
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 9, SEPTEMBER 1997 1299

the associated characteristic set. Hence

Si ;���;i � (�Si ;���;i + 2u+ 2v)=2
n
+ 2v:

Let

Tj = max
i ;���;i

Si ;���;i :

Then

Tj+1 � (�Tj + 2u+ 2v)=2
n
+ 2v:

The sequenceTj is bounded if� < 2n. Since the variance of
X conditioned on the codewordsi0; � � � ; ij is bounded byT 2

j , the
theorem, therefore, holds.

Remark: If Vi = Ui = 0, then the equal-partition coder-estimator
sequence converges in the quadratic mean if the inequality on� holds.

X. CONCLUSION

In this paper, a new class of state estimation problems with
communication bandwidth constraints is proposed. These problems
couple the issue of estimation with the issue of information com-
munication. Although the estimation problem investigated here is
by itself quite simple, it serves to illustrate the complexity and
the intricacy of these finite communication bandwidth problems.
Extension of this work to more sophisticated estimation problems
and feedback control problems will be reported in subsequent pa-
pers.
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Nonovershooting and Monotone Nondecreasing Step
Responses of a Third-Order SISO Linear System

Shir-Kuan Lin and Chang-Jia Fang

Abstract—This paper presents the necessary and sufficient condi-
tions for a third-order single-input/single-output linear system to have a
nonovershooting (or monotone nondecreasing) step response. If the trans-
fer function of an overall system has real poles, a necessary and sufficient
condition is found for the nonovershooting (or monotone nondecreasing)
step response. In the case of complex poles, one sufficient condition and
two necessary conditions are obtained. The resulting conditions are all
in terms of the coefficients of the numerator of the transfer function.
Simple calculations can be used to check a system for the nonovershooting
(or monotone nondecreasing) step response. Another feature is that the
conditions in terms of pole-zero configurations can be easily derived from
the present results.

Index Terms—Linear system, PID controller, step response.

I. INTRODUCTION

The controller design for a third-order linear system has been
drawing the attention of many researchers for several decades [1]–[6]
because a conventional dynamic plant controlled by a proportional-
integral-derivative (PID) controller turns out to be a third-order
system. It was pointed out [7] that not only poles but also zeros
significantly characterize the step response of a transfer function.
Recently, the focus is on the pole-zero relations for the step response
without overshoot and undershoot. Note that a step response has no
undershoot in the whole history if and only if it is a monotone
nondecreasing step response. The number of undershoot times (or
local extrema) in the step response has been widely discussed for a
strictly proper transfer function with only real poles and real zeros
[8]–[11]. A special case of this theme is the initial undershoot [12],
which is actually an old result [11], [13]–[15]. Incidentally, another
kind of old result for the monotone nondecreasing step response was
also repeatedly reported in the recent works, which will be explained
in the following paragraph. For a single-input/single-output (SISO)
discrete-time system, the linear programming approach formulated by
the l1 theory [16] or simple coefficient relations [17] can be used to
design a minimum overshoot controller.

On the other hand, many works [18]–[24] were devoted to finding
explicit conditions for a nonovershooting and a monotone nondecreas-
ing step response. The condition proposed in [18] is in terms of the
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state transition matrix, so it has limited usefulness. The other works
relate the pole-zero configurations to the step response [19]–[24].
Zemanian [19] summarized the earlier results and presented some
new sufficient conditions of the pole-zero configurations for the
monotone nondecreasing step response. Additionally, he pointed out
a synthesis technique in which the convolution of two transfer
functions with monotone nondecreasing step responses still have
a monotone nondecreasing step response. Zemanian’s work [19]
already encompasses the results of Jayasuriya and Song [20] and
Rachid [24], which considered only a special minimum phase transfer
function with real poles and real zeros. Jayasuriya and Song [21],
[22] extended some of these results to the nonovershooting step
response and presented an additional synthesis theory showing that
the convolution of a transfer function with a monotone nondecreasing
step response and another transfer function with no overshoot has
a nonovershooting step response. Although the resulting sufficient
conditions in [21] and [22] apply only to third-order or lower
order systems, they can be extended to higher order systems by the
synthesis theory. Kobayashi [23] presented an additional sufficient
condition for a third-order SISO system with three distinct real poles
that has a nonovershooting step response. Although this condition
covers a wide class of zeros, it is still not a necessary and sufficient
condition.

In this paper, we are confined to a third-order SISO linear system
and attempt to derive a necessary and sufficient condition for a
nonovershooting (or monotone nondecreasing) step response. The
approach is different from those of the earlier works in forming the
conditions. The resulting conditions in this paper are all in terms of
the coefficients of the numerator of the transfer function. Therefore,
the results are not restricted to minimum phase systems. The main
concept is to divide third-order systems into five types according to
their poles and then to study the error history of the step response
for the nonovershooting step response and the output velocity for
the monotone nondecreasing step response. For each type of pole,
the error and the output velocity are similar functions with different
coefficients. Thus, the same theory can be used to derive conditions
for both types of step responses. That means our approach reduces
two problems to a single one.

An explicitly necessary and sufficient condition can be obtained
for a system with real poles that has a nonovershooting (or monotone
nondecreasing) step response. However, if the system has a pair of
complex poles, such a closed-form condition is still not found. As a
consolation, one sufficient and two necessary conditions are obtained
for the case of complex poles.

This paper is organized as follows. Section II deals with the
nonovershooting step response, while Section III discusses the mono-
tone nondecreasing step response. The common theorems used to
derive the theory in these two sections are presented in the Appendix.
However, their proofs are omitted due to the limitation of space. An
example in Section IV will show that the pole-zero configurations
can be easily derived from the present results.

II. NONOVERSHOOTINGSTEP RESPONSE

We consider a third-order SISO linear system with a nonstrictly
proper input–output transfer function of

Y (s)

R(s)
= K

cs3 + bs2 + as+ 1

ps3 + qs2 + rs+ 1
(1)

whereK is set to one without loss of generality, since it is the
amplitude ratio. The system with the order of the numerator greater
than that of the denominator is excluded, for its initial response to
a step input is an impulse.

We are concerned with the performance of the unit step response,
i.e., R(s) = 1=s. The following discussions are divided into two
parts: 1) three negative real poles

ps
3 + qs

2 + rs+ 1 = (T1s+ 1)(T2s+ 1)(T3s+ 1) (2)

with T1 � T2 � T3 > 0 and 2) a negative real pole and a pair of
complex poles

ps
3 + qs

2 + rs+ 1 = (T1s+ 1)
s

!

2

+ 2�
s

!
+ 1 (3)

whereT1 and! are both strictly positive real and0 < � < 1. Note
that � = 0 is excluded, because it provides a nondecaying sinusoidal
vibration.

Define the error of the step response as"(t) = 1 � y(t), where
y(t) = L�1Y (s). The step response of the transfer function (1) has
no overshoot if and only if"(t) � 0 for all t � 0. Taking the inverse
Laplace transform of (1) with (2), we obtain the following results.

• Type A:For three distinct real poles,T1 > T2 > T3 > 0

"(t) = �1e
�t=T + �2e

�t=T + �3e
�t=T

: (4)

• Type B: For a real double pole less than the other real pole,
T1 > T2 = T3 > 0

"(t) = �1e
�t=T + (�4 + �5t)e

�t=T
: (5)

• Type C:For a real double pole greater than the other real pole,
T1 = T2 > T3 > 0

"(t) = (�6 + �7t)e
�t=T + �3e

�t=T
: (6)

• Type D: For a real triple pole,T1 = T2 = T3 > 0

"(t) = (�8 + �9t+ �10t
2)e�t=T : (7)

In (4)–(7), the coefficients are�1 = (T 3

1�aT
2

1+T1b�c)=[T1(T1�
T2)(T1�T3)]; �2 = (�T 3

2 +aT
2

2 �T2b+c)=[T2(T1�T2)(T2�T3)];
�3 = (T 3

3 � aT 2

3 + T3b � c)=[T3(T1 � T3)(T2 � T3)]; �4 =
[T 4

2 � 2T1T
3

2 + (aT1 � b)T 2

2 + c(2T2 � T1)]=[(T1 � T2)
2T 2

2 ];
�5 = (�T 3

2 +aT 2

2 �T2b+ c)=[(T1�T2)T
3

2 ]; �6 = [T 4

1 �2T 3

1 T3+
T 2

1 (aT3 � b) + c(2T1 � T3)]=[(T1 � T3)
2T 2

1 ]; �7 = (T 3

1 � aT 2

1 +
T1b�c)=[(T1�T3)T

3

1 ]; �8 = 1�c=T 3

1 ; �9 = (T 3

1 �T1b+2c)=T 4

1 ,
and�10 = (T 3

1 � aT 2

1 + T1b� c)=2T 5

1 . The denominators of these
coefficients are all positive. Therefore, the sign of any coefficient is
also the sign of its numerator.

According to (1) and (3), we have one more type:

• Type E:For a negative real pole and a pair of complex poles,
T1 > 0; ! > 0, and 0 < � < 1

"(t) = �1e
�t=T

� �2e
��!t sin ! 1� �2 t+  (8)

where = atan2(y; x) with y = 1� �2[2T1�! � 1� aT1!
2 +

b!2 � c!3(2� � T1!)] andx = � � T1!(2�
2 � 1) + a!(T1�! �

1) � b!2(T1! � �) + c!3[T1�! � (2�2 � 1)], and

�1 =
!2 T 3

1 � aT
2

1 + T1b� c

T1 1� 2T1�! + T 2

1
!2

(9)

�2 =
A2 +B2

(1� �2) 1� 2T1�! + T 2

1
!2

1=2

� 0 (10)
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in which A = 1 � a�! + b!2(2�2 � 1) � c�!3(4�2 � 3) and
B = ! 1� �2[�a+2b�!�c!2

(4�2�1)]. Note thatatan2(y; x) �
tan

�1
(y=x), and the signs ofx and y determine the region of the

codomain; i.e., let� = atan(y; x), then 0 � � � �=2 for x � 0

andy � 0; �=2 < � � � for x < 0 andy � 0; �� � � < ��=2

for x < 0 and y < 0, and��=2 � � < � for x � 0 and y < 0.
It should also be remarked that the denominators in (9) and (10) are
greater than zero and�2 is nonnegative.

A necessary condition for the nonovershooting step response is
that the initial response must not be greater than the dc gain, i.e.,
y(0+) � 1, sinceK = 1 in (1). The initial value theorem of the
Laplace transform allows us to conclude the following result.

Lemma 1: For the step response of the transfer function (1),
y(0+) � 1 if and only if: 1) c � T1T2T3 for the case of real poles
and 2)c � T1=!

2 for the case of a pair of complex poles.
First, consider the case of real poles. When Lemma 1 is satisfied,

then "(0+) � 0. In the Appendix, Lemmas A1–A4 show sufficient
and necessary conditions in terms of the coefficients�i for (4)–(7)
possessing"(t) � 0 for all t � 0. Substituting coefficients�i
into the conditions of Lemmas A1 to A4, we obtain the following
theorem.

Theorem 2: A necessary and sufficient condition for the nonover-
shooting step response of (1) with only real negative poles is thatc �

T1T2T3 and one of the following individual conditions corresponding
to each type of real poles holds.

• Type A:

1) T 2
1 (a� T1)� T1b+ c � 0 andT 2

2 (a� T2)� T2b+ c � 0.
2) T 2

2 (a�T2)�T2b+c < 0 and[T2T3=(T2+T3)](b�T2T3) �
c.

3) T 2
1 (a � T1) � T1b + c � 0; T 2

2 (a � T2) � T2b + c < 0;

[T2T3=(T2 + T3)](b � T2T3) > c, and

T1(T2 � T3)

T3(T1 � T2)
ln
T 2
2 T 2

1 (a� T1)� T1b+ c

T 2
1 T 2

2 (a� T2)� T2b+ c

� ln
T 2
3 T 2

2 (a� T2)� T2b+ c

T 2
2 T 2

3 (a� T3)� T3b+ c
< 0: (11)

• Type B:

1) T 2
1 (a�T1)�T1b+c � 0 and[T1T2=(T1+T2)](b�T1T2) �
c.

2) T 2
1 (a�T1)�T1b+c < 0; [T1T2=(T1+T2)](b�T1T2) > c,

and

(T1 � T2) T
3
2 � T2b+ 2c

T1 T 2
2 (a� T2)� T2b+ c

� ln
T 2
1 T 2

2 (a� T2)� T2b+ c

T 2
2 T 2

1 (a� T1)� T1b+ c
> 0: (12)

• Type C:

1) T 2
1 (a� T1) � bT1 + c = 0 andT 2

1 (a � 2T1) � c.
2) T 2

1 (a�T1)�T1b+c < 0 and[T1T3=(T1+T3)](b�T1T3) �
c.

3) T 2
1 (a�T1)�T1b+c < 0; [T1T3=(T1+T3)](b�T1T3) > c,

and

�(T1 � T3) T
3
1 � T1b+ 2c

T3 T 2
1 (a� T1)� T1b+ c

� ln
T 2
3 T 2

1 (a� T1)� T1b+ c

T 2
1 T 2

3 (a� T3)� T3b+ c
< 0: (13)

• Type D:

1) T 2
1 (a� T1) � bT1 + c � 0 andT1(b� T 2

1 ) � 2c.
2) c < T 3

1 ; T
2
1 (a� T1)� bT1 + c � 0, and(T 3

1 � c)[2T
2
1 (a�

5T1=2)� c] + [T1(b � 2T 2
1 ) � c]2 � 0.

Theorem 2 provides a way of using simple calculations to directly
determine whether (1) with real poles has a nonovershooting step
response.

Return to examine Type E. Because the second term on the right-
hand side of (8) is sinusoidal, if�1 � 0 or e�t=T < e��!t for
somet > 0, then"(t) must be less than zero for somet > 0. Note
that e�t=T < e��!t for somet > 0 if and only if 1=T1 > �!.
Therefore,1=T1 � �! and�1 > 0 are necessary conditions for the
nonovershooting step response of Type E. The condition of1=T1 �

�! indicates that the main pole should be real if a nonovershooting
step response is requested. Combining Lemma 1 and Lemma A5 in
the Appendix yields one sufficient and two necessary conditions as
follows.

Theorem 3: Suppose that the poles of the transfer function (1)
belong to Type E and the main pole is negative real (i.e.,0 >

�1=T1 � ��!).

1) The step response of the system has no overshoot ifc � T1=!
2;

T 2
1 (a � T1) � bT1 + c � 0, and�1 � �2.

2) Suppose thatc � T1=!
2 andT 2

1 (a�T1)�bT1+c � 0 hold. If
�1 < �2 and the nonovershooting step response of the system
is still requested, then�2 > 0; �1=�2 > �, and

1 >
�1

�2
� 1� �2 e

�t (�!�1=T ) (14)

where � = exp[�2�(�! � 1=T1)=(! 1� �2)] and tx =

(! 1� �2)�1[atan2( 1� �2; �) �  ].

Remark: In fact, it can be shown that a necessary and sufficient
condition for the nonovershooting step response of Type E is that
either �1 � �2 or "(ts) � 0 for the smallest one ofts satisfying
_"(ts) = 0 and sin(! 1� �2 ts +  ) > 0. However, no explicit
solution to _"(ts) = 0 can be obtained. The condition of"(ts) � 0

is then useless.

III. M ONOTONE NONDECREASING STEP RESPONSE

The above theory can be extended to the monotone nondecreasing
step response. System (1) has a monotone nondecreasing step re-
sponse if and only if the first derivative of the output responsey(t) for
R(s) = 1=s is greater than or equal to zero for allt � 0. Obviously,
_y(0+) � 0 is a necessary condition. By the initial value theorem,
_y(0+) = lims!1 s[sY (s)�y(0+)], we obtain the following lemma.

Lemma 4: For the step response of the transfer function (1),
_y(0+) � 0 if and only if: 1) c � bT1T2T3=(T1T2 + T2T3 + T3T1)

for the cases of real poles, and 2)c � bT1=(1+2T1�!) for the case
of a pair of complex poles.

The first derivatives ofy(t) for different types of poles are obtained
by _y(t) = d(1 � "(t))=dt as follows.

• Type A:

_y(t) =
�1

T1
e
�t=T

+
�2

T2
e
�t=T

+
�3

T3
e
�t=T

: (15)

• Type B:

_y(t) =
�1

T1
e
�t=T

+
�4

T2
� �5 +

�5

T2
t e
�t=T

: (16)

• Type C:

_y(t) =
�6

T1
� �7 +

�7

T1
t e
�t=T

+
�3

T3
e
�t=T

: (17)
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• Type D:

_y(t) =
�8 � T1�9

T1
+
�9 � 2T1�10

T1
t+

�10

T1
t
2
e
�t=T

:

(18)
• Type E:

_y(t) =
�1

T1
e
�t=T

� �2!e
��!t

sin ! 1� �2 t+  + � (19)

where� = atan2( 1� �2;��).

Note that(�8�T1�9) � 0 in (18) when the condition in Lemma 4
is satisfied. Comparing (15)–(19) with (4)–(8), we find that_y(t) and
"(t) have the same forms but with different coefficients. When the
condition of Lemma 4 is satisfied, the initial condition_y(0) � 0, too.
Replacingf(t) and the coefficients in Lemmas A1–A5 with_y(t)
and the corresponding coefficients in (15)–(19), we straightforwardly
conclude the analogous results for the monotone nondecreasing step
response.

Theorem 5: A necessary and sufficient condition for the monotone
nondecreasing step response of (1) with only real negative poles is
that c � bT1T2T3=(T1T2 + T2T3 + T3T1) and one of the following
individual conditions corresponding to each type of real poles holds.

• Type A:

1) T 2
1 (a� T1)� T1b+ c � 0 andT 2

2 (a� T2)� T2b+ c � 0.
2) T 2

2 (a � T2) � T2b + c < 0 and T2T3a � (T2 + T3)[b �

(1=T2 + 1=T3)c] � c.
3) T 2

1 (a � T1) � T1b + c � 0; T 2
2 (a � T2) � T2b + c < 0;

T2T3a � (T2 + T3)[b � (1=T2 + 1=T3)c] < c, and

T1(T2 � T3)

T3(T1 � T2)
ln
T 3
2 T 2

1 (a� T1)� T1b+ c

T 3
1 T 2

2 (a� T2)� T2b+ c

� ln
T 3
3 T 2

2 (a� T2)� T2b+ c

T 3
2 T 2

3 (a� T3)� T3b+ c
< 0: (20)

• Type B:

1) T 2
1 (a � T1) � T1b + c � 0 and T1T2a � (T1 + T2)[b �

(1=T1 + 1=T2)c] � c.
2) T 2

1 (a�T1)� T1b+ c < 0; T1T2a� (T1 +T2)[b� (1=T1 +

1=T2)c] < c, and

(T1 � T2) T
2
2 a� 2T2b+ 3c

T1 T 2
2 (a� T2)� T2b+ c

� ln
T 3
1 T 2

2 (a� T2)� T2b+ c

T 3
2 T 2

1 (a� T1)� T1b+ c
> 0: (21)

• Type C:

1) T 2
1 (a� T1) � bT1 + c = 0 andT 2

1 (a � 2T1) � c.
2) T 2

1 (a � T1) � T1b + c < 0 and T1T3a � (T1 + T3)[b �

(1=T1 + 1=T3)c] � c.
3) T 2

1 (a�T1)� T1b+ c < 0; T1T3a� (T1 +T3)[b� (1=T1 +

1=T3)c] < c, and

�(T1 � T3) T
2
1 a� 2T1b+ 3c

T3 T 2
1 (a� T1)� T1b+ c

� ln
T 3
3 T 2

1 (a� T1)� T1b+ c

T 3
1 T 2

3 (a� T3)� T3b+ c
< 0: (22)

• Type D:

1) T 2
1 (a� T1) � bT1 + c � 0 andT1(2b� T1a) � 3c.

2) c < bT1=3; T
2
1 (a�T1)�bT1+c � 0, andT 4

1 a
2�2T 3

1 ab+

2T 2
1 b

2 � 2T 4
1 b � 4T1bc + 3c2 + 6T 3

1 c � 0.

Theorem 6: Suppose that the poles of the transfer function (1)
belong to Type E, and the main pole is negative real (i.e.,0 >

�1=T1 � ��!).

1) The step response of the system is monotone nondecreasing
if c � bT1=(1 + 2T1�!); T

2
1 (a � T1) � bT1 + c � 0, and

�1 � T1!�2.
2) Suppose thatc � bT1=(1+2T1�!) andT 2

1 (a�T1)�bT1+c �

0. If �1 < T1!�2 and the monotone nondecreasing step
response of the system is still requested, then�2 > 0 and
�1=�2 > T1!� and

1 >
�1

�2T1!
� 1� �2 e

�t (�!�1=T ) (23)

wheretx = (! 1� �2)�1[atan2( 1� �2; �)� ��] and
� = exp[�2�(�! � 1=T1)=(! 1� �2)] identical to that in
Theorem 3.

IV. CONCLUSION

This paper presents the necessary and sufficient conditions for the
coefficients of the numerator of a third-order transfer function (1)
so that the nonovershooting and the monotone nondecreasing step
responses are ensured. If the poles are all negative real, a necessary
and sufficient condition is found and presented in Theorems 2 and 5.
If the system has a pair of complex poles, one sufficient condition and
two necessary conditions are obtained in Theorems 3 and 6. These
results allow us to use simple calculations to determine whether the
system (1) has a nonovershooting and a monotone nondecreasing
step response.

The approach presented in this paper can also be applied to a
second-order SISO linear system ofY (s)=R(s) = (bs2 + as +

1)=(qs2 + rs + 1). If this system has two negative real poles of
�1=T1 and�1=T2 with T1 � T2 > 0, a necessary and sufficient
condition for the nonovershooting step response is the condition of
T1(a � T1) � b � 0 and b � T1T2, while that for the monotone
nondecreasing step response is the condition ofT1(a� T1)� b � 0

and b � aT1T2=(T1 + T2). However, if the second-order system
has a pair of complex poles, the step response has overshoot for any
values ofa andb, and then there is no monotone nondecreasing step
response.

Furthermore, the present results can also be transferred to the ones
in terms of pole-zero configurations. For instance, consider the above
second-order system with two negative poles of�1 = �1=T1 and
�2 = �1=T2. Let two zeros bez1 and z2 (when they are real)
or x � jy. Obviously, a = �1=z1 � 1=z2 and b = 1=(z1z2)

for the case of real zeros, while in the case of complex zeros
a = �2x=(x2 + y2) and b = 1=(x2 + y2). A necessary and
sufficient condition for the nonovershooting step response is either:
1) (z1z2)�1(z1��1)(z2��1) � 0 and(z1z2)�1 � (�1�2)

�1, or 2)
x2 + y2 � �1�2; while either: 1)(z1z2)�1(z1 � �1)(z2 � �1) � 0

and (z1z2)(z1 + z2) � (z1z2)(�1 + �2), or 2) 2x � �1 + �2 is a
necessary and sufficient condition for the monotone nondecreasing
step response. However, such a condition for a third-order system is
much more complicated.

APPENDIX

Lemma A1: Considerf(t) = �1e
�t=T + �2e

�t=T + �3e
�t=T

with T1 > T2 > T3 > 0 andf(0) � 0. Thenf(t) � 0 for all t � 0

if and only if one of the following conditions holds: 1)�1 � 0 and
�2 � 0; 2) �2 < 0 and�3 � �[(1=T2 � 1=T1)=(1=T3� 1=T1)]�2;
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3) �1 � 0; �2 < 0; �3 > �[(1=T2� 1=T1)=(1=T3� 1=T1)]�2, and

1=T3 � 1=T2

1=T2 � 1=T1
ln

(1=T3 � 1=T1)�1

1=T3 � 1=T2)(��2)

� ln
(1=T2 � 1=T1)(��2)

(1=T3 � 1=T1)�3
: (A1)

Note that the term on the right-hand side of (A1) is less than zero.
Lemma A2: Considerf(t) = �1e

�t=T +(�4 +�5t)e
�t=T with

T1 > T2 > 0 and f(0) � 0. Then f(t) � 0 for all t � 0 if
and only if one of the following conditions holds: 1)�1 � 0 and
�5 � �(1=T2 � 1=T1)�1; 2) �1 > 0; �5 < �(1=T2 � 1=T1)�1,
and

1�
1

T2
�

1

T1

�4

�5
� ln

��5
(1=T2 � 1=T1)�1

: (A2)

Note that the term on the right-hand side of (A2) is greater than zero.
Lemma A3: Considerf(t) = (�6 +�7t)e

�t=T +�3e
�t=T with

T1 > T3 > 0 and f(0) � 0. Then f(t) � 0 for all t � 0

if and only if one of the following conditions holds: 1)�7 = 0

and �6 � 0; 2) �7 > 0 and �3 � �7=(1=T3 � 1=T1); 3)
0 < �7=(1=T3 � 1=T1) < �3 and

1 +
1

T3
�

1

T1

�6

�7
� ln

�7

(1=T3 � 1=T1)�3
: (A3)

Note that the term on the right-hand side of (A3) is less than zero.
Lemma A4: Considerf(t) = (�8 + �9t + �10t

2)e�t=T with
T1 > 0 and f(0) � 0. Thenf(t) � 0 for all t � 0 if and only if
one of the following conditions holds: 1)�9 � 0 and�10 � 0; 2)
�8 > 0 and 4�8�10 � �29.

Lemma A5: Considerf(t) = �1e
�t=T ��2e

��!t sin(! 1� �2

t +  ) with 0 < � < 1, and0 < 1=T1 � �!.

1) If �1 � �2 � 0, thenf(t) � 0 for all t � 0.
2) If �1 < �2 andf(t) � 0 for all t � 0 is requested, then�2 > 0

1 >
�1

�2
> e

�2�(�!�1=T )=(!
p

1�� ) (A4)

and

1 >
�1

�2
� 1� �2 e�t (�!�1=T ) (A5)

wheretx = (! 1� �2)�1[atan2( 1� �2; �)�  ].
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Numerical Improvements for Solving Riccati Equations

Alan J. Laub and Pascal Gahinet

Abstract—In this paper, we discuss some ideas for improving the
efficiency and accuracy of numerical methods for solving algebraic Riccati
equations (ARE’s) based on invariant or deflating subspace methods. The
focus is on ARE’s for which symmetric solutions exist, and our methods
apply to both standard linear-quadratic-Gaussian (orH2) ARE’s and to
so-calledH1-type ARE’s arising from either continuous-time or discrete-
time models. The first technique is a new symmetric representation of a
symmetric Riccati solution computed from an orthonormal basis of a
certain invariant or deflating subspace. The symmetric representation
does not require sign definiteness of the Riccati solution. The second
technique relates to improving algorithm efficiency. Using a pencil-based
approach, the solution of a Riccati equation can always be reformulated
so that the deflating subspace whose basis is being sought corresponds to
eigenvalues outside the unit circle. Thus, the natural tendency of the QZ
algorithm to deflate these eigenvalues last, and hence, to appear in the
upper left blocks of the appropriate pencils, then reduces the amount of
reordering that must be done to a (generalized) Schur form.

Index Terms—Numerical methods, Riccati equations.
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