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Abstract 

The object management architecture (OMA) has been recognized as a de facto standard in the development of object services in a 

distributed computing environment. In a distributed system, the provision for failure-recovery is always a vital design issue. However, the 
fault-tolerant service has not been extensively considered in the current OMA framework, despite the fact that an increasing number of useful 

common services and common facilities have been adopted in OMA. In this paper, we propose a fault-tolerance developing environment, 

called Phoinix, which is compatible to the OMA framework. In Phoinix, object services can be developed with embedded fault-tolerance 
capability to tolerate both hardware and software failures. The fault-tolerance capability in Phoinix is classified into two levels: restart, and 
rollback-recovery; where the fault-tolerance capability enhances as the level increases. Currently, Phoinix is ported on Orbix 2.0 and on 
SunOS 4.2. In this paper, the design and implementation of Phoinix is presented and its performance is evaluated. 0 1998 Elsevier Science 

B.V. 
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1. Introduction 

As users demand for resource sharing grows, distributed 

systems have become increasingly attractive in recent 

years. For their better price-performance ratio, distributed 
systems are not only attractive to programmers but also to 

MIS managers. However, the increasing use of computers in 
human lives, especially in critical environments, has led to 

an urgent need for highly reliable computer systems. Fault 
tolerance is an approach used to increase the reliability of 
computer systems. Since heterogeneous distributed systems 

tend to be less reliable in nature, fault tolerance for distri- 

buted systems thus becomes an important design issue. 
Fault-tolerance design for distributed systems requires 

comprehensive knowledge of all aspects of system engin- 

eering, from detailed hardware characteristics to complex 

software specification. Fault-tolerant applications designed 
and implemented from scratch are often complicated, pro- 
prietary, and error-prone. Thus user-friendly fault-tolerance 
case tools are in great demand. Existing fault-tolerance tool- 
kits such as ANSA [l], ISIS [2], PSYNC [1 l] and HORUS 
]12] are now widely available. These products are all 
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designed for process-based distributed applications 

where process is the basic entity subject to monitoring and 
recovery. 

Recently object-oriented design (OOD) [3] has been 

widely applied to software design and development since 

it offers greater potential in portability and reusability. 
Later, several distributed object middlewares have been 

proposed; notably, Object Management Group’s (OMG) 
CORBA [lo], Microsoft’s DCOM [4], IBM’s DSOM 

[6,13] and JAVA RMI [http://www.javasoft.com]. Though 
these middlewares greatly enhance the quality and reusabil- 

ity of the distributed object-based applications, they do not, 

however, ease the pain of developing distributed ‘fault- 
tolerant’ object-based applications. The issues of develop- 

ing fault-tolerant object-based applications differ from that 

of process-based applications in several aspects. Firstly, a 
server process often contains many objects. An object death 

(destroyed from the addressing space) does not necessary 
lead to a process crash. The detection mechanism for 
process crash is not sufficient to detect the object crash. 
Furthermore, many object servers are implemented as 
multi-threaded servers and each object is running in a 
separate thread. Thus, the detection mechanism for process 
hang may not be able to detect an object hang (or a 
thread hang). As a result, there is a need for object-based 
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fault-tolerance service. Though the proposed fault-tolerance 
service in this paper is based on OMG’s CORBA model, we 
believe a similar service or concept can be ported to DCOM 
or JAVA RMI. 

1.1. CORBA introduction 

CORBA reference model consists of four major com- 
ponents: object request broker (ORB), common object 
service specification (COSS), common facility architecture 
(CFA), and application objects. When an object implements 
a service specification and exposes its service to clients over 
a network, this is called an object implementation for that 
service specification. We feel that the term ‘object imple- 
mentation’ is not self-explanatory and sometimes con- 
fusing. Instead we use the term ‘service object’ 
throughout the paper whenever we feel this term is a more 
intuitive than ‘object implementation’. A service object 
usually resides in an address space of a server process in 
most of the current commercial ORB. A server process may 
contain multiple service objects. ORB serves as a software 
interconnection bus between clients and service objects. 
COSS defines several commonly used services in distri- 
buted systems, such as transaction service, persistence 
service, etc. CFA specifies a few facilities that are closer 
to the application level and lean more towards specific 
application domains, such as common task management 
tools and facilities for financing and accounting systems. 
CORBA specification defines the interfaces and functional- 
ity of ORB via which clients may access services from 
service objects and/or service provided by COSS and CFA. 

standard CORBA interface definition language (IDL). The 
CORBA IDL compiler generates two software components 
with respect to each IDL specification, namely, the client 
stub and implementation skeleton. A client needs to bind via 
ORB to an service object before it can invoke operations on 
that service. ORB checks if a service object exists in the 
networks. If not, an instance of that service object will be 
activated and an object handle (an instance of the client 
stub) is returned to the client. The client with the object 
handle can make invocations on that service object and 
wait for the reply, all via ORB. 

We notice that the client stub acts as a local proxy to the 
client object on behalf of a service object that provides the 
actual service. This local proxy shields the complex opera- 
tions from the client object, such as remote request prepara- 
tion, parameter marshalling and unmarshalling, and reply 
delivery. On the other hand, the implementation skeleton 
acts as the local proxy of client objects that makes the 
requests where it handles the invocation dispatching and 
marshalling and unmarshalling of the invocation para- 
meters. With regard to exception handling, ORB raises an 
exception signal to the client proxy (the client stub) if the 
peer object implementation crashes or hangs during the 
request invocation; the client may react to this signal via 
an exception handling routine. Phoinix takes the advantage 
of this ORB service to detect the anomaly of the service 
object. This will be covered in detail later in the paper. 

1.2. Related works 

Fig. 1 illustrates the complete development of the object 
implementation and the client. In CORBA, the service 
offered by a service object is specified in terms of the 

Current efforts to improve the reliability of ORB or 
CORBA applications generally fall into two approaches: 
the system approach and object approach. Electra [9] and 
Arjuna [ 141 are the representing systems for each approach. 
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Fig. I. The application development in CORBA. 
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1.2.1. Electra 

Electra is an object-oriented tool-kit providing a set of 

new abstractions helping to build reliable distributed sys- 
tems in C++. The tool-kit allows programmers to create 

C + + objects that can live on different machines in a net- 
work and communicate synchronously with other Electra 

C++ objects. In Electra, services can be defined using the 

Electra services definition language (SDL) called 
SNOOPY-SDL. (A service is an abstract definition of 

what a server is prepared to do for its clients.) In Electra, 

objects derived from the abstract base class M&ratable can 

be transmitted over a network. Every migratable object must 

have an appropriate dump and recovery method, and the 
stub code generated by SDL relies on these methods for 

marshaling and unmarshalling the state of an object. 

Furthermore, Electra supports reliable group communica- 

tion so that service objects in a group receive the same 

sequence of invocations, thus the internal states of those 

service objects remain consistent. Because Electra has its 

own services definition language (SDL) and does not follow 
an open standard, it is very difficult to port Electra to an 

existing platform. 

1.2.2. Arjuna 

Arjuna is an object-oriented programming system that 

provides a set of tools for the construction of fault-tolerant 

distributed applications. Arjuna provides nested atomic 
actions for structuring application programs. Atomic actions 

control sequences of operations upon local and remote 

objects, which are instances of C++ classes. Operations 
upon remote objects are invoked through the use of remote 

procedure calls (RPCs). The computational model of Arjuna 
uses atomic action controlling operations on persistent 

objects. In Arjuna, objects are long-lived entities and are 
the main repositories for holding system states. A persistent 
object can be replicated on several nodes to achieve fault 

tolerance. Arjuna ensures the consistence of internal states 

by automatic invocations on objects. The major drawback of 
Arjuna is that it is not conformed to any standards. It will be 

more difficult to adapt Arjuna to existing working environ- 

ments, whereas Phoinix can be ported to most CORBA- 

compliant products with minimal modifications. 

1.3. Motivation and objectives of Phoinix 

We believe that the fault-tolerance service added to 
CORBA should be portable in the sense that it requires no 

modifications to ORB, and it is not based on any proprietary 

kernel support. Unlike Electra or Arjuna, Phoinix is 
designed as a CORBAService and thus no modifications 
to ORB is required and it interacts only with standard 
ORB interface. Furthermore, a service object may require 
different fault-tolerance support in different runtime 
environments. For example, it may require fast recovery if 
it serves in a real-time environment and only require cold 
backup in a non-real-time environment. Consequently, a 

checkpoint recovery scheme should be deployed in the 

previous case, whereas a restart mechanism is sufficient in 

the latter. Most existing systems, such as Electra or Arjuna, 

are based on an underling reliable group communication 
layer. This implies that replicas are all running as hot stand- 
bys. Phoinix, however, allows the service objects to select 

the kind of fault-tolerant mechanism that is most suitable to 

the nature of the application domain. The types of the fault- 

tolerance mechanism in Phoinix can be classified into two 

levels: restart service (level one) and checkpoint-recovery 

service (level two). The fault-tolerance capability increases 
as the fault-tolerance level increases. 

Phoinix provides three IDL interfaces to service objects: 

Restartible, Logable and LogManager. A service object ser- 

ver needs to inherit the callback interface Restartible 
or Logable in its service IDL specification if it wishes to 

obtain restart service or checkpoint-recovery service from 

Phoinix. Such objects are called restartible objects or 

logable objects, respectively. We implement the enhanced 

ZDL compiler (EIDL) which parses the IDL interface of the 

fault-tolerant objects and generates corresponding codes for 
failure detection and recovery triggering. LogManager 
(LM) is a CORBA service object that provides the basic 

checkpointing services for logable objects. Logable objects 

may reuse afault-tolerance library provided by Phoinix that 

declares a few base classes for logable objects and imple- 

ments a few basic operations to interact with the LM at 

runtime. Orbix [7] running on SunOS 4.2 has been selected 
to be our ORB platform. We believe Phoinix can be ported 

to most CORBA-compliant platforms with minimal modi- 
fications since Orbix is a full implementation of CORBA. 

2. Overview of Phoinix 

In Phoinix, two types of fault-tolerant objects are sup- 
ported, namely, the restartible objects and the logable 

objects. As the names suggest, the restartible object resumes 

the service from scratch after recovering from failure, 

whereas the logable object resumes its lservice from the 

last check-point. We notice that many common types of 
hardware failures and software failures can be handled by 

these two levels of fault-tolerance [ 181. The functionality 
and design of these fault-tolerant objects are presented later 

in this section and the implementation and interaction of the 
fault-tolerant objects will be presented in following section. 

Phoinix is designed with a few assumptions on the oper- 
ating environment. Firstly, crashed sites are assumed to 

operate in a fail-stop manner. (This is a common assumption 
in many fault-tolerant systems [ 14,151.) In many systems, 
we find that site crashes in a distributed environment are 

relatively infrequent and are usually independent of each 
other. Logable objects apply checkpoint recovery tech- 
niques to ensure the state consistency after failures. This 
implicitly assumes that the invocations on the logable 
objects are piecewise deterministic ].5,8,16,17]. This is 
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Fig. 2. The enhanced IDL compiler and application development in Phoinix. 

also a common assumption in the field. Furthermore, We 

assume that the client invocation is not nested, i.e. the 

invoked object does not invoke operations on objects of 
another object implementation. This assumption implies 

that the object implementation is unlikely to hang due to 
the crash of the client. In order words, the failure detection 
of the client becomes unnecessary. Possible extension of 

Phoinix to support the nested invocation will be discussed 
in Section 5.2. 

We are now ready to introduce the development of an 
application fault-tolerant object in Phoinix. Fig. 2 depicts 

the development procedure for both the object implementa- 

tion and client. The development of fault-tolerant objects in 

Phoinix closely matches with the application development 

model in CORBA, as introduced in the previous section. 

A service object that wishes to become a restartible or 
logable object has to inherit the callback interface 

Restartible or Logable in its IDL declaration. The 
definition of these two callback interfaces are shown in Figs. 
3 and 4. Fig. 5 illustrates the IDL declaration of an ‘logable’ 

account object. Given an IDL declaration with the 
inheritance of either of these callback interface, the 

enhanced ZDL (EIDL) compiler of Phoinix generates two 
sets of extra codes in addition to the ordinary client stub and 

the implementation skeleton. These two sets of programs 

are the reliable proxy that is linked with the client and the 

Fig. 3. IDL specification of the interface Restartible. 

Fig. 4. IDL specification of the interface Logable. 
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Fig. 5. IDL specification of an account object declared as a logable object. 

fault-tolerant skeleton for the service object. The fault- 

tolerant skeleton includes two classes of objects: persistent 

request objects and request handler objects, as shown in 

Fig. 2. 

Once the client object binds to a fault-tolerant service 
object, the reliable proxy at the client side starts monitoring 

that service object, and the reliable proxy is responsible for 
detecting object failures and then triggering the recovery 

process. The detection of an object failure relies on a funda- 
mental service from ORB. Recall that the object failure can 

be detected by ORB so long as this object is bound by a 

client invocation. The client is aware of an object failure if it 

receives an exceptional signal from ORB after an invocation 
is made on that service object. Instead of raising this excep- 

tion signal to the client directly, the reliable proxy intercepts 
this exception signal, activates another service object via 

ORB, binds to it, and then triggers appropriate recovery 
actions according to the type of the fault-tolerant 
object. The reliable proxy invokes Restartible : : 
restart ( 1 if the new object is a restartible object, or it 
invokes Logable : : recover ( ) if the object is a logable 

object. 
A logable object needs to perform a few fundamental 

operations in the provision of the recovery from a failure. 

These operations are: logging and replaying invocations, 
and saving and restoring its critical states. For each opera- 

tion defined in an IDL interface of a logable object, two 

associated classes are needed; a persistent request class 
and a request handler class. Both persistent request class 
and request handler class are generated automatically 

from the EIDL compiler. We discuss the persistent request 
class first. The constructor of a persistent request class has 

the same arguments as that operation defined in its IDL 

interface. A static instance of a persistent request class is 
constructed when the corresponding operation is invoked 

the first time on that object implementation. This persistent 

object will save itself into an audit trail managed by LM 

automatically each time an operation invocation is com- 
pleted successfully. Since it is not necessary for logable 

object to log every performed invocation to LM, a logable 

object declares only those interfaces or operations with 
Logable interface. Thus, no class of persistent request 

will be generated for those interface operations that do not 
require to be logged. A static instance of request handler 

class is constructed at the same time as its persistent request 

counterpart is constructed. The functionality of the request 

handler is the inverse of persistent request, where it 

retrieves from LM those invocations recorded in the audit 
trail and re-executes them in sequence when a new logable 

object is activated after a failure. 

For a logable object, its persistent request object repli- 
cates all incoming invocations to LM before forwarding the 
invocation to the implementation skeleton. The request 

handler of the logable object will retrieve these invocations 

from LM and replay them when the logable object is acti- 

vated by a reliable proxy (via the invocation Logable : : - 
recover ( ) ) to replace a failed logable object. 

For either restartible object or logable object, the service 
object needs to implement the functions defined in the call- 

back interfaces as shown in Figs. 3 and 4. Phoinix provides a 

fault-tolerance library that defines a base class of the restart- 
ible and logable objects so that corresponding service 

objects can inherit and reuse. For example, Fig. 6 depicts 

a C++ implementation of Class Logable in the fault- 
tolerance library. This base class declares a set of funda- 
mental member functions in virtual form and implements 

some basic operations so that a logable object may manage 
its critical data members in conjunction with the LM. The 

detailed implementation of the fault-tolerance library is 

given in Section 4. Yet, we notice that when these member 

Fig. 6. C++ implementation of the logable class in the fault-tolerance library 
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Fig. 7. The architecture of the fault tolerance layer in Phoinix. 

functions are implemented in virtual base, the application 
designer has the freedom to overload these functions to 

better manage the critical data of the logable objects in a 
more efficient manner. The fault-tolerance architecture is 

designed as a software layer operating on top of ORB, as 
shown in Fig. 7. 

3. The application of Phoinix 

We have stated that the restart objects and the logable 

objects are supported in the current version of Phoinix. In 

this section, we present the detail implementation of these 
two types of objects. We first describe the implementation 

of the failure-detection mechanism and recovery invocation 
of Phoinix in conjunction with the CORBA framework, and 

then we briefly describe the recovery process for the restart 

objects. The major part of this section is devoted to the 
design and implementation of logable objects, since the 

recovery process for the restart objects is rather straight- 

forward. It is impossible to restore the failed objects to 

their previous states before failures occur, which is the 
reason we designed another level of fault-tolerance object 

(the logable object): for the purpose of returning the failed 

object to its previous state. 

3.1. The failure detection 

The design philosophy of Phoinix is to let the procedures 
offailure detection and recovery of the fault-tolerant objects 
be transparent to the object designer. Before we discuss the 
real implementation, we briefly review the binding between 
a client and an object implementation in CORBA. Before 
binding to an object implementation that provides the 
desired service, the client first broadcasts to check if an 

object implementation of that type is already activated in 
the network. If there is more than one object implementation 
that is already activated, the client randomly chooses one to 
bind; otherwise, the client randomly activates one. If the 

binding is successful, the client proceeds to making request 
invocations, otherwise, the client repeats the ‘broadcast and 

bind’ procedure until the binding is successful. Upon detec- 
tion of a failure of a bound object implementation, i.e. the 

object implementation crashes, the client would try to 

rebind to an available object implementation that provides 
the same IDL interface. Once the binding of a new object 

implementation is successful, the new object imple- 

mentation may continue the service to the clients after the 
appropriate recovery process (see Section 5). In order to 

make the rebinding operation transparent to the client, we 
design a reliable proxy, as described in the previous section, 

to perform these operations. 
If an object implementation is declared as a restart object, 

the client only needs to rebind to the target object in a new 

object implementation, and the object implementation does 
not need to do any recovery. Notice that this fault-tolerance 

level only assures that a service object is always available to 

clients; but it cannot restore a failed object to its previous 

states before the failure. 

3.2. The failure recovery of the logable objects 

Now we present the interactions between a logable 
object, its persistent request object and request handler 
object, and LM during the failure recovery procedure. A 
logable object binds to the LM via the interface ‘Log- 
Manager’ at the time when it is constructed. Fig. 8 
illustrates the interface LogManager and its operations. 
The client invocations to this logable object are duplicated 
and sent to LM (by the Persistent Request object) via the 
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Fig. 8. IDL specification of the interface LogManager. 

invocation LogManager : : save_invocation ( ) . The 

data structure Invocation contains the information of 

the object reference of this logable object, the method 

name, and the parameters. The logable object also can 

decide the timing as well as the frequency to checkpoint 

its critical data to LM via LogManager: : check- 

point ( ) A logable object has the domain knowledge as 
to what internal states to save in LM via the invocation 

LogManager : : checkpoint ( ) . Once the checkpoint 
is done, the LM purges the audit trail and continues service 
to the logable object. Phoinix provides the base class of the 

logable class as shown in Fig. 6. A logable object needs to 

overload the member functions Logable: : save_ 

state ( ) and Logable : : load-state () to save the 

application-dependent object states. 

If the object implementation crashes, the reliable proxy of 
a client object will receive an exception in a successive 

method invocation. Then, the reliable proxy will re-bind 
another logable object that implements the same service. 
The new logable object will first bind to the LM and initiates 

the rollback recovery process. The new logable object first 
reloads all the critical states from LM via Log- 

Manager : : recover-state ( ) , and this invocation 

brings back the last checkpoint. Furthermore, the new 
logable object needs to redo the requests logged in the 
audit trail in the original order. The static request handler 

object is responsible for this action, and it can retrieve the 

invocations since the last checkpoint via Log- 

Manager : : retrieve_invocation ( ) . The data 
structure InvktList is defined as an array of type 

Invocation, i.e. sequence < Invocation > in 

IDL. The implementation of the request handler includes a 
handler array. The request handler array maintains request 
handlers for the object implementation’s logable objects. A 

request handler unmarshals the arguments of a specific IDL 
interface operation from a logged request, then invokes the 

operation on the new logable object. 

Note that we have assumed that failure occurrence is 
infrequent in a distributed system. This implies that the 

possibility that the logable object and its LM both crash at 
the same time is very slim. The failure recovery of LM will 
be discussed in Section 4. Note that a logable object may 
serve more than one client at a time, and it is possible that 
each client may bind or even reactivate a different object 

implementations after it discovers the crash of the logable 

object. 

4. Implementation of major components in Phoinix 

4. I. EIDL Compiler 

The enhanced IDL (EIDL) compiler scans the IDL inter- 
face specification file and produces fault-tolerance codes in 
addition to standard IDL compiler client stubs and imple- 

mentation skeleton (see Fig. 2). On the client side, the EIDL 

produces a reliable proxy for each IDL interface. The 

reliable proxy is responsible for the failure detection of 

the object implementation and to trigger the recovery pro- 

cess according to the type of the objection implementation. 

On the object implementation side, the EIDL compiler gen- 
erates the fault-tolerant skeleton. The skeleton performs the 

request, logging in the normal operations and performs the 
redo of these requests during the failure recovery process for 
these logable objects. 

4.2. Log manager (LM) 

LM exports its service using the interface LogManager. 
LM maintains a reliable repository to store the checkpoints 

for each logable object, and it also maintains an audit trail to 
record invocations for that object after the last checkpoint. It 

is possible that there are multiple client objects to invoke the 

same logable object that is implemented as a multi-threaded 
server. LM avoids the concurrent access to the same audit 

trial from different threads of the same object using the fwo- 
phase lock (2PL) protocol. In other words, an invocation on 

a logable object can continue only if it is granted the lock to 

access the audit trail of that object. This implies that a 
logable object serves one invocation at any time. It is 

possible to support the concurrent service to multiple clients 

using a more elaborate implementation, though the current 
LM does not support this. We hope that the next generation 
of Phoinix can solve this problem. 

LM itself is implemented as a regular CORBA object, 
thus we need to consider the failure recovery itself. In 
Phoinix, we implement LM as two replicated CORBA 
objects, and each is the hot standby of the other. LM objects 
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actively ‘poll’ each other to detect any anomaly. Each LM 
can accept invocation from logable objects, and the same 
invocation is forwarded to the other LM to ensure data 
consistency within LM. LM activates another replica LM 
if it detects that its running partner has crashed. We assume 
that the chance of two LMs crashing at the same time is very 
small. We also consider the case that a failure occurs in the 
object implementation or in the LM during the checkpoint- 
ing process. We implement the two-phase commit protocol 
during the invocations from logable objects to avoid either 
object implementation or that the LM enters an inconsistent 
state. 

5. Discussion 

In this section, we first report the performance study of 
the Phoinix based on a series of experiments. We also dis- 
cuss possible extension to the current version of Phoinix so 
that it can fully support our optimal design goal. 

5.1. Per&ormance measurement 

We designed a single experiment to explore the perfor- 
mance of Phoinix. The experiment involves account ser- 
vices whose interface definition is illustrated in Fig. 6. 
The account object provides typical transactional operations 
such as deposit, withdraw, and balance inquiry. A client 
object makes 200 invocations on a remote account object 
over a local area network. During this period, the account 

(ms) 
5000 - 

4500 - 

4000. 

object checkpoints it is critical data (roughly 2K bytes in 
size) onto a LM residing on a different host. The account 
object, the client program, and the LM are all running on 
Sun Spare Workstations connected through a lOB-T 
Ethernet. Fig. 9 depicts the experimental results where the 
X-axis represents the number of checkpoints during the 
client’s invocations, and the Y-axis represents the time dura- 
tion over which the client makes those 200 requests. It is not 
surprising to observe that the overhead due to the check- 
point increases as the number increases. Furthermore, we 
notice that each checkpoint takes roughly 200 ms, which is a 
normal network response time. This suggests that the per- 
formance of the LM implementation is acceptable. We 
further notice that the response time for client jumps from 
1 to 2.7 s if the account object becomes a logable object. The 
reason for this is that the persistent request object of the 
logable object saves each invocation to LM before returning 
the reply to the client. We believe the response time will be 
reduced by 50% if these two operations can be done con- 
currently; i.e. the invocation results are sent back to the 
client directly, while the persistent request object is saving 
the invocation to LM. 

5.2. Extensions 

In this section we will identify areas where the current 
version of Phoinix can be enhanced in order to support the 
replication service, the nested invocation, and the software 
failure. The replication service provides for the explicit 
replication of objects in a distributed environment, one 

none 0 1 2 3 4 5 6 7 8 9 10 

No. of Checkpoints 

Fig. 9. The response time of 200 invocations under various check-pointing frequencies. 
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possible way is using a replica manager to coordinate the 

interaction among all replicas, so that object implementa- 

tion operates as if there is a single copy in the system. To 
support nested operation, a persistent request in an IDL 
interface operation call should also log every outgoing 
request and response. If the IDL interface operation call is 

resumed later because of a failure, those outgoing requests 

which already have logged response should be rolled back 

to avoid the same requests from being executed more than 

once. For masking transient software failures, one can 

define a RequestRandomizer class to re-order the requests 

saved in the audit trail before redoing requests. A program- 
mer can redefine his own policy to re-order the logged 
requests. Huang has suggested that most transient software 

failures can be masked by redoing the past requests from the 

last checkpoint to the crash point in the audit trail in a 
different order [ 181. Thus, object implementations devel- 

oped with Phoinix will be able to tolerate transient software 
failures providing the recovery process with this mechan- 

ism. One possible approach to support this mechanism in 

Phoinix is to modify or overload the PersistRequest() in the 

fault-tolerance class library in such a way that the redo order 
differs from that in the audit trail. 

6. Conclusions 

In a distributed system, the provision for failure-recovery 
is always a vital design issue. However, the fault-tolerance 

service has not been extensively considered in the current 

OMA framework, despite the fact that an increasing number 

of useful common services and common facilities have been 

adopted in OMA. In this paper, we propose a fault-tolerance 
developing environment, called Phoinix, which is com- 

patible to the OMA framework. The fault-tolerance capabil- 
ity in Phoinix is classified into two levels: restart and 

rollback-recovery; where the fault-tolerance capability is 
enhanced as the level increases. Currently, Phoinix is ported 

on Orbix 2.0 and SunOS 4.2. Object services provided in the 
current version of Phoinix are able to tolerate hardware 

failures with a capability up to level two fault-tolerance, 
i.e. the level of rollback-recovery. 

In this paper, we have introduced the concept of fault- 

tolerant objects in Phoinix. Two types of fault-tolerant 

objects are supported, namely, restart objects and logable 
objects, corresponding to the two levels of fault-tolerance: 

restart and rollback-recovery. We have discussed the system 

architecture of Phoinix, which consists of the following 

major components: EIDL compiler, fault-tolerance and 
LM. We have also described the application development 
environment of Phoinix, within which application object 
implementation can be developed with the desired level of 
fault-tolerance. Phoinix was designed to support three levels 
of fault-tolerance, as described in Section 1, although only 

two of them were implemented. We also plan to extend the 

recovery mechanism in the logable objects so that software 

transient failures can be masked and tolerated. The replica- 
tion service can also be supported with minor extension 
hardware and software platforms. Performance issues have 
not been given extensive attention in the current implemen- 

tation. As the experiments demonstrated, we have identified 

key areas where performance improvement can be made in 

the next generation of Phoinix. 
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