised 28 Oct. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106032.



IEEE TRANSACTIONS ON COMPUTERS,  VOL.  47,  NO.  2,  FEBRUARY  1998 213

t j2 2=
& &

lT , and t j
d

s d

j

j
3 1= +

& &
& &

&
&l

lT
T

T . Since t3 £ t2, the computation

result of v jj( )
&

1  has been propagated out of its PE before that

of v jj( )
&

2  is generated. Thus, at every time instance, for each

PE, only one memory storage is necessary to store the

computation result of an instance of vj. Case 2 (
&

&

s dj
T = 0):

(Fig. 1b) It is similar to Case 1. Therefore, if 
&
&

&
&

s j s jT T
1 2=  and

& & & &

l lT Tj j1 2< , then 
& & & &

& &

&
&l l

lT T
T

Tj j
d

s d

j

j
1 2+ £  when 

&
&

s dj
T π 0, and

& & & & & &

l l lT T Tj d jj1 2+ £  when 
&

&

s dj
T = 0. Hence, the condition of

memory conflict-free is satisfied. [Only if part] Case 1

(
&

&

s dj
T = 0): By contradiction, we assume 

& & & &
& &

&
&l l

lT T
T

Tj j
d

s d

j

j
1 2+ > .

Let t j1 2=
& &

lT , t j2 2=
& &

lT , and t j
d

s d

j

j
3 1= +

& &
& &

&
&l

lT
T

T . Thus, memory

conflict occurs during the time interval [t2, t3), since another
extra memory storage is necessary to store the computation
result of v jj( )

&

2  before propagating v jj( )
&

1  to neighboring PE

on t3. Case 2 (
&

&

s dj
T = 0): It is similar to Case 1. Therefore, if

the condition of memory conflict-free is satisfied, then
" Œ
& &

j j J n
1 2, , for each 

&

d Dj Œ , if 
&
&

&
&

s j s jT T
1 2=  and 

& & & &

l lT Tj j1 2< ,

then 
& & & &

& &

&
&l l

lT T
T

Tj j
d

s d

j

j
1 2+ £  when 

&
&

s dj
T π 0, and 

& & & & & &

l l lT T Tj d jj1 2+ £

when 
&

&

s dj
T = 0.                                                                            �

Our method for designing linear arrays is to find a unimodular
matrix Tu to transform the given FC-SURE to an MM-SURE, and to
propose a conflict-free transformation matrix in a fixed form, say
Tl (Section 3), for mapping the MM-SURE to a linear array.

THEOREM 3. Designing a modular extensible linear array $Y for an FC-

SURE $M can be achieved by selecting the transformation matrix

T = TlTu, where Tu is the n ¥ n unimodular matrix for trans-

forming $M to an MM-SURE $I, and T rl = [ ]
& &

f T  is a 2 ¥ n

conflict-free transformation matrix for mapping $I to $Y.

PROOF. From Theorem 1, we know that an FC-SURE $M = (Jn, V, F, D)
can always be transformed to an equivalent MM-SURE

$I
nJ V F I= ( , , , )  by the unimodular matrix Tu = D-1. Now,

we want to prove that if Tl is conflict-free for mapping $I to

$Y, then T TT sl u= ∫ [ ]
&
&

l T  is also conflict-free for mapping

$M to $Y. Dependence conflict-free: Since Tl is conflict-free,
" Œ
&

e Ii , 
& &

f Tei > 0. Thus, from 
&

&

e T di u i= , we have 
& &

f TT du i > 0

or 
& &

lTdi > 0 . Computation conflict-free: Since Tl is conflict-

free, " Œ
& & &

M M1 2, J n , if 
&

&
&

&

r rT TM M1 2= , then 
& & & &

f fT TM M1 2π . Thus,

from 
& &

j T ju1 1=  and 
& &

j T ju2 2= , we have if 
&

&
&

&

r T j r T ju u
T T

1 2= , then
& & & &

f fT TT j T ju u1 2π , or, if 
&
&

&
&

s j s jT T
1 2= , then 

& & &

l lT Tj j1 2π . Link con-

flict-free: Since Tl is conflict-free, iff " Œ
& &

M M1 2 J n , for each
&

e Ij Œ , if 
& & &

& & &
& & & &

f fT T T T( ) ( )M M M M1 2 1 2- = -r e r ej j , then 
& &

&

M M1 2- = kej

or 
& &

r ej
T = 0 . Thus, if 

& & &
&

&
&

& & & &

f fT T T TT j j r T d r T j j T du u j u u j( ) ( )1 2 1 2- = - ,

then 
& & &

j j kdj1 2- =  or 
&

&

r T du j
T = 0 , or, if

& & &
&

&
&

& & & &

l lT T T T( ) ( )j j s d s j j dj j1 2 1 2- = - , then 
& & &

j j kdj1 2- =  or 
&

&

s dj
T = 0.

Memory conflict-free: Since Tl is conflict-free, " Œ
& &

M M1 2, J n , for

each 
&

e Ij Œ , if 
&

&
&

&

r rT TM M1 2=  and 
& & & &

f fT TM M1 2< , then

& & & &
& &

& &
f f

fT T
T

TM M1 2+ £
e

r e

j

j
 when 

& &

r ej
T π 0  and 

& & & & & &

f f fT T TM M1 2+ £ej

when 
& &

r ej
T = 0 . Thus, we have, if 

&
&

&
&

r T j r T ju u
T T

1 2=  and

& & & &

f fT TT j T ju u1 2< , then 
& & & &

& &

&
&f f

fT T
T

TT j T ju

T d

r T d u
u j

u j
1 2+ £  when

&
&

r T du j
T π 0  and 

& & & & & &

f f fT T TT j T d T ju u j u1 2+ £  when 
&

&

r T du j
T = 0 .

That is, if 
&
&

&
&

s j s jT T
1 2=  and 

& & & &

l lT Tj j1 2< , then
& & & &

& &

&
&l l

lT T
T

Tj j
d

s d

j

j
1 2+ £  when 

& &

lTdj π 0 and 
& & & & & &

l l lT T Tj d jj1 2+ £

when 
& &

lTdj = 0 . �

3 DESIGN OF LINEAR ARRAYS

Two topics are discussed in this section: The first one is that we
will give a transformation matrix in a fixed form to design a unidi-
rectional modular extensible linear array for an MM-SURE. The
correctness of this transformation matrix is also to be proved. The
second topic is that we will prove the designed linear array is as-
ymptotically optimal in space and time.

THEOREM 4. Designing a unidirectional modular extensible linear array
$Y for an FC-SURE $M can be achieved by selecting the trans-
formation matrix T = TlTu, where Tu = [uij] is the n ¥ n uni-
modular matrix for transforming $M to an MM-SURE $I, and

T
n n H n H H H

H H H
l

n k

k

n

n
= - - -�

!
 
 

"

$
#
#

-
=

-

-
Â1 2 3

1 0

2 2

0

2

2 2

1 6 1 6 �

�

is the 2 ¥ n transformation matrix for mapping $I to $Y, where

H u Ni n ikk

n
= £ £ =Âa max1 1

 (N >> n), and, if n £ 3, then a = 1,

else a = 2.

PROOF. We want to prove that

T
r r r rl

n

n
=

�

!
 

"

$
# = �

! 
"
$#

&

&

�

�

f f f fT

T
1 2

1 2

is conflict-free for mapping $I
nJ V F I= ( , , , )  to $Y = (P, M,

C, L). Tl = 1 1
1 0

 is a conflict-free mapping when n = 2. Now,

(a)          (b)

Fig. 1.(a) Case 1 (s
T
dj  π 0) of memory conflict-free mapping, (b) Case

2 (s
T
dj  = 0) of memory conflict-free mapping.



214 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  47,  NO.  2,  FEBRUARY  1998

we consider the case of n ≥ 3. Let the index difference between
&

M1 and 
&

M2  be denoted by D
& & &

M M M= -( )1 2 , and the difference

between the ith indexes of 
&

M1 and 
&

M2  be denoted by Dji . From

Theorem 1, we have J u jn
n i ik kk

n
= =

=Â{( , , , ) }M M M M1 2 1
� .

Thus, DMi ikk

n
u N<

=Â 1
. Since H u Ni n ikk

n
= £ £ =Âa max1 1

,

we have DMi
H< a , "1 £ i £ n.

• Dependence conflict-free: " Œ
&

e Ii , 
& &

f Tei > 0, since fi > 0.

• Computation conflict-free: Since |DMi| < H, we have
&

&
&

&

r rT TM M1 2= , iff DMi = 0 "1 £ i £ n - 1 and DMn π 0; but,

when DMi = 0 "1 £ i £ n - 1 and DMn π 0, we have
& &

f TDM ≥ π
=

-Â H k

k

n

0

2
0. Thus, " Œ

& &

M M1 2, J n , if 
&

&
&

&

r rT TM M1 2= ,

then 
& & & &

f fT TM M1 2π .

• Link conflict-free: For the case of en, no link would be

generated, since sn = 0. For each eiπn Œ I, from
& & &

& & &
& & & &

f fT T T T( ) ( )M M M M1 2 1 2- = -r e r ei i , we have

k i H k i H Hk
k

k

i
k

k
k i

n
k

n
k

n

- + - - =-

=

-
-

= +

-
-

=

-

Â Â Â1 6 1 61

1

1
1

1

1
1

1

1

0D D DM M M .

Its left-hand side is a polynomial in H with DMk
H H< £a ,

and max{|k - i|} = n - 2 << N £ H. There are two cases to be
considered:

• Case 1 (DMn = 0): We have

k i H k Hk
k

k

i
k

k
k i

n

- + - =-

=

-
-

= +

-

Â Â1 6 1 61

1

1
1

1

1

1 0D DM M .

This equation implies that ( )k i H k
kk

i
- =-

=

-Â 1

1

1
0DM

and ( )k i H k
kk i

n
- =-

= +

-Â 1

1

1
0DM , since DMk < H and |k - i|

<< H. To simplify the following descriptions, we as-
sume that i = odd. In the case of i = even, we can
prove similarly.

• ( )k i H k
kk

i
- =-

=

-Â 1

1

1
0DM : When n > 3, the equation

implies (k - i)Hk-1DMk + (k + 1 - i)HkDMk+1 = 0, k = 1,

3, 5, �, i - 2. The reason is that the absolute value

of every coefficient |(k - i)DMk| of the equation is
less than H2. From the above equation, we have

D DM Mk
k i

k i kH= - + -
- +
1

1 . Assume DMk+1 π 0, we have

D DM Mk k

k i
k i

H
k i

k i
H=

+ -
- ≥

+ -
-+

1 1
1 ,

 since |DMk+1| ≥ 1. From 1 £ k £ i - 2, we have
DMk

H≥ 2 . It is contradictory to DMk
H< 2 , because

a = 2 when n > 3. Thus, we have DMk = 0, 1 £ k £ i - 1.
When n = 3, the equation is null, since i = 1 is the

only odd integer less than or equal to n - 1.

• ( )k i H k
kk i

n
- =-

= +

-Â 1

1

1
0DM : When n > 3 and n = even,

the equation implies (k - i)Hk-1DMk + (k + 1 - i)HkDMk+1

= 0, k = i + 1, i + 3, �, n - 2. fi = + -
- +D DM Mk

k i
k i kH1

1.

Assume DMk+1 π 0, we have

D DM Mk k

k i
k i

H
k i

k i
H=

+ -
- ≥

+ -
-+

1 1
1 ,

since |DMk+1| ≥ 1. From i + 1 £ k £ n - 2, we have

|DMk| ≥ H. It is contradictory to |DMk| < H. Thus,

we have DMk = 0, i + 1 £ k £ n - 1. When n > 3 and
n = odd, the proof is similar to the case of n = even.

When n = 3 (with i = 1), the equation implies HDM2
= 0. Therefore, DM2 = 0.

For the case of DMn = 0, we have DMk = 0, 1 £ k £ i - 1
and i + 1 £ k £ n - 1.

• Case 2 (DMn π 0): We have

k i j j H j H k i j j Hk n
k

n
i

k

i

k n
k

k i

n

- - - + - - =- -

=

-
-

= +

-

Â Â1 62 7 1 62 7D D D D D1 1

1

1
1

1

1

0 .

Case 2.1 (DMn = ±c, c ≥ 1, c is a constant value): We

have DMi-1 = 7cH, since the coefficient of Hi-1 should be

zero. Thus, we have DMi-1 ≥ H. It is conflict to DMi-1 < H.

Case 2.2 (DMn
H
c= ± , c ≥ 2): We have DMi c+ = ±1

1 , since

the coefficient of Hi should be zero. It is conflict to DMi+1

should be an integer. In either case, we have DMn = 0.

Now, we can deduce that " Œ
& &

M M1 2, J n , for each 
&

e Ii Œ , if
& & &

& & &
& & & &

f fT T T T( ) ( )M M M M1 2 1 2- = -r e r ei i , then 
& &

&

M M1 2- = kei .

• Memory conflict-free: Since |DMi| < H, we have 
&

&
&

&

r rT TM M1 2=

iff DMi = 0, 1 £ i £ n - 1, DMn π 0. Thus, if 
&

&
&

&

r rT TM M1 2=  and
& & & &

f fT TM M1 2< , then 
& & & &

f fT TM M1 0

2

2+ £
=

-Â H k

k

n
 and " πei n ,

& & & &

f fT TM M1 2+ - <( )n i . Therefore, since 
& &

r ei
T = 0  iff i = n,

and 
& &

& &

f T

T
e

r e

i

i
n i= -  for i π n, we have " Œ

& &

M M1 2, J n , for each

&

e Ii Œ , if 
&

&
&

&

r rT TM M1 2=  and 
& & & &

f fT TM M1 2< , then
& & & &&

& &
f ffT T

T

TM M1 2+ £e

r e

i

i
 when 

& &

r ei
T π 0  and 

& & & & & &

f f fT T TM M1 2+ £ei

when 
& &

r ei
T = 0 .

• Unidirection: " Œ
&

d Di , 
&

&
&

&
& &

s d r T d r e ri u i i i
T T T= = = ≥ 0.

Since Tl is conflict-free for mapping $I to $Y, from
Theorem 3, we know that T = TlTu is also conflict-free for
mapping $M to $Y.                                                                   �

EXAMPLE 1 (Matrix multiplication). Since its dependence matrix

D = I, we have Tu = I. Thus, T Tl
N N
N

= = +2 1
1 0

. The exe-

cution time is te = (2 + N + N + 1)(N - 1) + 1 = 2N2 + N - 2.

The number of PE used is kPk = (1 + N)(N - 1) + 1 = N2.

EXAMPLE 2 (Transitive Closure, TC). Although its dependence

matrix D =
�

!
 
 

"

$
#
#

- -
- -

1 0 1 1 0
0 1 1 0 1
0 0 1 1 1

 is not a square one, D can be

made fully permutable by skewing. That is, X3¥3D3¥5 = F3¥5,

where X is the skew transformation matrix and "fij Œ F, fij ≥ 0.

Here, X =
�

!
 
 

"

$
#
#

1 0 1
0 1 1
0 0 1

 and F =
�

!
 
 

"

$
#
#

1 0 0 0 1
0 1 0 1 0
0 0 1 1 1

. Thus, we have

D = X-1F ∫ BF, where B =
�

!
 
 

"

$
#
#

-
-

1 0 1
0 1 1
0 0 1

. The matrix B is used to

replace D to form the new dependence matrix of TC, such
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that, T B Xu = = =
�

!
 
 

"

$
#
#

-1
1 0 1
0 1 1
0 0 1

, Tl
N N
N

= +2 2 2 1
1 2 0 , and

T TTl u
N N
N N

= = +
+

2 2 4 3
1 2 2 1

. The execution time is te = (2 + 2N

+ 4N + 3)(N - 1) + 1 = 6N2 - N - 4. The number of PE used is

kPk = (1 + 2N + 2N + 1)(N - 1) + 1 = 4N2 - 2N - 1.

THEOREM 5. The number of PEs and the execution time of the linear
array designed by Theorem 4 are both 2(Nn-1).

PROOF. From Theorem 4, we have T TTl u
n

n
s s s

= ∫ �
! 

"
$#

l l l
1 2

1 2

�

�

 and
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where aj is an integral number. Thus, the execution time of
the linear array designed by our method is
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where c1 is an integral number. Similarly,
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where bj is an integral number. Thus, the number of PEs
used of the linear array designed by our method is
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where c2 is an integral number. �

THEOREM 6. Executing an FC-SURE $M = (Jn, V, F, D) on a modular
extensible linear array, the lower bound of the execution time is
W(Nn-1).

PROOF. For a recurrence equation v j d f v jj i i j i i( ) ( , ( ), )
& &

�

&

�+ =  in

the FC-SURE, if 
&

j Ji
nœ , then the value of v ji i( )

&

 should be set
by the initial value of the algorithm. For an n-dimensional

FC-SURE, there are at least Nn-1 initial values for the vari-

able vi.
Now, if we execute the FC-SURE on a linear array, be-

cause the input ports of the linear array are confined on the
boundary PEs, there is only one input port for each variable.
Since the array should satisfy the link conflict-free condi-
tion, the time for inputting all Nn-1 initial values of a vari-
able is at least Nn-1 time steps. Thus, the lower bound of the
execution time is W(Nn-1).                                                          �

Now, we want to prove that the lower bound of the number of

PEs required is W(Nn-1) for executing an n-D FC-SURE on a linear
array. Ramakrishnan and Varma [2] have shown a special case for
matrix multiplication by formulating the computation of matrix

multiplication as a game played with tokens on an undirected
graph. We prove this lower bound by showing that every bisection

of an n-D FC-SURE contains W(Nn-1) edges. This implies that the
memory storage required for executing an n-D FC-SURE is at least

W(Nn-1). Since the linear array is memory conflict-free, the lower

bound of the number of PEs required is W(Nn-1) for executing the
n-D FC-SURE on the linear array.

THEOREM 7. Every bisection of an n-D FC-SURE $M = (Jn, V, F, D)

considered as an undirected graph contains W(Nn-1) edges.

PROOF. The basic concept of this proof comes from Leighton’s text-
book [16] (Theorem 1.21: Every bisection of an n-D N-sided

array contains at least Nn-1 edges). Let $I
nJ V F I= ( , , , )  be

the equivalent MM-SURE of the FC-SURE $M = (Jn, V, F, D)
and be obtained from Theorem 1 by the unimodular matrix

Tu = [uij] = D-1. Define m = = =Âmaxi
n

ikk

n
u1 1

 and 1�= mN.

Let undirected graph ' be the graphical representation of

the MM-SURE $I, where each node and link in ' corre-

spond to an index vector and a dependence vector in $I, re-
spectively. A complete directed graph * is embedded to '

by embedding the edge from node v = [v1, v2, �, vn]T to node

w = [w1, w2, �, wn]T of * through the path [v1, v2, �, vn]T Æ

[w1, v2, �, vn]T Æ [w1, w2, �, vn]T Æ � Æ [w1, w2, �, wn]T.

For any edge e of ' connecting nodes [j1, j2, �, jk, �, jn] T

and [j1, j2, �, jk + 1, �, jn]T, there are, at most, 1
n+1

2  edges of

* passing through e. The reason is that the edges of * from

v to w passing through e if v = [v1, v2,  �, vk, jk+1, jk+2, �, jn]T

and w = [j1, j2, �, jk-1, wk, wk+1, �, wn]T. Thus, the maximal
number of feasible choices of v and w is
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THEOREM 8. Executing an FC-SURE $M = (Jn, V, F, D) on a modular
extensible linear array, the lower bound of the number of PEs re-
quired is W(Nn-1).

PROOF. From Theorem 7, we have that every bisection of an n-D

FC-SURE $M = (Jn, V, F, D) contains W(Nn-1) edges. Thus,
for executing an n-D FC-SURE, only two cases will occur:
Case 1: When time = t, half index vectors of the FC-SURE
have been executed. Obviously, the memory storage re-

quired for executing the FC-SURE is at least W(Nn-1). Case 2:
When time = t, less than half index vectors of the FC-SURE
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have been executed; but, when time = t + 1, more than half
index vectors are executed. Then, when either time at t or at
t + 1, the memory storage required for executing the FC-

SURE is at least W(Nn-1). Therefore, the memory storage re-

quired for executing an n-D FC-SURE is at least W(Nn-1). It
follows that, executing an FC-SURE on a modular extensible
linear array, the lower bound of the number of PEs required

is W(Nn-1), since each PE in the linear array has constant
memory storage.                                                                         �

THEOREM 9. An asymptotically optimal linear array can be designed in
polynomial time for any FC-SURE by Theorems 1 and 4.

PROOF. Optimality: It can be proven directly from Theorems 5, 6,
and 8. Polynomial time: From Theorem 1, we know that the
transformation of an FC-SURE to an equivalent MM-SURE
by unimodular matrix can be done in polynomial time, and
it depends only on the number of dimensions of the FC-
SURE. From Theorem 4, we know that the mapping MM-
SURE to the linear array only takes constant time. Hence,
the theorem is proved. �

4 CONCLUSION

In this paper, the design of a unidirectional modular extensible
linear array for an n-dimensional FC-SURE is studied. A polyno-
mial time method is proposed that contains two major steps: In
Step 1, the FC-SURE is transformed to an equivalent MM-SURE by
a unimodular matrix. In Step 2, the MM-SURE is mapped to a
unidirectional modular extensible linear array by a transformation
matrix in a fixed form. Thus, the spacetime mapping transforma-
tion matrix for mapping the original FC-SURE to a linear array can
be obtained by combining these two matrices together. Further-
more, the linear array designed by our method is asymptotically
optimal in space and time.
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