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I. INTRODUCTI()N 

Let oJ be a bounded smooth domain in R", n -< 1, a > o, and f~, = ( - a ,  a) × co be a finite 
cylindrical domain in R "*~ = {(x,y): x E R ~ and v E R"}. Taking the length a as a bifurcation 
parameter, we consider the symmetry-breaking problem of  the following semilinear elliptic 
equation with mixed-type boundary conditions. 

{/~u 0 

This problem was posed by 
shall study the problem when 

We consider the equation 

[ Au + f(u) = 0 

l t = 0  

Ou 0 
Z = 

Au + f ( u )  = 0 in fit,, 

u = 0 on [ - a ,  a] × i~¢u ( I . I )  

on l - a , a )  × o~. 

Professor H. Berestycki and studied by Lin [1]. In this paper, we 
n = l .  

in ~u = ( - a ,  a) X (0, b) 

on [ - a , a ]  × {0, b} (1.2) 

on { - a , a }  × (0. b). 

where]" satisfies the following conditions: 
(H-0) f E  C'(R~) , f (u)  > 0 for u > 0. 
(H- l )  there exists a > 0 such that u]"'(u) >- (I + e) f (u) .  

For example, f (u)  = u p, p > 1. satisfies (H-0) and (H-I).  

Definition 1.1. A solution u E C2(~,)  of  (I .2) is said to be symmetric (with respect to the 
x-axis, i.e. u = u(y)) when it satisfies 

u" + f (u )  = 0 in (0, b) 
u(O) = u(b) = 0, (1.3) 

otherwise, u is called an asymmetric solution. 
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Remark 1.2. Assume conditions (H-0), (H-l)  arc satisfied. Then the nontrivial solution o f ( l . 3 )  
is unique and exists for all b > 0. The existence result can be found in Lin [2], and the 
uniqueness is proven in Remark 2.3 below. 

From Remark 1.2, we can let b = I. Our main results are as follows. 

THEOREM 1.3. Assume conditions (H-0), (H-1) are satisfied. Let uo be the nontrivial symmetric 
solution. Then there must exist an increasing sequence ak ~ ~, as k---, ~, such that (1.2) 
possesses symmetry-breaking from uo at a~. 

In addition, if f (u) satisfies 
(H-2) J E  C2(R'), 

then the bifurcation in Theorem 1.3 is global. We express the theorem precisely below. 

THEOREM 1.4. Assume condition ( H - 0 ) -  (H-2) are satisfied. Let uo be the nontrivial sym- 
metric solution. Then there must exist an increasing sequence ak ---' zc, as k --. zc. such that 
(a~, uo) is a bifurcation point o f  a global, unbounded branch of  solutions of  (1.2), and the 
branches must be globally separated. 

In Lin [1], using variational method, Lin proved that an increasing sequence ak ---' ~¢, as 
k ~ z¢ exists, such that ( 1. I ) has at least k + 1 solutions for a > ak, for all n -> 1, provided that 
(H-0), (H-I)  are satisfied a n d f i s  sub-critical. We use the bifurcation method to prove that there 
are at least 2k + 1 solutions for a > a~, n = 1, and provide a global bifurcation diagram. Our 
result follows. 

THEOREM 1.5. Assumefsat isf ies  (H-0) - (H-2) and 
(H-3) lim . . . .  f (u)/u p = C > 0 for 1 < p  < zc. 

Then there exists an increasing sequence a~ ~ ~c, as k ~ z¢, such that (1.2) has at least 2k + 1 
solutions for a > a~. 

The paper is organized as follows. In Section 2 we study the linear eigenvalue problems and 
give the Proof o f  Theorem 1.3. In Section 3 we prove Theorems 1.4 and 1.5 and give the 
bifurcation diagram. 

2. L O C A L  B I F U R C A T I O N  

We begin with the linearized eigenvalue problems of  (1.2) at uo. It is clear that the linearized 
eigenvalue of  (1.2) at uo is 

A W  + f(uo(y))W = - t l W  

W = 0  

~W 
m =  0 
8x 

in ( - a ,  a) × (O, 1) 

on [ - a , a ]  × {0, 1} 

on { - a ,  a} × (0, 1). 

By separation o f  variables, (2.1) is equivalent to the problems 

{ ~b" + v~b = 0 in ( - a ,  a) 

~ ' ( - a )  = ~'(a) = 0 

(2.1) 

(2.2) 
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and 

with 

{ - ~ , "  - J"(u,)~u = (/a - v)~u 

~,(0) = ,,(1 ) = 0. 

in (0, 1) 
{2.3) 

W(.v..v) = ~b(x)tu(y). (2.4) 

It is clear that the eigenvalues in (2.2) are given by v~(a) = - ( k n / 2 a )  2, k = 0. 1, 2 . . . .  and 

the associated e igenfunct ions  are 

{ sin(kTt/2a)x i fk  is odd 

q~(x)  = c o s ( k n / 2 a ) x  i fk  is even. 

Let r = ,u - v, then there is a sequence {r~, r~, rs . . . .  } of  eigenvalues for (2.3) that satisfies 
r~ < r, < rs . . . . .  where each distinct e igenvalue is multiplicity one. Therefore, u is an eigenva-  
lue of  (2.1) if  an only if r~ = u - vk for some k and 1. Hence, we denote 

/z~.l = g e l ( a )  = rl + l~ = rl + (kJz:'2a):. 

w h e r e k = 0 , 1 , 2  . . . .  a n d l =  1 . 2 . 3  . . . . .  

LV.MMA 2.1. For any symmetric  positive solution uo we have r~ < 0. 

P r o o £  It is well known that r~ can be characterized by 

{o/(: } rl = inf  (~)) t):  ~) E H,~(O. 1)\10} , 
I 

where 

O(,)) IV,~] z ., = - . /  ( t , , , ) t ,  . 

) 

Since uo is a solution o f ( l . 3 ) ,  we have 

lu,;l: = uo.liu.). 
) ) 

Hence, by (H-I) ,  we have 

O(uo) = lu;I 2 - f ' (u, , )uo = u , , J t u , , ) -  ! (u,,)ua 
i 

I o 

Therefore, we have ~t < 0. • 

By modify ing  an argument  in N i -Nu s s b a u m [3], we can prove the fol lowing lemma. 

LEMMA 2.2. For any symmetric  positive solution uo, we have t2 > 0. 

ProoJ: Let u(r,  d )  be the solution of  the init ial-value problem 

u"(r)  + f ( u ( r ) )  = 0 for r > 0 

u(0) = 0, u ' (0)  = d > 0. (2.5) 
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Since u'(r, d) = d - f[,f(u(s, d)) (is, (H-O) and (H- l )  implies there are 0 < r/(d) < R(d) such 
that 

u'(rl(d), d) = 0 

and 

u'(r, d) > 0 i f r  < q(d) 

u'(r, d) < 0 i f r  E (r/(d), R(d)); 

i.e. R(d) be the first zero of  it(r, d). Set ~( r ,  d) = 3u(r, d)/ad, ~ then satisfies 

0 "  + f '(u)¢l) = 0 

@(0) = 0, ~ ' ( 0 )  = I. (2.6) 

We will claim that ¢b has exactly one zero in (0, R(d)). First, we prove that • has at most one 
zero. Suppose • has zeros in (0, R(d)). Denote the first zero of  • by ~(d). 

Let 

X = ru ' (r ,  d)  

Y = u'(r, d). 

We then have 

d 
(X'(I) - (1)'X) = -2 / (u) ( I )  (2.7) 

and 

d 
~ ( Y ' ( I )  - O ' Y )  = 0. (2.8) 

From (2.7) we have 

X ' e  - * ' X l i  = - 2 f ( u ) ~ ,  

which implies 

X'(~)O(~) - ¢)'(~)X(~) - X'(0)O(0) + ~'(0)X(0) < 0. 

Since ($)(~) = (I)(0) = X(0) = 0 and q)'(~) -< 0. We thus have (I)(~) < 0 and X(~) < 0 (note: 
X(~) < 0 implies q(d) < ~(d)). If  there exists a point ~ E (~(d), R(d)) such that W'(~) = 0, let 

be the first point. By (2.8), we have 

Y ' ~  - ~ '  YI! = 0, 

which implies 

Y'(()q)(()  - O'(~)Y(()  + O'(~)Y(~) - Y'(~)O(~) = 0. 

Since (I)'(~) = 0, (1)(~) = 0, O( ( )  < O, O ' (~)  < 0, Y(~) < 0 and Y'((,) = u"(~) = - f ( u ( ( ) )  < 0, 
the left-hand side is negative, a contradiction. Therefore, (I) has at most one zero in (0, R(d)). 

Now, compare these two equations: 

~"(r, d) + J"(u(r, d))~(r,  d) = 0 in (0, R(d)) 

~u"(r) +f'(u(r))~,  + r ~  = 0 in (0, R(d)) 
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Since r~ < 0, by the Sturm comparison principle, • must have at least one zero in (0, R(d)). 
Hence, • has exactly one zero in (0, R(d)). Now, if r2 <- 0, by the Sturm comparison principle 
again, • must have at least two zeros in (0, R(d)], a contradiction, so r2 > 0. • 

Remark 2.3. In Lemma 2.2, • has exactly one zero in (0, R(d)), so we have ~(R(d) ,  d)  < 0. By 
u(R(d), d) =- 0 for all d > 0, we have R'(d) = -¢~(R(d), d)/u'(R(d),  d), so R'(d)  < 0 for all d. 
Hence, there is a unique solution for (I .3) (see Ni-Nussbaum [3]). 

LEMMA 2.4. There exists an increasing sequence a~, a: . . . . .  such that p,.~(a,) = 0 and p,.~ is a 
simple eigenvalue. 

Proq[: 

p,.l(a) = rt + vk = rl + (kn/2a) 2. 

So p,.t(a) = 0, unless rt <- 0. By Lemmas 2.1, 2.2, only r~ < 0, so 

p, , l (a)  = 0 if and only i f a  = krc/(2~/-rl). 

Let a,, = mz/(2"~Lrl), n = 1, 2 . . . . .  where r~ is the first eigenvalue of  (2.3). We have 

pk.;(a,) = 0 i fk  = n and n = 1 

pk.~(a,) ¢ 0 otherwise. 

Since there are no generalized eigenfunctions (by the symmetry of  the operator, see Healey-  
Kielh6fer [4]), the proof  of  Lemma 2.3 is complete. • 

We now prove Theorem 1.3. 

Pmol: We first let x = @.t, 2 = a 2, ~(t,y) = u(x,y)  - uo(x,y). (1.2) is then equivalent to 

1 iJ2r) i)2~) 

2 ~t ~" + ~ + liu,, + ~)) - f t u , , )  = 0 

~ i = 0  

- - = 0  
#t 

inf2L = ( - 1 ,  I) × (0, I) 

on [ - 1 ,  1] × {0, 1} 

on { - 1 ,  1) × (0, 1). 

(2.9) 

Let F()., ,,): R" x X ~ Y. be defined by 

F ( 2 .  t~) = - - -  + + f ( u ,  + ~) - f ( u , ) .  
/. i~t 2 ~ 

where 

- - = 0 o n { - 1 , 1 }  × ( 0 , 1 )  . X = t~ ~ C - " " ( ~ ) :  *~ = 0 on [ -  1, I] × {0, 1/, Ot 

y = C'°."(~l~. 

C k " ( ~ )  is the usual space of  all k-times differentiable functions u in ~ such that u and its 
derivatives are HSlder-continuous with exponent or. We will use the bifurcation result from the 
simple eigenvalues in Crandall--Rabinowitz [5], we reproduce the theorem as follows. 
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THEOREM 2.5 (Crandall-Rabinowitz). Let X, Y be Banach space, V a neighborhood of  O in X 
and F: ( - 1, 1 ) × V -* Y have the properties: 

(a) F(t, 0) = 0 for ]t] < 1; 
(b) the partial derivatives F,, F, and F,, exist and are continuous: 
(c) N(k',(0, 0)) and Y/R(F,(O, 0)) are one-dimensional; 
(d) F,,(0, 0)xo ~ R(F,(O, 0)), where N(FdO, 0)) = span{xo}. 

l f Z  is any complement of  N(F,(O, 0)) in X, then there is a neighborhood U of (0 ,  0) in R x X, 
and interval ( - a ,  a), and continuous functions 4: ( - a ,  a ) - *  R, ~: ( - a ,  a ) - ,  Z such that 
~b(0) = 0, ~'(0) = 0 and F - ' ( 0 )  CI U = {(~b(a). ax,, + a~(o~)): la[ < a} U {(t, 0): (t, 0) E U}. 

We check whether F satisfies all properties of  Theorem 2.4. 
(a) F(2, 0) = 0 for all ). > 0. 

(b) The smoothness of  f ensures that F,., F,,, F,.,. exist and are continuous. 
(C) /",,(~, 0)h = (l/~'.)(02h/3t 2) + (32h/c3y 2) + f '(uo)h, for all h E X, where ~ 2 a = a ,  is a simple 

eigenvalue, n = 1, 2 . . . . .  and since the dimension of  N(F,,(~, 0)) is equal to the co-dimensions 
o f  R(F,.(~, 0)) (see Remark 3.5), N(F,,(~, 0)) and Y/R(F,,(~, 0)) are one-dimensional. 

(d) Let N(F,,(,[, 0 ) ) =  span(t). If w E R(F,,(~, 0)), then there exists t)0 E X, such that 
(1/fO(O2t)o/Ftt 2) + (~12~)0/~y2) + f'(uo)t)o = w, and since (1/;.)(326/i112) + (fl2tj/ay 2) +f ' (uo)~  = 0, 
f~, ~vt, = 0. Hence, F;,;(~, 0)5 ~ R(F,.(,~)) if f~, fiF,.,.(~, 0)6 ~ 0. 

- 1 32fi 
; 2  ~tt 2 

-1  a 2 _ 

- ;2 at2 ~(x)~(y) [by (2.4)] 

- 1 _ l & ~ \  2 a ~ 

- ;  l")lV, ) 

1 

= -~ V~(y)~(x) [by (2.2)] 
A 

F~.,,(~, 0)~; - 

So, 

F 
= _ 5 .  

A 

6F:, (~, 0) = 6 -  ~ = - I~12 ~ 0, 

where ~ = - ( kn /2a )  2 for k = 1, 2 . . . . .  Hence, by Theorem 2.4, it will bifurcate at ~ = a~ for all 
n = 1,2 . . . .  ; i.e. problem (1.2) will bifurcate from uo at )7 = a~,. • 

3. GLOBAL BIFURCATION 

We prove Theorem 1.4 by modifying an argument in Healey-KielhOfer [4]. We only sketch 
the difference here. If  v is a solution of  (2.9), then ~) has an even 4-periodic extension on R~; 
see, for example, Lin [1] or Healey-KielhOfer [4]. Therefore, we define the function spaces 

C~"~(~)  -~ {u E Ck'~(D, o0: u has period Tin  t} where ~ = R × (0, I), 
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and the Banach spaces 

D = C:'~(D.~) 

and 

E = c : ~ ( g z ~ )  

Let G(),, 0): R + x D --* E, be defined by 

1 820 820 
= - -  + - -  + f (uo + 0) - f ( u o ) .  g(2, v) 2 Ot 2 c3v 2 

Clearly, the smoothness o f f ( f E  C2(R)) ensures that G is at least twice continuously Frechet- 
differentiable. We use the global result in KielhSfer [6], which is a generalization of  
Rabinowitz's result [7]. First, we give some definitions. 

with HSlder norm 11"112.~ 

with HSIder norm I1"11o.~. 

Definition 3.1. Let D C E be both separable Banach spaces. A linear operator A: D ---, E is 
called admissible if it satisfies 

Ca) A is a Fredhoim operator of  index zero. 
(b) There exists c > 0 ,  e , > 0  such that the spectrum a(A)  of  A in the strip 

SA = ( - ~ , c )  X ( - i e ,  ie,) consists of  finitely many eigenvalues of  finite (algebraic) 
multiplicity. 

Definition 3.2. Let f l  C D be a bounded domain. A map G: f~ --* E is called admissible if 
G E C2(fL E). Its Frechet-derivative DG(u)  = G'(u)  is admissible in the sense o f  Definition 
3.1 for all u E ~ .  G is proper, i.e. the inverse image in ~ o f  any compact set in E is compact 
in D. 

Note. The definition of  "crossing number" is more complicated, so for simplicity, we omit it 
here. For details, see KielhSfer [6]. 

THEOREM 3.3 (KielhSfer). Let G: R ÷ x  D - ~  E be a C2-map satisfying the following 
conditions: 

(a) G is proper on any bounded and closed domain in R" x D. 
(b) G0;t, -) is admissible for any ), E R ~ . 

Assume that G(2, 0) = 0 for all ,;t • R +, that at some 2o E R *, the operator A(2) = G~(2, 0) has 
an eigenvalue o f  zero, and that A(),) for 0 < 12 - 2O1 < 6 has no eigenvalue zero. If  A(2) has 
an odd crossing number Z(20) at ,;. = 20 (i.e. A(,() has an odd crossing number X(0) at ,~ = 0 for 
~. = ,;. - 2o; see KielhSfer [6]), then (20, 0) is an (isolated) bifurcation point for G(;t, u) = 0. 
Call 

NS = cl{(/~,0) E R + × D, G(2, u) = 0, u :~ 0} 

the closure o f  the nontrivial solution set. Then the component NS~a,,.o~ of  NS connected to the 
bifurcation point (2O) is either unbounded in R* x D, or NS~z,.o~ meets a different bifurcation 
point (~,, 0). 

LEMMA 3.4. For each (2, o) E R + x D, the linear operator G,,(2, u): D ~ E is a Fredholm 
operator of  index zero, and the spectrum of  -[G,,(2, o)] in the strip {z E C: Rez  <- 1, 
Ilm z I <- 1 } consists of  finitely many eigenvalues of  finite (algebraic) multiplicity. 
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1 02h 32h 
G,,(2, v)h = ~. Ot-- 7 + --3y 2 + f '(uo + o)h for all h E D. 

So Gd2, v) is a uniformly elliptic operator for each (2, o) E R + x D. By periodicity we then 
have the following Schaulder estimate 

11hl[2.,~ -< C(][hl[0,,~ + 11G,,(2, o)hi[0.<,) for all (2, o) E R + × D, h 67 D, (3.1) 

where C is independent of  h (see Gilbarg-Trudinger [8]). Since the embedding of  D into E is 
compact, the estimate (3.1) implies that Go(2, v) is a semi-Fredholm operator for each (2, o) 
(see Grisvard [9, Lemma 4.4.1.1]). In a Hilbert-space setting (L](f~)  = {u E L2(f~): u has 
period 4 in t} and H~( f~ )  = {u ~ H2(f~) :  u has period 4 in t}) the symmetry of  G,,O., o) 
implies that the co-dimension of  R(G,~(2, ~))) is equal to the dimension of  N(G,,(2, o)) i.e. 
G,(2, o) is a Fredholm operator o f  index zero. By standard regularity theory, G,,(2, tJ) is also a 
Fredholm operator o f  index zero in our H61der-space setting. 

Establishing the second assertion duplicates Lemma 2.1 in Healey-Kielh6fer [4], so we omit 
it. • 

Remark 3.5. By periodicity, the norms with respect to fl, and ~ are identical, so we have the 
same Schoulder estimate. Therefore, the dimension of  N(G,(~, 0)) is equal to the co-dimension 
of  R(G,,(~, 0)). 

LEMMA 3.6. The mapping G: R+ × D ~ E is proper on any bounded closed domain; i.e. 
G - ' ( ( K )  f'l B is compact in R ÷ × D whenever K C E is compact and B C R+ × D is bounded 
and closed. 

Proof Decompose G as the sum 

G0., ,)) = A(2)~) + F(o), 

where 

] c)20 020 

F(v) = f(uo + o) - f(uo). 

Let G().., o.) = f . ,  whe re f .  --+fin E and {(2., o.)} C B is bounded and closed in R+ × D. 
Without loss of  generality, we note that {2.} converges to 2 in R + and, by compact embedding, 
{o.} converges to o in the Banach space C4""(fA). This implies that 

F(u.) --* F(u) in E 

I/[A(2.) - A()-)]v.llo.~ - el[v.l/z.. <- eM for all n -> N(e). 

Hence, the estimate means that 

A(2,,)v. - A(2)t). --* 0 in E. 

Let/x ~ R be such that A(2) - / . d :  D --" E is bijective [i .e./ t  is in the resolvent set o f  A(2)]. 
Then, 

A(2)o. - A(2.)o. - F(v.) - ,uo. + f .  = [A(2) - ltl]o., 
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which converges to - F ( o )  - /a t )  + f i n  E. Finally, the convergence of  {[A(2) - / d ] o , }  in E is 
equivalent to the convergence of  {v,} in D. 

Now define 

{ 4 1 !}  
D~ = u E C2'~(f~):  u i s -pe r iod ic ,  odd in t = - 1  + - a n d e v e n  in t = - I  + 

n n 

E~ = u E C ° ' ~ ( ~ ) :  u is 4 periodic, odd in t 1 + - and even in t 1 + 
n n 

Consider G: R ~ x D, --* E, ,  the restriction of  G(;t, .) to D, (see Healey--Kielh6fer [4]). By 
Theorem 1.3, we have G,,(2, 0) has an odd crossing number Z(,~), where 2 = 2t, 22 . . . .  and all 
properties of  G remain valid for its restriction, so all conditions of  Theorem 3.3 are 
fulfilled. • 

Therefore, we may summarize the following. 

THEOREM 3.7. Assume that (H-0)-(H-2) are satisfied. (2,,  0) is then a bit'urcation point of  the 
global branch E " C  R '  x D, of  nontrivial solutions (subject to Rabinowitz alternative; i.e. 
either unbounded in R ÷ × D, or meeting a different bifurcation point (2,,, 0)) o f  G(2, 0). 

Now each eigenfunction I~n is positive or negative on the open rectangle 12,, = 
( - I  - l /n ,  - 1  + 1/n) × (0, 1). By the proof  of  Theorem 3.1 in Healey-Kielh6fer [4], it will 
preserve the sign in fin along the branch, so we have the following theorem. 

THEOREM 3.8. Assume that (H-0)-(H-2) are satisfied. ().,, 0) is then a bifurcation point of  a 
global, unbounded branch of  solutions of  G(,:., o) = 0 having precisely the nodal configuration 
of  v, along the entire continuum. Therefore, continuua emanating from different nodal con- 
figurations are globally separated. 

Theorem 1.4 has thus been proven. To prove Theorem 1.5, as well as Theorem 3.8, we need 
the following result from Lin [1]. 

THEOREM 3.9 (Lin). Assume condition (H-3) is satisfied, there then must exist a constant C > 0 
such that for any a > 0 and any positive solution u, of  (!.2), we have 

Ilu, ll~ = max{lu,,(x)l: x ~ ~:~,} ~ C. 

P r o o f  o f  Theorem 1.5. Recall the scaling x = x/,;d, ). = a z, r)(t,y) = u ( x , y )  - uo(x,y). So by 
Theorems 3.8 and 3.9, Fig. 1 represents the bifurcation diagram for (1.2). Therefore, we have 
also proven Theorem 1.5 here. • 

Remark 3.10. It is of  interest to obtain results similar to Theorems 1.3-1.5 in the case in which 
n>_2.  
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Ilull. 

u ~  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i 

i 

a l  ~ 2  a ~  

D 

0 

Fig. 1. 
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