
ELSEVIER
TECHWWGY

Information and Software Technology 39 (I 998) 965-973

A fault-tolerant object service in the OMG’s object management architecture

Deron Liang”‘*, S.C. Choub, S.M. Yuanb

aInstitute oflnformation Science, Academia Sinica, Taipei f1529, Taiwan, ROC

‘Department of Information & Computer Science, National Chiao-Tung University, Hsin-Chu 31151, Taiwan. ROC

Received IO April 1997; revised 10 November 1997; accepted 13 November 1997

Abstract

The object management architecture (OMA) has been recognized as a de facto standard in the development of object services in a

distributed computing environment. In a distributed system, the provision for failure-recovery is always a vital design issue. However, the
fault-tolerant service has not been extensively considered in the current OMA framework, despite the fact that an increasing number of useful

common services and common facilities have been adopted in OMA. In this paper, we propose a fault-tolerance developing environment,

called Phoinix, which is compatible to the OMA framework. In Phoinix, object services can be developed with embedded fault-tolerance
capability to tolerate both hardware and software failures. The fault-tolerance capability in Phoinix is classified into two levels: restart, and
rollback-recovery; where the fault-tolerance capability enhances as the level increases. Currently, Phoinix is ported on Orbix 2.0 and on
SunOS 4.2. In this paper, the design and implementation of Phoinix is presented and its performance is evaluated. 0 1998 Elsevier Science

B.V.

Keywords: Fault-tolerance; Object-oriented programming; OMA; CORBA; Distributed computing environment; Distributed object services

1. Introduction

As users demand for resource sharing grows, distributed

systems have become increasingly attractive in recent

years. For their better price-performance ratio, distributed
systems are not only attractive to programmers but also to

MIS managers. However, the increasing use of computers in
human lives, especially in critical environments, has led to

an urgent need for highly reliable computer systems. Fault
tolerance is an approach used to increase the reliability of
computer systems. Since heterogeneous distributed systems

tend to be less reliable in nature, fault tolerance for distri-

buted systems thus becomes an important design issue.
Fault-tolerance design for distributed systems requires

comprehensive knowledge of all aspects of system engin-

eering, from detailed hardware characteristics to complex

software specification. Fault-tolerant applications designed
and implemented from scratch are often complicated, pro-
prietary, and error-prone. Thus user-friendly fault-tolerance
case tools are in great demand. Existing fault-tolerance tool-
kits such as ANSA [l], ISIS [2], PSYNC [1 l] and HORUS
]12] are now widely available. These products are all

* Corresponding author. Tel.: +886 2 7883799; fax: +886 2 7824814;

c-mail: drliang@iis.sinica.edu.tw

WSO-5X49/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved
PII sr)9so-5849(97)00055-4

designed for process-based distributed applications

where process is the basic entity subject to monitoring and
recovery.

Recently object-oriented design (OOD) [3] has been

widely applied to software design and development since

it offers greater potential in portability and reusability.
Later, several distributed object middlewares have been

proposed; notably, Object Management Group’s (OMG)
CORBA [lo], Microsoft’s DCOM [4], IBM’s DSOM

[6,13] and JAVA RMI [http://www.javasoft.com]. Though
these middlewares greatly enhance the quality and reusabil-

ity of the distributed object-based applications, they do not,

however, ease the pain of developing distributed ‘fault-
tolerant’ object-based applications. The issues of develop-

ing fault-tolerant object-based applications differ from that

of process-based applications in several aspects. Firstly, a
server process often contains many objects. An object death

(destroyed from the addressing space) does not necessary
lead to a process crash. The detection mechanism for
process crash is not sufficient to detect the object crash.
Furthermore, many object servers are implemented as
multi-threaded servers and each object is running in a
separate thread. Thus, the detection mechanism for process
hang may not be able to detect an object hang (or a
thread hang). As a result, there is a need for object-based

966 D. Liang et al./Infonnation and Sofhvare Technology 39 (1998) 965-973

fault-tolerance service. Though the proposed fault-tolerance
service in this paper is based on OMG’s CORBA model, we
believe a similar service or concept can be ported to DCOM
or JAVA RMI.

1.1. CORBA introduction

CORBA reference model consists of four major com-
ponents: object request broker (ORB), common object
service specification (COSS), common facility architecture
(CFA), and application objects. When an object implements
a service specification and exposes its service to clients over
a network, this is called an object implementation for that
service specification. We feel that the term ‘object imple-
mentation’ is not self-explanatory and sometimes con-
fusing. Instead we use the term ‘service object’
throughout the paper whenever we feel this term is a more
intuitive than ‘object implementation’. A service object
usually resides in an address space of a server process in
most of the current commercial ORB. A server process may
contain multiple service objects. ORB serves as a software
interconnection bus between clients and service objects.
COSS defines several commonly used services in distri-
buted systems, such as transaction service, persistence
service, etc. CFA specifies a few facilities that are closer
to the application level and lean more towards specific
application domains, such as common task management
tools and facilities for financing and accounting systems.
CORBA specification defines the interfaces and functional-
ity of ORB via which clients may access services from
service objects and/or service provided by COSS and CFA.

standard CORBA interface definition language (IDL). The
CORBA IDL compiler generates two software components
with respect to each IDL specification, namely, the client
stub and implementation skeleton. A client needs to bind via
ORB to an service object before it can invoke operations on
that service. ORB checks if a service object exists in the
networks. If not, an instance of that service object will be
activated and an object handle (an instance of the client
stub) is returned to the client. The client with the object
handle can make invocations on that service object and
wait for the reply, all via ORB.

We notice that the client stub acts as a local proxy to the
client object on behalf of a service object that provides the
actual service. This local proxy shields the complex opera-
tions from the client object, such as remote request prepara-
tion, parameter marshalling and unmarshalling, and reply
delivery. On the other hand, the implementation skeleton
acts as the local proxy of client objects that makes the
requests where it handles the invocation dispatching and
marshalling and unmarshalling of the invocation para-
meters. With regard to exception handling, ORB raises an
exception signal to the client proxy (the client stub) if the
peer object implementation crashes or hangs during the
request invocation; the client may react to this signal via
an exception handling routine. Phoinix takes the advantage
of this ORB service to detect the anomaly of the service
object. This will be covered in detail later in the paper.

1.2. Related works

Fig. 1 illustrates the complete development of the object
implementation and the client. In CORBA, the service
offered by a service object is specified in terms of the

Current efforts to improve the reliability of ORB or
CORBA applications generally fall into two approaches:
the system approach and object approach. Electra [9] and
Arjuna [141 are the representing systems for each approach.

Client source code _______________---______________I

w

IDL interface
specification

\
.--

C++ compiler

I

!
____-_________________----------~

j, Object code generation - - W Source code input

0 Provided by application Generated IDL compiler

Fig. I. The application development in CORBA.

D. Liang et al./Infomation and Soflware Technology 39 (1998) 965-973 961

1.2.1. Electra

Electra is an object-oriented tool-kit providing a set of

new abstractions helping to build reliable distributed sys-
tems in C++. The tool-kit allows programmers to create

C + + objects that can live on different machines in a net-
work and communicate synchronously with other Electra

C++ objects. In Electra, services can be defined using the

Electra services definition language (SDL) called
SNOOPY-SDL. (A service is an abstract definition of

what a server is prepared to do for its clients.) In Electra,

objects derived from the abstract base class M&ratable can

be transmitted over a network. Every migratable object must

have an appropriate dump and recovery method, and the
stub code generated by SDL relies on these methods for

marshaling and unmarshalling the state of an object.

Furthermore, Electra supports reliable group communica-

tion so that service objects in a group receive the same

sequence of invocations, thus the internal states of those

service objects remain consistent. Because Electra has its

own services definition language (SDL) and does not follow
an open standard, it is very difficult to port Electra to an

existing platform.

1.2.2. Arjuna

Arjuna is an object-oriented programming system that

provides a set of tools for the construction of fault-tolerant

distributed applications. Arjuna provides nested atomic
actions for structuring application programs. Atomic actions

control sequences of operations upon local and remote

objects, which are instances of C++ classes. Operations
upon remote objects are invoked through the use of remote

procedure calls (RPCs). The computational model of Arjuna
uses atomic action controlling operations on persistent

objects. In Arjuna, objects are long-lived entities and are
the main repositories for holding system states. A persistent
object can be replicated on several nodes to achieve fault

tolerance. Arjuna ensures the consistence of internal states

by automatic invocations on objects. The major drawback of
Arjuna is that it is not conformed to any standards. It will be

more difficult to adapt Arjuna to existing working environ-

ments, whereas Phoinix can be ported to most CORBA-

compliant products with minimal modifications.

1.3. Motivation and objectives of Phoinix

We believe that the fault-tolerance service added to
CORBA should be portable in the sense that it requires no

modifications to ORB, and it is not based on any proprietary

kernel support. Unlike Electra or Arjuna, Phoinix is
designed as a CORBAService and thus no modifications
to ORB is required and it interacts only with standard
ORB interface. Furthermore, a service object may require
different fault-tolerance support in different runtime
environments. For example, it may require fast recovery if
it serves in a real-time environment and only require cold
backup in a non-real-time environment. Consequently, a

checkpoint recovery scheme should be deployed in the

previous case, whereas a restart mechanism is sufficient in

the latter. Most existing systems, such as Electra or Arjuna,

are based on an underling reliable group communication
layer. This implies that replicas are all running as hot stand-
bys. Phoinix, however, allows the service objects to select

the kind of fault-tolerant mechanism that is most suitable to

the nature of the application domain. The types of the fault-

tolerance mechanism in Phoinix can be classified into two

levels: restart service (level one) and checkpoint-recovery

service (level two). The fault-tolerance capability increases
as the fault-tolerance level increases.

Phoinix provides three IDL interfaces to service objects:

Restartible, Logable and LogManager. A service object ser-

ver needs to inherit the callback interface Restartible
or Logable in its service IDL specification if it wishes to

obtain restart service or checkpoint-recovery service from

Phoinix. Such objects are called restartible objects or

logable objects, respectively. We implement the enhanced

ZDL compiler (EIDL) which parses the IDL interface of the

fault-tolerant objects and generates corresponding codes for
failure detection and recovery triggering. LogManager
(LM) is a CORBA service object that provides the basic

checkpointing services for logable objects. Logable objects

may reuse afault-tolerance library provided by Phoinix that

declares a few base classes for logable objects and imple-

ments a few basic operations to interact with the LM at

runtime. Orbix [7] running on SunOS 4.2 has been selected
to be our ORB platform. We believe Phoinix can be ported

to most CORBA-compliant platforms with minimal modi-
fications since Orbix is a full implementation of CORBA.

2. Overview of Phoinix

In Phoinix, two types of fault-tolerant objects are sup-
ported, namely, the restartible objects and the logable

objects. As the names suggest, the restartible object resumes

the service from scratch after recovering from failure,

whereas the logable object resumes its lservice from the

last check-point. We notice that many common types of
hardware failures and software failures can be handled by

these two levels of fault-tolerance [181. The functionality
and design of these fault-tolerant objects are presented later

in this section and the implementation and interaction of the
fault-tolerant objects will be presented in following section.

Phoinix is designed with a few assumptions on the oper-
ating environment. Firstly, crashed sites are assumed to

operate in a fail-stop manner. (This is a common assumption
in many fault-tolerant systems [14,151.) In many systems,
we find that site crashes in a distributed environment are

relatively infrequent and are usually independent of each
other. Logable objects apply checkpoint recovery tech-
niques to ensure the state consistency after failures. This
implicitly assumes that the invocations on the logable
objects are piecewise deterministic].5,8,16,17]. This is

968 D. Liang et al./lnfonnation and Sofiware Technology 39 (1998) 965-973

r---~~----~~~---~~~~_--~~___~-~~____-~~,
I

IDL interface

Et

Enhanced IDL
specification - *co mpiler

+ Object code generation

Provided by user

- - W Source code input

Generated by standard IDL compiler E

Our implementation

Generated by enhanced IDL compiler

Fig. 2. The enhanced IDL compiler and application development in Phoinix.

also a common assumption in the field. Furthermore, We

assume that the client invocation is not nested, i.e. the

invoked object does not invoke operations on objects of
another object implementation. This assumption implies

that the object implementation is unlikely to hang due to
the crash of the client. In order words, the failure detection
of the client becomes unnecessary. Possible extension of

Phoinix to support the nested invocation will be discussed
in Section 5.2.

We are now ready to introduce the development of an
application fault-tolerant object in Phoinix. Fig. 2 depicts

the development procedure for both the object implementa-

tion and client. The development of fault-tolerant objects in

Phoinix closely matches with the application development

model in CORBA, as introduced in the previous section.

A service object that wishes to become a restartible or
logable object has to inherit the callback interface

Restartible or Logable in its IDL declaration. The
definition of these two callback interfaces are shown in Figs.
3 and 4. Fig. 5 illustrates the IDL declaration of an ‘logable’

account object. Given an IDL declaration with the
inheritance of either of these callback interface, the

enhanced ZDL (EIDL) compiler of Phoinix generates two
sets of extra codes in addition to the ordinary client stub and

the implementation skeleton. These two sets of programs

are the reliable proxy that is linked with the client and the

Fig. 3. IDL specification of the interface Restartible.

Fig. 4. IDL specification of the interface Logable.

D. Liung et alAnformation and Sojiware Technology 39 (1998) 965-973 969

Fig. 5. IDL specification of an account object declared as a logable object.

fault-tolerant skeleton for the service object. The fault-

tolerant skeleton includes two classes of objects: persistent

request objects and request handler objects, as shown in

Fig. 2.

Once the client object binds to a fault-tolerant service
object, the reliable proxy at the client side starts monitoring

that service object, and the reliable proxy is responsible for
detecting object failures and then triggering the recovery

process. The detection of an object failure relies on a funda-
mental service from ORB. Recall that the object failure can

be detected by ORB so long as this object is bound by a

client invocation. The client is aware of an object failure if it

receives an exceptional signal from ORB after an invocation
is made on that service object. Instead of raising this excep-

tion signal to the client directly, the reliable proxy intercepts
this exception signal, activates another service object via

ORB, binds to it, and then triggers appropriate recovery
actions according to the type of the fault-tolerant
object. The reliable proxy invokes Restartible : :
restart (1 if the new object is a restartible object, or it
invokes Logable : : recover () if the object is a logable

object.
A logable object needs to perform a few fundamental

operations in the provision of the recovery from a failure.

These operations are: logging and replaying invocations,
and saving and restoring its critical states. For each opera-

tion defined in an IDL interface of a logable object, two

associated classes are needed; a persistent request class
and a request handler class. Both persistent request class
and request handler class are generated automatically

from the EIDL compiler. We discuss the persistent request
class first. The constructor of a persistent request class has

the same arguments as that operation defined in its IDL

interface. A static instance of a persistent request class is
constructed when the corresponding operation is invoked

the first time on that object implementation. This persistent

object will save itself into an audit trail managed by LM

automatically each time an operation invocation is com-
pleted successfully. Since it is not necessary for logable

object to log every performed invocation to LM, a logable

object declares only those interfaces or operations with
Logable interface. Thus, no class of persistent request

will be generated for those interface operations that do not
require to be logged. A static instance of request handler

class is constructed at the same time as its persistent request

counterpart is constructed. The functionality of the request

handler is the inverse of persistent request, where it

retrieves from LM those invocations recorded in the audit
trail and re-executes them in sequence when a new logable

object is activated after a failure.

For a logable object, its persistent request object repli-
cates all incoming invocations to LM before forwarding the
invocation to the implementation skeleton. The request

handler of the logable object will retrieve these invocations

from LM and replay them when the logable object is acti-

vated by a reliable proxy (via the invocation Logable : : -
recover ()) to replace a failed logable object.

For either restartible object or logable object, the service
object needs to implement the functions defined in the call-

back interfaces as shown in Figs. 3 and 4. Phoinix provides a

fault-tolerance library that defines a base class of the restart-
ible and logable objects so that corresponding service

objects can inherit and reuse. For example, Fig. 6 depicts

a C++ implementation of Class Logable in the fault-
tolerance library. This base class declares a set of funda-
mental member functions in virtual form and implements

some basic operations so that a logable object may manage
its critical data members in conjunction with the LM. The

detailed implementation of the fault-tolerance library is

given in Section 4. Yet, we notice that when these member

Fig. 6. C++ implementation of the logable class in the fault-tolerance library

970 D. Liang et al./Infomation and Sofmare Technology 39 (1998) 965-973

t-----+ Communication c...... Inheritance

Phoinix components n GeneratedbytheEIDL ,:

Fig. 7. The architecture of the fault tolerance layer in Phoinix.

functions are implemented in virtual base, the application
designer has the freedom to overload these functions to

better manage the critical data of the logable objects in a
more efficient manner. The fault-tolerance architecture is

designed as a software layer operating on top of ORB, as
shown in Fig. 7.

3. The application of Phoinix

We have stated that the restart objects and the logable

objects are supported in the current version of Phoinix. In

this section, we present the detail implementation of these
two types of objects. We first describe the implementation

of the failure-detection mechanism and recovery invocation
of Phoinix in conjunction with the CORBA framework, and

then we briefly describe the recovery process for the restart

objects. The major part of this section is devoted to the
design and implementation of logable objects, since the

recovery process for the restart objects is rather straight-

forward. It is impossible to restore the failed objects to

their previous states before failures occur, which is the
reason we designed another level of fault-tolerance object

(the logable object): for the purpose of returning the failed

object to its previous state.

3.1. The failure detection

The design philosophy of Phoinix is to let the procedures
offailure detection and recovery of the fault-tolerant objects
be transparent to the object designer. Before we discuss the
real implementation, we briefly review the binding between
a client and an object implementation in CORBA. Before
binding to an object implementation that provides the
desired service, the client first broadcasts to check if an

object implementation of that type is already activated in
the network. If there is more than one object implementation
that is already activated, the client randomly chooses one to
bind; otherwise, the client randomly activates one. If the

binding is successful, the client proceeds to making request
invocations, otherwise, the client repeats the ‘broadcast and

bind’ procedure until the binding is successful. Upon detec-
tion of a failure of a bound object implementation, i.e. the

object implementation crashes, the client would try to

rebind to an available object implementation that provides
the same IDL interface. Once the binding of a new object

implementation is successful, the new object imple-

mentation may continue the service to the clients after the
appropriate recovery process (see Section 5). In order to

make the rebinding operation transparent to the client, we
design a reliable proxy, as described in the previous section,

to perform these operations.
If an object implementation is declared as a restart object,

the client only needs to rebind to the target object in a new

object implementation, and the object implementation does
not need to do any recovery. Notice that this fault-tolerance

level only assures that a service object is always available to

clients; but it cannot restore a failed object to its previous

states before the failure.

3.2. The failure recovery of the logable objects

Now we present the interactions between a logable
object, its persistent request object and request handler
object, and LM during the failure recovery procedure. A
logable object binds to the LM via the interface ‘Log-
Manager’ at the time when it is constructed. Fig. 8
illustrates the interface LogManager and its operations.
The client invocations to this logable object are duplicated
and sent to LM (by the Persistent Request object) via the

D. Liang et al./lnfonnaiion and Software Technology 39 (I 998) 965-973 971

Fig. 8. IDL specification of the interface LogManager.

invocation LogManager : : save_invocation () . The

data structure Invocation contains the information of

the object reference of this logable object, the method

name, and the parameters. The logable object also can

decide the timing as well as the frequency to checkpoint

its critical data to LM via LogManager: : check-

point () A logable object has the domain knowledge as
to what internal states to save in LM via the invocation

LogManager : : checkpoint () . Once the checkpoint
is done, the LM purges the audit trail and continues service
to the logable object. Phoinix provides the base class of the

logable class as shown in Fig. 6. A logable object needs to

overload the member functions Logable: : save_

state () and Logable : : load-state () to save the

application-dependent object states.

If the object implementation crashes, the reliable proxy of
a client object will receive an exception in a successive

method invocation. Then, the reliable proxy will re-bind
another logable object that implements the same service.
The new logable object will first bind to the LM and initiates

the rollback recovery process. The new logable object first
reloads all the critical states from LM via Log-

Manager : : recover-state () , and this invocation

brings back the last checkpoint. Furthermore, the new
logable object needs to redo the requests logged in the
audit trail in the original order. The static request handler

object is responsible for this action, and it can retrieve the

invocations since the last checkpoint via Log-

Manager : : retrieve_invocation () . The data
structure InvktList is defined as an array of type

Invocation, i.e. sequence < Invocation > in

IDL. The implementation of the request handler includes a
handler array. The request handler array maintains request
handlers for the object implementation’s logable objects. A

request handler unmarshals the arguments of a specific IDL
interface operation from a logged request, then invokes the

operation on the new logable object.

Note that we have assumed that failure occurrence is
infrequent in a distributed system. This implies that the

possibility that the logable object and its LM both crash at
the same time is very slim. The failure recovery of LM will
be discussed in Section 4. Note that a logable object may
serve more than one client at a time, and it is possible that
each client may bind or even reactivate a different object

implementations after it discovers the crash of the logable

object.

4. Implementation of major components in Phoinix

4. I. EIDL Compiler

The enhanced IDL (EIDL) compiler scans the IDL inter-
face specification file and produces fault-tolerance codes in
addition to standard IDL compiler client stubs and imple-

mentation skeleton (see Fig. 2). On the client side, the EIDL

produces a reliable proxy for each IDL interface. The

reliable proxy is responsible for the failure detection of

the object implementation and to trigger the recovery pro-

cess according to the type of the objection implementation.

On the object implementation side, the EIDL compiler gen-
erates the fault-tolerant skeleton. The skeleton performs the

request, logging in the normal operations and performs the
redo of these requests during the failure recovery process for
these logable objects.

4.2. Log manager (LM)

LM exports its service using the interface LogManager.
LM maintains a reliable repository to store the checkpoints

for each logable object, and it also maintains an audit trail to
record invocations for that object after the last checkpoint. It

is possible that there are multiple client objects to invoke the

same logable object that is implemented as a multi-threaded
server. LM avoids the concurrent access to the same audit

trial from different threads of the same object using the fwo-
phase lock (2PL) protocol. In other words, an invocation on

a logable object can continue only if it is granted the lock to

access the audit trail of that object. This implies that a
logable object serves one invocation at any time. It is

possible to support the concurrent service to multiple clients

using a more elaborate implementation, though the current
LM does not support this. We hope that the next generation
of Phoinix can solve this problem.

LM itself is implemented as a regular CORBA object,
thus we need to consider the failure recovery itself. In
Phoinix, we implement LM as two replicated CORBA
objects, and each is the hot standby of the other. LM objects

972 D. Liang et al./lnfomation and Software Technology 39 (1998) 965-973

actively ‘poll’ each other to detect any anomaly. Each LM
can accept invocation from logable objects, and the same
invocation is forwarded to the other LM to ensure data
consistency within LM. LM activates another replica LM
if it detects that its running partner has crashed. We assume
that the chance of two LMs crashing at the same time is very
small. We also consider the case that a failure occurs in the
object implementation or in the LM during the checkpoint-
ing process. We implement the two-phase commit protocol
during the invocations from logable objects to avoid either
object implementation or that the LM enters an inconsistent
state.

5. Discussion

In this section, we first report the performance study of
the Phoinix based on a series of experiments. We also dis-
cuss possible extension to the current version of Phoinix so
that it can fully support our optimal design goal.

5.1. Per&ormance measurement

We designed a single experiment to explore the perfor-
mance of Phoinix. The experiment involves account ser-
vices whose interface definition is illustrated in Fig. 6.
The account object provides typical transactional operations
such as deposit, withdraw, and balance inquiry. A client
object makes 200 invocations on a remote account object
over a local area network. During this period, the account

(ms)
5000 -

4500 -

4000.

object checkpoints it is critical data (roughly 2K bytes in
size) onto a LM residing on a different host. The account
object, the client program, and the LM are all running on
Sun Spare Workstations connected through a lOB-T
Ethernet. Fig. 9 depicts the experimental results where the
X-axis represents the number of checkpoints during the
client’s invocations, and the Y-axis represents the time dura-
tion over which the client makes those 200 requests. It is not
surprising to observe that the overhead due to the check-
point increases as the number increases. Furthermore, we
notice that each checkpoint takes roughly 200 ms, which is a
normal network response time. This suggests that the per-
formance of the LM implementation is acceptable. We
further notice that the response time for client jumps from
1 to 2.7 s if the account object becomes a logable object. The
reason for this is that the persistent request object of the
logable object saves each invocation to LM before returning
the reply to the client. We believe the response time will be
reduced by 50% if these two operations can be done con-
currently; i.e. the invocation results are sent back to the
client directly, while the persistent request object is saving
the invocation to LM.

5.2. Extensions

In this section we will identify areas where the current
version of Phoinix can be enhanced in order to support the
replication service, the nested invocation, and the software
failure. The replication service provides for the explicit
replication of objects in a distributed environment, one

none 0 1 2 3 4 5 6 7 8 9 10

No. of Checkpoints

Fig. 9. The response time of 200 invocations under various check-pointing frequencies.

D. Linng et alAnformation and Software Technology 39 (1998) 965-973 913

possible way is using a replica manager to coordinate the

interaction among all replicas, so that object implementa-

tion operates as if there is a single copy in the system. To
support nested operation, a persistent request in an IDL
interface operation call should also log every outgoing
request and response. If the IDL interface operation call is

resumed later because of a failure, those outgoing requests

which already have logged response should be rolled back

to avoid the same requests from being executed more than

once. For masking transient software failures, one can

define a RequestRandomizer class to re-order the requests

saved in the audit trail before redoing requests. A program-
mer can redefine his own policy to re-order the logged
requests. Huang has suggested that most transient software

failures can be masked by redoing the past requests from the

last checkpoint to the crash point in the audit trail in a
different order [181. Thus, object implementations devel-

oped with Phoinix will be able to tolerate transient software
failures providing the recovery process with this mechan-

ism. One possible approach to support this mechanism in

Phoinix is to modify or overload the PersistRequest() in the

fault-tolerance class library in such a way that the redo order
differs from that in the audit trail.

6. Conclusions

In a distributed system, the provision for failure-recovery
is always a vital design issue. However, the fault-tolerance

service has not been extensively considered in the current

OMA framework, despite the fact that an increasing number

of useful common services and common facilities have been

adopted in OMA. In this paper, we propose a fault-tolerance
developing environment, called Phoinix, which is com-

patible to the OMA framework. The fault-tolerance capabil-
ity in Phoinix is classified into two levels: restart and

rollback-recovery; where the fault-tolerance capability is
enhanced as the level increases. Currently, Phoinix is ported

on Orbix 2.0 and SunOS 4.2. Object services provided in the
current version of Phoinix are able to tolerate hardware

failures with a capability up to level two fault-tolerance,
i.e. the level of rollback-recovery.

In this paper, we have introduced the concept of fault-

tolerant objects in Phoinix. Two types of fault-tolerant

objects are supported, namely, restart objects and logable
objects, corresponding to the two levels of fault-tolerance:

restart and rollback-recovery. We have discussed the system

architecture of Phoinix, which consists of the following

major components: EIDL compiler, fault-tolerance and
LM. We have also described the application development
environment of Phoinix, within which application object
implementation can be developed with the desired level of
fault-tolerance. Phoinix was designed to support three levels
of fault-tolerance, as described in Section 1, although only

two of them were implemented. We also plan to extend the

recovery mechanism in the logable objects so that software

transient failures can be masked and tolerated. The replica-
tion service can also be supported with minor extension
hardware and software platforms. Performance issues have
not been given extensive attention in the current implemen-

tation. As the experiments demonstrated, we have identified

key areas where performance improvement can be made in

the next generation of Phoinix.

References

[1] ANSAware Version 4.1 Manual Set, Architecture Projects Manage-

ment Ltd., Castle Park, Cambridge UK (March 1993).

[2] K.P. Birman, Integrating runtime consistency models for distributed

computing, Tech. Rep. 91-1240, Dept. of Computer Science, Cornell

University (July 1993).

[3] G. Booth, Object-oriented Design with Applications, The Benjamin

Cummings Publishing Company, Inc. (1991).

[4] K. Brockschmidt, Inside OLE, 2nd ed.. Microsoft Press, Redmond,

Washington (1995).

[5] E.N. Elnozahy, W. Zwaenepoel, Manetho: transparent rollback-

recovery with low overhead, limited rollback and fast output commit.

IEEE Trans. Computers 41 (5 (May)) (1992) 526-531.

[6] SOMobjects: A Practical Introduction to SOM and DSOM, IBM,

International Technical Support Organization (July 1994).

[7] Orbix Programmer’s Guide, IONA Technolog,ies Ltd. (November

1994).

[S] R. Koo, S. Toueg, Check-pointing and rollback-recovery for distrib-

uted systems, IEEE Trans. Software Eng. SE-13 (1 (January)) (1987)

23-3 I.

[9] S. Landis, S. Maffeis, Building Reliable Distributed Systems with

CORBA, in: Theory and Practice of Object Systems. R. Soley (Ed.),

John Wiley, New York (April 1997).

IO] The Common Object Request Broker (CORBA): Architecture and

Specification, v 1.2, Object Management Group. Inc. (December

1993).

1 I] L. Peterson. N. Buchholz, R. Schlichting, Preserving and using con-

text information in inter-process communication, ACM Trans. Com-

puter Systems 7 (3 (August)) (1989) 217-246.

[121 R.V. Renesse, K.P. Birman, R. Cooper, B. Glade, P. Stephenson,

Reliable multicast between microkemels. Proceedings of the USENIX

Workshop of Micro-Kernels and Other Kernel Architectures, Seattle,

Washington (April 1992).

[I31 J.R. Rymer, IBM’s System Object Model. Distributed Computing

Monitor 8 (3 (March)) (1993) I-24.

141 S.K. Shrivastava, Lessons Learned from Building Arjuna Distributed

Programming System, Dagstuhl Seminar on Distributed Systems

(1994) pp. 17-32.

151 R.D. Schlichting. F.B. Schneider, Fail-stop processors: An approach

to designing fault-tolerant computing systems, ACM Trans. Computer

Systems 1 (3 (August)) (1983) 222-238.

161 R.E. Strom, S. Yemini. Optimistic recovery in distributed systems,

ACM Trans. Computer Systems 3 (3 (August)) (1985) 204-226.

171 R.E. Strom. D.F. Bacon, S.A. Yemini, Volatile logging in n-

fault-tolerant distributed systems. in: Proceedings of the Fault-Toler-

ance Computing Symposium (1988) pp. 34-49.

IS] Y.M. Wang. Y. Huang, W.K. Fucka. Progressrve retry for software

error recovery in distributed systems, in: Proceedings of the 22nd

Fault-tolerance Computing Symposium (1993).

