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Abstract-We study block decoupling of linear multivariable 
systems under unity-feedback configuration. We consider plants 
which have unstable pole-zero coincidences and give necessary 
and sufficient conditions for the existence of the block decoup- 
ling controllers. The conditions are particularly simple for plants 
with only simple unstable pole-zero coincidences. An illustrative 
example is given. 0 1998 Elsevier Science Ltd. All rights 
reserved. 

1. INTRODUCTION 

Necessary and sufficient conditions for the exist- 
ence of block decoupling controllers for linear 
multivariable systems under unity feedback config- 
uration have been given in Linnemann and Wang 
(1993). The approach there is to find conditions 
under which there is an open-loop block decoup- 
ling precompensator that does not introduce unsta- 
ble pole-zero cancellations. It is well known that 
a sufficient, but not necessary, condition for exist- 
ence of (stabilizing) block decoupling controllers is 
that the plant has no unstable pole-zero coincid- 
ences. To find a necessary condition, we thus only 
need to consider plants in which unstable pole-zero 
coincidences do occur. 

When there is an unstable pole-zero coincidence, 
closed-loop stability and block decoupling require- 
ments introduce potentially conflictory interpola- 
tion conditions on the input-output transfer matrix 
(or equivalently the sensitivity matrix). Our ap- 
proach is to derive conditions under which the 
interpolation equations arise from stability require- 
ment have a solution under the block decoupling 
constraints. The conditions so obtained are parti- 
cularly simple when the unstable coincidences are 
all simple. 
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We consider first the simple case in which the 
plant is square and the unstable pole-zero coincid- 
ences are all simple (Lin and Wu, 1996). We then 
generalize the conditions to the case in which the 
plant has a second-order unstable pole-zero coin- 
cidence. Finally, it is shown that for a general 
rectangular full normal row rank plant P, the exist- 
ence of a block decoupling controller is equivalent 
to the existence of a block decoupling controller for 
a square plant derived from P. 

The following notations are as used. C := the 
field of complex numbers. @- := {s E C 1 Re(s) < O}; 
C+ := {s E @lRe(s) 2 O}. rW[s] := the ring of 
polynomials in s with real coefficients; R(s):= 
the field of rational functions in s with real co- 
efficients; [w,(s) (R,(s) ) := the set of proper (strictly 
proper, resp.) rational functions in s with real 
coefficients. For H(s) E R(s)“~~, rzO[EJj := the set 
of all zeros of I-Z in C, g[a := the set of all 
poles of H in C, %“+[a := S[ZfJn@+, and 
g+ [H] := p[a n @ + . Dynamic interpretations of 
poles and zeros of transfer matrices can be found in 
Callier and Desoer (1982). S := the set of all proper 
rational functions with no poles in C + . A proper 
transfer matrix P(s) E Rp(~)“Xm is stable if and 
only if 9[P] c Q=-. A list of positive integers 
(n1, n2, . . . , nk) satisfying CT= 1 ni = n is said to be 
a partition of n. We use diag{Hi}:= 1 to denote 
the block diagonal rational matrix with Hi as its ith 
block diagonal entry, where Hi E R(s)“1’“‘. 
For A = [aiJECmX” and B= [bij]EcPXq the 
Kronecker product A @I B is defined as 

..,=[lli /J:. c?I]ECmpxnq; 

for A = [ai ... a,] E Cmx”, vet(A):= [a: ... u;flT 
(Horn and Johnson, 1991). 

2. UNITY-FEEDBACK SYSTEMS 

Consider the unity-feedback system S(P, C) 
shown in Fig. 1, where P E Rp(s)“xm is the plant, 
C E R,(s~~” is the controller, (IQ, uz) is the input 
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Fig. I. Unity-feedback system .S(P, C). 

and (yl, y2) is the output. Let u := [UT u:]’ and 
y := [y: yzlT. The closed-loop transfer matrix 
H,, E aBp(s)“” + ‘IX cm + ‘*’ is given by 

[ 

C(Z + PC)_ ’ - CP(Z + CP)_’ 

= PC(Z + PC)_’ P(Z + cP)-l 1 . 
(1) 

We say that the system S(P, C) is (internally) 
stable and C is a stabilizing controller for P if H,, is 
stable; the system is block decoupled with respect to 
the partition (nl, . . . , n,J of n and C is a block 
decoupling controller for P if C stabilizes P and the 

I/O map Hy+, is nonsingular and block diagonal, 

i.e., 

H1 

Y,U, = 

[ .’ 

0 

H 
0 ‘HI, I 

:= diag{Hi}:= 1, (2) 

where Hi E R,(s),~c ’ “8. We assume that m 2 n and 

P has full normal rank n throughout. 
Let Q = C(Z + PC)-’ E I$,(s)~~“. In terms of Q, 

the closed-loop transfer matrix H,, becomes 

H,, = 
Q -Qf' 

PQ 1 (I - PQ)P 
(3) 

Since the plant P is strictly proper, Q = 
C(Z + PC)- l E Rp(S)mX” if and only if C = 

Q(Z - PQ)- ’ E Rp(~)mxn (Callier and Desoer, 1982). 

3. SQUARE PLANT CASE 

We will consider first the case where the plant is 
a square rational matrix. Since P E (WpO(s)nXn has 
full normal rank by assumption, P- ’ exists. 

It follows from equation (3) that stability of 
S(P, C) requires the stability of the four block en- 

tries of H,,. The following result says that if the 
diagonal entries of equation (3) are stable then the 
only unstable poles that may appear in the off- 
diagonal entries are those that are both poles and 
(transmission) zeros of P. 

Lemma 3.1 (Lin, 1995). For the system S(P, C) 
with P E IwpO(s)“x” and H,, given in equation (3), if 
Q and (I - PQ) P are stable then 9+[PQ] c 
(Y+[P] n 3+ [PI) and Y+ CQPI = P+ [PI n 9’+ CPD 

3.1. Necessary and suficient conditions 
We consider plants in which coincidences of 

@+ pole-zero do occur. To simplify derivations 
we consider first the case where there is only 
one simple C.-coincidence. Given the plant 
P E Rpo(s)nX” with P-’ E [W(s)nX”. Write 

R 
P(s) = - 

s - A 
+ U(s) and P(s)-’ = 2 + V(S)> 

(4) 

where AC@+, R, TE@“~“, U(S)E [Wpo(s)nX” and 
V(s) E [w(s)““” are analytic at A and .Y+ [U] n 
,Y+ [V] = 0. The plant P has an @+-coincidence at 
s = i. 

Consider the system S(P, C) shown in Fig. 1 with 

P E Rpo(s)nX”. Suppose for some stabilizing control- 
ler C the resulting I/O map HyzU, =: H is block 
diagonal with respect to the partition (nI, . . . , nk),* 
that is, C is a block decoupling controller for P. 
Write H = diag{Hi}f= 1 where Hi E K$,(s)~‘~“~ is 
stable. With Q = C(Z + PC)-’ we have H = PQ. 
Internal stability of S(P, C) implies that Q, (I - PQ) 
P and QP are all stable, in particular, they are all 
analytic at A. 

Let us examine the consequences of these re- 
quirements. Since Q = P- ‘H, Q is analytic at A. if 
and only if 

P-‘,=[A+ V(s)]H(s) isanalyticat;. 

Since V and H are analytic at A, Q is analytic at A if 
and only if 

TH(A) = 0. (5) 

Write T = [T, ... Tk], where Tin @“x’~. Since 

H is block diagonal, equation (5) is equivalent to 

TiHi(A) = 0, i = 1, . . . ,k. (6) 

Similarly, (I - PQ) P is analytic at A: if and only if 

(I-H)P=[Z-H(s)][&+O(s)] 

is analytic at i,. 

Since U is analytic at A, (I - PQ) P is analytic at A if 
and only if 

H(I)R = R. (7) 

Write RT = [R: ... R:] where RiE Vxn. Since 
H is block diagonal, equation (7) is equivalent to 

Hi(/I)Ri = Ri, i = 1, . . . , k. (8) 

Conditions (6) and (8) together imply that 

TiRi = 0, i = 1, . . . , k. (9) 

*We consider block decoupling with respect to a fixed but 
arbitrary partition (FI,, , n,) throughout. 
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Assume that both Q and (I - PQ) P are analytic at 
), and write 

TH(s)R 
=(s-- 

TZW u(s) 
s-l 

+ ~W-WR 
s _ 1 + W)HW(s). 

By expansion, 

TH(iZ)R 
QP = (s - 42 

+ TZ-Z’(J)R + TH(I)U(1) + V(I)H(rZ)R 

s-l 

+ A(s) (10) 

for some A(s) analytic at 1. Thus QP is analytic 
at I if and only if there exists a block diagonal 
H’(L) E C”“’ such that 

TH’(I)R + V(I)R = 0. (11) 

where we have used equations (5) and (7). 
It remains to see under what conditions (on T, 

R and V(1)) it is possible to find block diagonal 
H’(I) that satisfies equation (11). For this we need 
the following lemma. 

Note that the stability of P-‘H, (I - H) P and 
P- ‘HP is equivalent to that the block diagonal 
stable H = diag {Hi}:, 1 satisfies a set of inter- 
polation condition at the poles and zeros of P. 
If the plant has no @+-coincidence, that is, if 
p+ [P] n S+ [P] = 8, then the interpolation equa- 
tions on H (block diagonal or not) can be properly 
setup and solved by standard polynomial interpo- 
lation techniques. For example, if a and /I E C +, 
0: # /I, are, respectively, a (simple) pole and zero of 
P, then we could set the interpolation equations as 

H(z) = Z and H(/3) = 0. 

With C +-coincidences, the interpolation conditions 
for the pole and the zero occur at the same point 
and unless certain conditions (on the plant) are 
satisfied, the interpolation equations may have no 
solution due to the block diagonal structure of 
H imposed by the block decoupling requirement. 
Conditions (9) and (13) ensure that a solvable inter- 
polation equation can be setup. 

Lemma 3.2. Given Ai E @” “+, Bi E cpl x 4, D E @” xq. Lemma 3.3. Suppose p 2 q. If A E 6Yxq and 
The matrix equation Cf=, AiXiBi = D is equiva- BE @‘JxP are such that AB = 0 then there exists 

lent to the matrix-vector equation C E @qxq such that WXd CB%34 -.a B:@A,-J ; 

[ 1 = vet(D). 

vec(Xd 

where A @I B is the Kronecker product of A and B. 

AC =0 and CB= B. (14) 

Proof: If A = 0, C = Z satisfies equation (14). 
Suppose A # 0. There exists E E cqxq nonsingular 
such that AE = [A 01, where A is full column rank, 
A E Cpxr, r I q. Let C = EXE-’ where 

Rewrite equation (11) as 

5 TiH:(rl)Ri = - V(I)R. 
i=l 

(12) 

By Lemma 3.2 there exists {H#)}f= I satisfying 
equation (12) if and only if 

vec(V(I)R) E Range(RT @ T1 ... R: @ TJ) 

(13) 

or equivalently 

rank[RT @0 T1 ... R: @J Tk] 

= rank[RT @ T1 .+. R: @ Tt vec(V(I)R)]. 

Thus equations (9) and (13) are necessary condi- 
tions for the existence of a block decoupling con- 
troller for P. 

To show that equations (9) and (13) together are 
sufhcient conditions for existence of block decoup- 

ling controllers for the plant in equation (4), we 
have to construct a controller which stabilizes 
P and results in a block diagonal I/O map H,,,“,. 
We do this by showing that if equations (9) and (13) 
are satisfied, then it is possible to find a block 
diagonal I/O map H so that P- ‘H, (I - H) P and 
P- ‘HP are all stable. The resulting block decoup- 
ling controller will then be C = P- ‘H(Z - H)-‘. 

C= 0, 0 
[ 1 0 I,_, ’ 

0, 0 
AC=(AE)*xE-‘=[A 0] o 

[ 1 Z _ E-‘=O. 4 r 
And it is obvious that AB = 0 if and only if the 
matrix 8:= E- ’ B has the form [O’ RT]=. Hence, 

(I - C)B = (I - EXE- ‘)B = E(Z - x)(E-‘B) 

thus CB = B. 0 

By condition (9) and Lemma 3.3, there exist 
@i E @“~x”~, i = 1, . . . , k, that satisfy 

Ti~i =O and aiRi= Ri. (15) 



240 Brief Papers 

Now, P- ‘H and (I - H) P is analytic at j. if and 
only if H = diag [Hi):= I satisfies the interpolation 
condition 

Hi(/l.) = @i, i = 1, .,. ,k. (16) 

With equation (13) satisfied, it is possible to find Yi, 
i = 1, . . . , k so that if we set 

H;(J) = ‘I’;. 117) 

then Pm ‘HP is analytic at i. Thus equations (16) 
and (17) constitute the interpolation equations on 
H at i. so as to ensure that Pm’H, (I - H)P and 
P-‘HP are analytic at j.. Equations (16) and (17) 
together with interpolation equations on H at 
other poles and zeros of P to ensure stability of 
P- ‘H and (I - H)P can be solved by standard 
polynomial interpolation techniques (Stoer and 
Bulirsch, 1992) to obtain a stable block diagonal 
rational matrix H so that P- 'H and (I -- H)P are 
stable. By lemma 3.1, the only possible unstable 

poles of P-‘HP is the one at s = i,. But by satisfy- 
ing equation (l7), Pm ‘HP is analytic at 2. Thus the 
closed-loop system is stable with block diagonal 
H YrU, = H. We thus have established the following 
theorem. 

Theorem 3.4. For the plant P(s) together with its 

inverse P(s)-’ given in equation (4). there exists 
a block decoupling controller with respect to the 
partition (n,, ,Q) if and only if the conditions (9) 

and (13) hold. 

Remark. If n, = 1, Vi, condition ( 13) reduces to 
I/(;.) R = 0 (Lin, 1995). 

Let’s consider a more general case where many 
(simple) c +-coincidences occur. Let 

where ;“j E a3 + are distinct, R’. T’ E C” “. U(s) E 

qxl w x n and V(s) E I~(s)“~” arc analytic at {;~j)F, 

and .?‘+ [U] nY+ [V] = 0. The plant has M simple 

@ +-comcldences at ( i,ij p , . Let T’ = [T’, .‘. r:] 
and R” = [Ry ._. RL 1, r,! E ~c’~~“,, Rf E @il~, “, 

I = 1, . . . ,M. 
Again if there exists a block decoupling control- 

ler for P, then there exists H stable, proper, block 
diagonal such that Q, (I - PQ) P and QP are stable. 
Since Q and (I - PQ)P are analytic at i&Ij’L 1_ it 
follows that 

TrRi=O, i=i. .._, ii. I=1 .__._ M, (19) 

Furthermore, QP is analytic at {Aj}j”= 1 implies 

T’Rj 
T’H’(i,,)Rj + f m 

I= l.l#j Aj - 4 

+ T/(E,j)R’ = 0, 

i= 1, . . ,M. (20) 

Let 

M T’R’ 
c-,, = c - 

i=l.l*j/Zj - A1 

+ V(ij)Rj, j = 1, ,M. (21) 

Since H is block diagonal, equation (20) can be 
rewritten as 

i TjHf(Aj)Ri + Cj = 0, j=l, . ..) M. (22) 
i=i 

By Lemma 3.2, each of the equations in equation 
(20) has a block diagonal solution H’(/Ij) if and only 
if 

vec(Cj) E Range([Rir 0 Ti .e. RjkT @ Ti]), 

j = 1, .M. (23) 

Thus equations (19) and (23) are necessary con- 
ditions for the existence of a block decoupling 
controller for P; the conditions also ensure that 

solvable interpolation equations on H can be set up 
and thus a block decoupling controller exists. 

Theorem 3.5. For the plant P(s) together with its 
inverse P- ‘(s) given in equation (18) there exists 
a block decoupling controller with respect to the 

partition (nl, . , nk) if and only if 

T,‘Rf = 0, i = 1, . . ,k. 1 = 1, . . ,M (24) 

and 

vec(Cj) E Range[R{’ @ T{ ... RL’ @ Ti]), 

j = 1, . . . ,M (25) 

where Cj is defined in equation (21). q 

Exumple 3.6. Consider the plant 

P(s) = 

5 -I s 

(.s - l)(.s + 1) (s ~ I)(s + 1) (s l)(s + l)(s + 2) 1 
_. 1 1 - s 

s + 1 s + I (s + l)(s + 2) 

- 0 
0 

s 1 

(s + l)(s + 2) I 

By computation, 

I 
s + 1 

s+l ~ 
s - 1 

0 

p@-’ = ,y + 1 s(s s(s + 1) 

s - I 1 s-l ’ 

/ 
0 0 

(s + l)(s + 2) 
S-l 1 
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and 

where + -i k R=o 0 0, 
1 1 L 
0 0 0 

I 
112 l/2 l/2 213 -- --- 

s+l s+l s+l s+2 

U(s) = 
-1 1 

- - 
s+l s+l (s + w,“+ 2) ’ 

0 0 
s-l 

(s + l)(s + 2) _ 

and 

0 2 0 

T= 

[ I 

0 2 2 

0 0 6 

r 
s+l 1 0 

V(s)= s+l 

I 

s+2 s+2 . 

0 0 s+4 I 

For each of the partitions (1, 1, l), (2, 1) and (1,2), 
condition (9) is satisfied. Since V(1) R # 0, there 
exists no block decoupling controller for P with 
respect to the partition (1, 1, l), that is, there exists 
no decoupling controller. To check condition (13) 
for the partition (2, l), compute 

the plant has a simple @+-coincidence at s = 1. 
Write 

P(s) = 5 + U(s) 

P(s)-’ = 2 + V(s), 

000 0 0 0 0 0 0 
110 -1 -10 3 4 0 

=ooo 0 0 0 0 0 0 

000 0 0 0 0 0 0 

-000 0 0 0 0 0 o_ 

and 

vec(V(l)R)T = [l 1 0 - 1 0 5 4 01. 

We find that vec(V(l)R) belongs to the range 
of [RT 8 T1 RT @ T2], thus condition (13) is satis- 
fied. Thus, a block decoupling controller with re- 
spect to the partition (2, 1) exists. To check 
condition (13) for the partition (1,2), compute 

[RT 8 T, R: 0 T,] = 0 and vec(V(l)R) # 0. 

Hence condition (13) does not hold and hence 
there exists no block decoupling controller with 
respect to the partition (1,2). 

4. SECOND-ORDER C +-COINCIDENCE 

We generalize the result to the case where the 
plant has second order @+-coincidences. To sim- 
plify derivations we consider the case where there is 
only one second-order Q= +-coincidence. Given the 
plant P E aBpo(s)“xn with P-’ E ~K!(s)“~“. Write 

R’ R2 
P(s) = - - s - 2 + (s - 42 + u(s) 

and (26) 

p(s)-’ = T’ TZ 
s _ ;1 + (s - 42 + W), 

whereAEc+,Ri,TiE@“X”,i= 1,2. U(S)ER&$“~” 
and V(s) E [w(s)“‘” are analytic at il. Y+[ VJ n 
~+[Vl = 8. Write T’= [T; . . . T;] and 
R” = [R’; ... Rz], where Tj E @nx”i and R;e @“jxn. 

Suppose there exists a block decoupling control- 
ler C so that the system S(P, C) is stable and the I/O 

map ZL, := H is block diagonal, then the transfer 
matrices P- ‘H, (I - H)P and P- ‘HP are stable. 
In particular, P- ‘H, (I - H)P and P- 'HP are 
analytic at 1. 

Now, P- ‘H is analytic at 1 if and only if 

P-lH _ T’W + T2Wl _- s _ 2 (s + wv-w 
is analytic at il. 

Since I’ and H are analytic at I and H is block 
diagonal, P- 'H is analytic at I if and only if 

T,?Hj(A) = 0, j = 1, . . . ) k (27) 

and 

TfH>(l) + TjHj(i) = 0, j = 1, ... ,k. (28) 

Similarly, (I - H)P is analytic at A if and only if 

U - H(s)) 5 + & c + U(s) ] 
is analytic at A. 

Since U and H are analytic at 1 and H is block 
diagonal, (I - H)P is analytic at I is equivalent to 

Hj(/l)Rf = R;, j = 1, ... ,k (29) 

and 

H’j(A)Rj” + Hj(l)Rj = Rf, j = 1, . . . , k. (30) 

The matrix P-‘HP is analytic at I if and only if 

v 1 
u 1 

is analytic at A. 
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With P-‘H and (I - H)P analytic at /1, P-‘HP is 
analytic at 2 if and only if 

+, T2H”(A)RZ + T’H’(I)R’ + T2H’(A)R’ 

+ T’H(A)R’ + V(A)R2 = 0, (31) 

; T2 H”‘(3,)R2 + ; [T ‘H”(i)R’ 

+ T2H”(A)R1] + T’H’(>JR’ 

+ V’(EJR2 + V(R)R’ = 0. (32) 

Rewriting equations (31) and (32) to get 

k 

+ TfHi(i)R!] + C T!Hi(A)R! vec(H:(A)) + vec(V’(l)R’ + V(A)R’) = 0. (40) 
i=l 

+ Y(A)R2 = 0, (33) 

(Rf’ @ Z)vec(H;) + (Rfr 0 I)vec(Hi) = vec(R!), 

i= 1, . . ..k. (38) 

i+T 0 7-f) vet 
(. 1 
$ H:l(l) + i [(Rf’ 0 T!) 

i=l 

+ (Rj’ &I T’)]vec(Hf(A)) + i (R!‘@ Tj)vec(Hi(A)) 
i=l 

+ vec( V(i)R*) = 0, (39) 

i$, CR?’ 0 Ti?) vet + i [CR,“‘@ T/) 
i=l 

+ (R!’ 0 Tf)]vec + i (Rf’O T!) 
i=l 

Equations (35)-(40) have a solution if and only if 

1 0 

0 

col{vec(R?)): 

col(vec(R!)): 
belongs to the range space of 

! - vec( V(A)R2) 
- vec(V’(i)R’ + 1 V(I)R’) 

diag{l@ Tt) 0 0 

diag{l@T/) diagfl Q Tf ) 0 

diag{Rf’ 0 I} 0 0 

diag{Rr’@ I) diag{Rf’ @I) 0 

row{R!r@ T/j: row{R!’ @ T? + Rf’ @ Tl}: row { RfT @ Tz 1: 

L 0 row{R!’ @ T/}‘j 

; ,i T’H:“(I)Rf + ; ,f [T;Hi’(i)R,Z 
r-l . r-l 

+ TfHI’(E,)R!] + i Ti’H;(I)R; 
i= 1 

row{R!’ @ Tf + Rf’ @ T!}: row 

where co1 {Ri}! is defined as [RT ... R:IT and 
row(R): is defined as [R, ... RJ. Thus, equation 
(41) is a necessary condition for existence of block 
decoupling controllers. Also if equation (41) is satis- 
fied, then solvable interpolation equations can be 
set up for the block diagonal I/O map H and hence 
a block decoupling controller can be obtained for 

P. We state this result as follows. 
+ V’(A)R2 + V’(1)R’ = 0. (34) 

Rewriting the matrix equations (27)-(30) (33) and 
(34) we have 

(IT @ Tf)vec(HJ = 0, i = 1, . . . ,k, (35) 

(IT @ Tf)vec(H:) + (IT 0 T/)vec(HJ = 0, 

i= 1, . . ..k. (36) 

(Rf’ @ Z)vec(H,) = vec(Rf), 

i=l k ,‘.‘> 3 (37) 

Theorem 4.1. For the plant P with a second-order 
@ +-coincidence given in equation (26), there exists 
a block decoupling controller with respect to the 
partition (n,, , . . , &) if and only if the condition (41) 
holds. 

Remark. The extension to many second-order @ + - 
coincidences case in straightforward. The same ap- 
proach can be used to derive conditions for high- 
order coincidence case, however, the conditions are 
expected to be much more complicated. 
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5. RECTANGULAR PLANT CASE 6. CONCLUSIONS 

We now consider the feedback system S(P, C) 
with rectangular plant P E R&)n xm shown in Fig. 1. 
Since m 2 n and P is assumed to be full normal row 
rank, there exists a unimodular matrix U E S”“” 
such that 

We have derived necessary and sufficient condi- 
tions for existence of block decoupling controllers 
for linear multivariable system under unity-feed- 
back configuration. The conditions are particularly 
simple for plants with only simple unstable pole- 

PU = [P 01, (42) 
zero coincidences. 

where PE Rpo(s)nX” (Lin and Hsieh, 1993). 
Define U- ’ C = [CT CT]‘, where C1 E ~F$,(s)“~“, 
c2 E rwp(s)‘” - n, x n. The closed-loop transfer matrix 
of S(P, C) becomes 
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improve the clarity of the paper. 

H = U~u-'c(z+Pu~u-'c)-' - u~u-'c(I+Pu~u-'c)-'Pu~u-' 
YU 

[ 
Pu~u-'c(z+PudLJ-'c)-' (I+Pu~u-'c)-'Pu~u-' 1 

[ Ii [ Cl(Z + X1)-’ 

1 [ 

Cl(Z + PC,)-‘P 0 
u 0 

=oz 
Cz(Z + ml)-’ - &(I +PC,)-‘P 0 

PC,(Z + PC,)-’ [(I + PC&‘P O] I 

1 0 
[ 1 
o u-' . (43) 

From equation (43) we note that the I/O map 

H y,u, = PC(Z + PC)_' = PC,(Z + PCJ'. 

Since U and U- ' are both stable and proper, it 
follows from equation (43) that if C is a block 
decoupling controller for P, then Cl is a block 
decoupling controller for p. On the other hand, if 
C, is a block decoupling controller for P, then 

c=u G 
[ 1 G 

where C, E SC”-“)““, is a block decoupling con- 
troller for P. Thus there exists a block decoupling 
controller for P if and only if there exists a block 
decoupling controller for P. Since P E R,,(s)” x “, the 
necessary and sufficient conditions given in the 
previous sections apply. 
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