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Cross-Reference Weighted Least Square Estimates
for Positron Emission Tomography
Henry Horng-Shing Lu,* Chung-Ming Chen,Member, IEEE, and I-Hsin Yang

Abstract— An efficient new method, termed as the cross-
reference weighted least square estimate (WLSE) [CRWLSE],
is proposed to integrate the incomplete local smoothness
information to improve the reconstruction of positron emission
tomography (PET) images in the presence of accidental
coincidence events and attenuation. The algebraic reconstruction
technique (ART) is applied to this new estimate and the
convergence is proved. This numerical technique is based on row
operations. The computational complexity is only linear in the
sizes of pixels and detector tubes. Hence, it is efficient in storage
and computation for a large and sparse system. Moreover, the
easy incorporation of range limits and spatially variant penalty
will not deprive the efficiency. All this makes the new method
practically applicable. An automatically data-driven selection
method for this new estimate based on the generalized cross
validation is also studied. The Monte Carlo studies demonstrate
the advantages of this new method.

Index Terms—Algebraic reconstruction technique, generalized
cross-validation, regularization, weighted least square estimate.

I. INTRODUCTION

M ODERN commercial positron emission tomography
(PET) systems are able to take into account the acci-

dental coincidence (AC) events and attenuation to improve the
PET image reconstruction [1]. The AC events introduce nui-
sance parameters and make it difficult for the reconstruction.
Fessler [2] proposed a penalized weighted least square method
with a nonnegative successive over-relaxation algorithm to
handle these problems. The penalized weighted least square
reconstruction can be accelerated if simple unbiased estimates
and row operation iterative methods, such as the algebraic
reconstruction technique (ART) [3]–[5], are considered. The
computational complexity and the storage cost of ART are
less. The constraints in the reconstruction of images, such as
nonnegativeness, can be incorporated in the ART without any
difficulty at the same time. These advantages make the ART
the right technique to be investigated.

Since the random observations are indirectly related to the
target image, the problem of reconstruction is ill posed. Due
to this ill-posed nature of inverse problems, the estimates
of PET images, such as the maximum-likelihood estimate,
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WLSE, and other estimates, without regularization will lead
to undesirable spiky images with edge and noise artifacts [6].
While a penalty term is necessary to regularize the estimation,
the choice of penalty term is important to obtain a sensible
solution. The choice of which shall not depend solely on
the mathematical convenience, but will depend on thebona
fide correlated information. Ouyanget al. [7] have suggested
a sophisticated path to incorporate the correlated boundary
information in a Bayesian setup, though the computation is
quite demanding. Inspired by their work, an attempt is made
to incorporate the correlated local but incomplete structure
information in weighted least square method through a compu-
tationally efficient route. First, a penalty term is considered that
describes the spatially variant smoothness in the penalty term.
Then, the ART is applied to this specific type of penalized
weighted least square estimate (WLSE). The resulting method,
which is termed a cross-reference WLSE (CRWLSE), turns out
to be quite alluring, as demonstrated in this article.

A physical and mathematical model of PET with AC events
and attenuation is introduced in Section II. The estimation and
computational methods of WLSE are discussed in Section II.
A possible regularized (or penalized) WLSE with global
penalty term and the related ART is investigated in Section III.
An efficient and new approach, the CRWLSE, to incorporate
the correlated but incomplete information about local smooth-
ness is proposed in Section IV. The computational aspects
and the selection of penalty parameters are discussed as well
in Section IV. Finally, the conclusion and discussion of the
related issues about the CRWLSE is given in Section V. All
the proofs of theorems are in the Appendix.

II. A M ODEL AND THE WLSE

A. Model Setups

An ideal model of PET without AC events and attenuation
was introduced in [8] and [9]. Initially, positrons are emitted
at the box , , and these positrons hit
nearby electrons to annihilate themselves. Thereafter, a pair of
photons are generated, which travel in the opposite direction of
a line. These photon pairs are detected by a pair of scintillation
detectors outside a human body within a very short time
difference and, thus, form a coincidence event. However, in
practice, before these pairs of photons arrive the detectors,
their energy will be attenuated by the Compton scattering
while passing through the body tissues. Therefore, a part
of these photon pairs will not have energy greater than the
threshold level of detectors. Thus, they remain undetected.
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Hence, only the survived portion of the attenuated photon
pairs are recorded, which can be described by a survival
probability [10]. It is observed that besides these losses due
to attenuation, the detectors may receive other photon pairs
that are not generated by the annihilations which occur at the
target image in a specific slice of a human body. That is, there
are AC events. The observation made by a detector pair is
the sum of photon pairs which occur at the target image and
the AC events. Therefore, to recover a true image, one can
subtract the number of photon pairs due to the presence of
AC events [2], [10].

Suppose the target image is partitioned intoboxes (or
pixels) and there are detector tubes. For each pixel

and each tube , the following
notations are adopted.

Emission intensity of the target at pixel.
Probability of an emission from box being de-
tected along the detector tube.
Survival probability that an emission photon pair
from box traveling in tube will have energy
greater than the threshold level of detectors after
attenuation.

With attenuation, the transition probability becomes

(1)

In order to correct the AC events, the recent generation of
commercial PET systems use prompt (or real-time) window
coincidences to subtract the random coincidences of delay
windows [1], [2]. The following notations are used.

Number of coincident photon pairs collected in the
prompt windows at detector tube.
Number of coincident photon pairs collected in the
delay windows at detector tube.

Furthermore, and are assumed to be statistically
independent and Poisson distributed with different means

Poisson (2)

Poisson (3)

where “ ” means that the random variable “is distributed as,”
is the mean intensity of and

(4)

One can define the precorrecting value in detector tube,
by subtracting from

(5)

However, can be negatively valued. Also, the mean and
variance of are different when . Therefore,

is not Poisson distributed. When ,
with probability one. Otherwise, by approximating

the moment generating function in the neighborhood of zero,
is approximately distributed as a normal distribution

with mean and variance . This will be
stated in the next Proposition.

Proposition 1: If or , then

where “ ” means that the random variable “is approximately
distributed as.”

Therefore, the maximum-likelihood estimate of the approx-
imate model is the WLSE. They are studied in the next
subsection.

B. Estimation and Computational Methods

The following notations are introduced to simplify the
expressions. Let

(6)

(7)

diag

(8)

(9)

By the assumption or , for all
, is nonsingular and does exist. The WLSE

needs to minimize . It is noticed that

(10)

where

(11)

Thus, one can return to the least square form after suitable
transformation in (11). But, the variances, , is
unknown. The sum value in detector tubeis defined to be

by adding to

(12)

Then, is an unbiased estimator of the unknown variances
. The variance and mean square error of

are equal to . This is a direct and a fast way
to estimate the variance of . If the observed value of

is small, then the smoothed estimate, such as that in [2,
Appendix], can be applied. This involves more computation.
The mean square error can be reduced if the tradeoff between
bias and variance is properly tuned.

Therefore, when , the th element of , can
be estimated by and the th row of can be
estimated by

Next, the case that is considered. Obviously,
. If , then
with probability one. Suppose

or , then the following proposition can
be proved.
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Proposition 2: It is true that

or

(13)

Thus, the most likely case for is that
. That is, the WLSE is when .

Equivalently, can be replaced by zero and theth row
of can be replaced by when

. To sum up, the estimates for theth element of ,
, and the th row of , , are

if
if ;

(14)

if ,

if .
(15)

The resulting solution of least square form, ,
will be equivalent to the WLSE.

In addition, the reconstruction image intensity is needed
to be nonnegative or within a range limit. This can be
achieved by solving first the unconstrained problems and then
projecting the solution to the constraint set (e.g., see the trick of
constraining for ART [3, p. 194]). For notational convenience,

, , , and are used to denote either their true
values or estimates hereafter. The WLSE becomes

(16)

The computational methods of WLSE can be achieved by
applying the finite series expansion reconstruction methods
[5], like the algebraic reconstruction technique (ART) [3],
[4]. The idea of ART is to solve the system of equations
successively, but not simultaneously. Thus, it is an iterative
method based on row operations, which makes it efficient
in computation and storage. The constraints of range limits,
such as nonnegativeness, can be easily implemented in every
iteration as well.

One way to use the ART is to solve the consistent system
of normal equation

(17)

together with the trick of constraining [3]. However, the total
storage space for the symmetric square matrix is
large. For instance, it is 32
megabytes in floating format when . This will not
occur if the ART without relaxation parameters is used to solve

(18)

directly since the large sparse matrix can be stored effi-
ciently. Although the above system of equations (18) may
be inconsistent, the ART without relaxation parameters can
still generate a subsequence converging to the minimum norm
least square solution when the initial solution is selected in the
range space of (e.g., see [11, Corollary 9]). However, this
kind of inconsistency problem will not occur when the ART
is applied to the regularized WLSE (RWLSE) or CRWLSE in

the forthcoming sections since consistent systems of equations
involving , but not , can be set up. The details of ART
algorithm are demonstrated in Algorithm 1 of Section IV.

III. A RWLSE WITH A GLOBAL PENALTY

Due to the ill posedness, the reconstruction procedure needs
to be regularized. One way to regularized the WLSE is to
combine the (weighted) least square term and a penalty term
into an object functional. That is, it is aimed to minimize

(19)

where is a positive constant. The penalty parameter
balances the tradeoff between the (weighted) least square term
and penalty term. If , then it is reduced to the (weighted)
least square term. If , then the penalty term dominates.
The penalty term can be a norm or seminorm. For instance,
the 2-norm, , can be considered. In the Bayesian
framework, the penalty term is related to the prior.

For the minimum value of object functional

(20)

there exists a unique solution for any . The resulting
estimate is termed as the RWLSE

(21)

The RWLSE without nonnegative constraints is

(22)

This is also known as a ridge estimate in the setup of ridge
regression [12]. More theoretical properties can be found in the
setup of inverse problems [13] or statistical inverse problems
[14].

From the aspects of computation, one does not want to solve
the related normal equation derived from the object functional
because the ingredient matrix takes too much
storage space or computational time. With the introduction
of a dummy variable , Herman et al. [4] suggested that
instead a related consistent system of equations can be solved.
Hence, the ART with or without relaxation parameters can
be applied. In order to understand the mechanism behind
their approaches, the result of the ART without relaxation
parameters is explained, which is just the Kaczmarz’s iterative
method in solving a system of linear equations. This iterative
method performs the consecutive orthogonal projections onto
the hyperplanes defined by theth equation, ,
where is the th row of . The following lemma explores
the convergence and the properties of the convergent solution.

Lemma 1: The following three statements hold.

1) Let be the set of least square solutions of .
The ART algorithm without relaxation parameters will
generate a subsequence converging to

, where is an arbitrary initial vector, is the
unique Moore–Penrose generalized (or pseudo) inverse
of and is the orthogonal projection to the null
space (i.e., kernel) of .

2) Moreover, , for all .
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Fig. 1. A test phantom.

3) If is chosen to in the range space of, one has an
additional property that , for all .

The property 3) of the above Lemma is a generalization of
the property of the pseudo inverse to that of the convergent
point of the ART. The property 2) of the above Lemma is
very useful since it holds for any possible . That is,
will decide the destination of the convergent subsequence
generated by ART algorithm without relaxation parameters for
both consistent and inconsistent systems. If the initial vector
is properly selected, then a lot of related problems can be
solved. Given below is a typical one.

Theorem 1: If is the minimum norm solution of the
consistent system of equations

(23)

generated by the ART algorithm without relaxation parameters
for an initial vector , where is a by identity matrix

and is a by one column vector, then
minimizes in (20).

In order to see the results of this RWLSE, the following
Monte Carlo simulation are performed. Suppose there are 30%
AC events, that is, and for
all . Let us assume the true phantom is as
given in Fig. 1. The number of detectors is set to 64 and the
number of pixels is . The number of detector
tubes is smaller than and only about half of those
detectors tubes can receive photon pairs generated from the
target object [8]. The total detected coincidence events in
prompt windows and delay windows are at the level of 90 000
and 20 000, respectively. This RWLSE with global penalty
(21) will reconstruct an image as shown in Fig. 2.

The penalty parameter is chosen to minimize
the 2-norm error between RWLSE and the true phantom. The
reconstruction results in the oversmoothness due to which a lot
of local structures get lost. This can be attributed to the global
penalty used in this RWLSE. Ouyanget al.

Fig. 2. The RWLSE-ART reconstruction using a global penalty with a
penalty parameter of 0.001 and four iterations.

[7] have tried to incorporate the local smoothness information
to reconstruct better PET images. They had put together the
prior boundary information with Gibbs’ sampling technique in
the Bayesian framework. The computation turns out to be quite
complicated and expensive. Therefore, a more efficient method
to combine the local smoothness information for better PET
reconstruction in the presence of AC events and attenuation is
proposed in Section IV.

IV. CRWLSE

A. The Reconstruction Method

Suppose that the boundary information is available as shown
in Fig. 3. This information is incomplete because it does not
include all the boundaries in the true phantom. By using
the boundary location, we can get a mean estimate,, by
taking the average intensities of within the informed
boundaries. The resulting is shown in Fig. 4.

Since the boundary information may be incomplete or
incorrect, can, thus, be served best as a reference point.
The finer adjustment needs to be done by cross referring the
weighted least squared part and the discrepancy to.

The above idea can be formulated through an optimization
problem. Namely, the object functional now becomes

(24)

where is a positive constant. This is equivalent to shift the
origin to and find the least square solution that lies closest
to the new origin. In the Bayesian framework, this can be
regarded as the informative (or expertise) prior. In the setup
of ridge regression, this represents the change of the origin to
the mean value. All these different perspectives come to the
same optimization problem. The unique existence and other
theoretic properties may be derived as in the RWLSE after the
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Fig. 3. The incomplete boundary information.

Fig. 4. The mean estimate based on the boundary information and
WLSE-ART.

origin is shifted to . This solution is termed as a CRWLSE

(25)

Based on the results of Section III regarding the RWLSE,
the ART can be used to solve this optimization problem if the
initial value is properly selected. This can be demonstrated in
the next theorem.

Theorem 2: If , then the iterative solutions

of the consistent system of equations and
generated by the ART without relaxation parameters

will converge to a solution that minimizes in (24).
Herman et al. [15] had generalized the ART algorithm

to include relaxation parameters for ,
for consistent systems. If , then this is equivalent
to the Kaczmarz’s method. If [or ],
then it is an under- (or over-) relaxation parameter. The
results of convergence can be assured if the system of linear

equations is consistent and
[15]. The convergence of ART with strong underrelaxation
parameters for inconsistent system of linear equations is shown
in [16]. The relaxation parameters can be used to accelerate
the convergence of ART.

Upon these results, the computation algorithm for the CR-
WLSE along with relaxation parameters and the constraining
trick can be generated. Suppose the constraints are

, that is, all lie between a lower and upper
bound. For example, if the constraints are nonnegativeness,
then . The trick of constraining is to let be

in every iteration. The details of the
computation algorithm are stated as follows.

Algorithm 1:

1) Choose the initial vector .

Let and .
2) .
3) For ;

;
;

;

;
for ;

;
;

end b;
end j.

4) .

5) If , for a positive tolerance limit,
, and a norm , say the 2-norm, then the

iteration is stopped. Or else, go back to step 2.

The iteration procedure with or does not
change the pattern of convergence of a consistent system of
equations considered here because that the orthogonal projec-
tions commute and all possible projections are performed after
one iteration. It is noted that the computational complexity is
only and the memory requirement is very small. The
resulting CRWLSE is shown in Fig. 5.

The penalty parameter is chosen according to the minimum
of the generalized cross-validation (GCV) curve, as shown
in Fig. 8, which is discussed in the next subsection. The
comparative studies and the selection of penalty parameters
are also addressed in the next subsection.

B. Selection of the Penalty Parameters

It is important to select the penalty parameter to balance the
tradeoff between the least square term and smoothness term.
Suppose the iteration number is fixed to be four, the 2-norm
errors between the CRWLSE and the true phantom are plotted
against the penalty parameteras shown in Fig. 6.
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Fig. 5. The CRWLSE-ART reconstruction with a penalty parameter of 0.001
and four iterations.

Fig. 6. The 2-norm errors of the CRWLSE, the RWLSE, the WLSE, and the
mean estimate with respect to penalty parameters for the entire image. The
base of logarithm function is ten.

One can see that as , then the 2-norm errors of
CRWLSE with respect to the true phantom approach to the
2-norm error of WLSE with respect to the true phantom. On
the other hand, the 2-norm errors of CRWLSE approach to
that of the mean estimate as . Between zero and

, there exist proper parametersthat minimize the 2-norm
errors. Therefore, a dynamic graph technique, like a scroll
box or a slider, that provides an interactive way for the user
to select a proper parameter can improve the reconstruction
image. Furthermore, the CRWLSE has smaller 2-norm errors
than those of the WLSE and the RWLSE with the global
penalty as shown in Fig. 6 for all penalty parameters. The
CRWLSE can beat the mean estimate with a suitable choice
of the penalty parameter.

One may ask the performance of CRWLSE for some par-
ticular region of interest. For instance, the region of interest
may be the region in the lower left part of Fig. 3 that does
not have complete boundary information when it is compared
with Fig. 1. This is a case when the anatomic boundary in prior

Fig. 7. The 2-norm errors of the CRWLSE, the RWLSE, the WLSE, and the
mean estimate with respect to penalty parameters for a particular lower left
region of interest. The base of logarithm function is ten.

information is not the same as the functional boundary in the
true target. At first glance, it seems that the small lesions in
that particular region are more evident of RWLSE as shown
in Fig. 2 than those of CRWLSE as shown in Fig. 5. But,
after careful examination, one finds that the locations of the
small lesions of RWLSE as shown in Fig. 2 incorrect when
they are compared with the true phantom in Fig. 1. If the 2-
norm errors for various estimates of that particular region of
interest are plotted, one can see that CRWLSE still outperforms
the RWLSE and WLSE as shown in Fig. 7. With a suitable
choice of the penalty parameter, the CRWLSE can beat the
mean estimate.

Does there exist an automatically data-driven method to
select a suitable penalty parameter? The answer is yes. For
the ridge regression setup with zero as the origin, Golubet al.
[12] generalized the ordinary cross-validation to the GCV to
select the ridge parameter. The ordinary cross-validation is to
delete one observation at one time and use the regression fit of
the remaining observations to predict the deleted observation.
Then, the sum of squares of predicted residuals, PRESS, can
be calculated. But the PRESS is not rotational invariant. In
order to make it rotational invariant, they consider the PRESS
on a transformed model. The resulting form is called GCV.

Hence, it is possible to find the corresponding GCV for the
CRWLSE. Through the shift of origin, the equivalent form of
object functional can be derived as follows:

(26)

where

(27)

(28)

Therefore, after the transformation in (27) and (28), the
object functional become the standard form in ridge regression.
Thus, the GCV can be applied to the CRWLSE. The choice
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Fig. 8. The GCV curve with respect to penalty parameters.

of is the minimum of given by

(29)

where , and
, are the eigenvectors and eigenvalues of .

The GCV curve is plotted in Fig. 8.
The eigenvalue or singular value decomposition (EVD or

SVD) is essential to find out . For small to medium
size matrices, the EVD for a symmetric matrix and SVD for
any matrix can be found via the existing library functions,
such as the imslf eig sym and imslf lin svd gen functions
in the IMSL C/MATH library. For large size matrices, they
can be explored through the power method together with the
deflation [17]. In order to check the numerical correction, the
errors of with 1-norm are inspected for all
eigenvectors and eigenvalues . It is found that the errors
in the large eigenvalues are large for the IMSL function and
those in the small eigenvalues are large for the power method.
This means that the leading portion of eigenvalues, but not
the ending portion of eigenvalues, can be well located by the
power method. The IMSL function is on the contrary.

One can observe that the minimum value of GCV curve as
shown in Fig. 8 is slightly smaller than that of 2-norm errors
shown in Fig. 6. Using this minimum value of GCV curve,
the CRWLSE can be reconstructed as shown in Fig. 5. Thus,
the GCV selection rule can provide a data-driven approach to
suggest a penalty parameter. If an iterative selection rule using
dynamic graphics is built in the reconstruction system, then the
reconstruction image can be even improved upon using the
initial penalty parameter suggested by the GCV selection rule.

For the same true phantom as shown in Fig. 1, the even
more incomplete and incorrect boundary information is also
considered, which is at an incorrect alignment position with
respect to the boundaries of the true phantom. The results
of the experiments, which are not shown here to save space,
reveal that the CRWLSE is quite robust to the selection of
boundaries and mean estimates. The penalty parameters can act

as the fine tuners so that the CRWLSE can reconstruct a better
image using incomplete and incorrect boundary information.

V. CONCLUSION AND DISCUSSION

Due to the presence of AC events and attenuation in the
PET systems, the corrected observations no longer follow a
Poisson distribution. A normal approximation is considered
and the WLSE is investigated. Through cross-referring the
boundary information, the reconstruction can be improved.
Even with an incomplete and incorrect boundary information,
it is observed that the CRWLSE can still outperform the WLSE
and the RWLSE with global penalty. The improvements are
observed both for the whole image and for the particular
region of interest which does not have a correct boundary
information. This is very useful because the anatomic and
functional boundaries are usually different. Meanwhile, the
penalty parameter in CRWLSE can be selected by users or
through the automatically data-driven method, such as the
GCV method.

The ART technique is considered here. The computational
complexity of ART is . This complexity is the same
as that of the expectation-maximization (EM) algorithm. It
is smaller than , the complexity of the projected
successive overrelaxation (SOR) method (i.e., the ICM method
in the Bayesian setups, see Fessler [2]). The EM algorithm is
a competing one to the ART and the ART works faster in unit
computational cost. The one-step-late (OSL) approximation of
the EM algorithm [18] for the CRWLSE was tried. The result-
ing reconstructions were not good. Further examination of the
EM algorithm for the purpose of cross-reference reconstruction
is necessary. Hence, from the prospects of computational
complexity, memory requirement and unit computational time
per iteration, the ART is good for the reconstruction of
CRWLSE. In addition, the constraints can be integrated with
very small increase in the computational cost. The relaxation
parameter can be utilized to accelerate the convergence of
ART. This technique can also be combined with other tricks
and can be generalized to handle the system of inequalities as
summarized nicely in [3]. All these advantages make the ART
the right technique for our purpose.

One can also use the EVD of to obtain the SVD of .
Thus, the truncated singular value reconstruction for solving

can be considered, which is equivalent to solving
the normal equation with truncated SVD. The reconstruction
results are blurry and spiky. This again shows the importance
of regularization using boundary information of CRWLSE
in the PET reconstruction. Finally, the empirical studies of
CRWLSE are of great interest in our future research projects.

APPENDIX

Proposition 1 Proof: The moment generating function of
can be derived as follows:
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The moment-generating function can be approximated in the
neighborhood of zero by

Proposition 2 Proof: Suppose and ,
then

because . Similarly, the other
two cases can be proved when and or

and .

Lemma 1 Proof:

1) It is shown in [11, Corollary 9].
2) It is noted that belongs the orthogonal complement

of the null space of , that is, the range space of .
Since both and belong to ,

, where is the orthogonal projection to the range
space of . Hence, the difference, is in
the null space of . So

3) If , an additional property is shown

Theorem 1 Proof:If one puts for any ,
then this will always be a solution of because

Hence, this is a consistent system and the solution set is the
set of that satisfies . If the ART without
relaxation parameters is used with initial vector , then the
iterated sequence will converge to a solution that minimizes

via the Lemma 1.

Theorem 2 Proof:This proof is similar to that of Theo-

rem 1. Since , the iteration will convergent to
a solution that minimizes
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