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1. Introduction 

A visibility graph G = (V, E) of a polygon P is 
defined as follows: Nodes in V are adjacent if and 
only if the associated vertices in P are mutually 
visible and the weight of an edge in E is equal to 
the Euclidian distance between the associated 
vertices in P. For example, the visibility graph of 
the polygon in Fig. l(a) is shown in Fig. l(b). A 
weighted visibility graph of a polygon is a visibility 
graph of this polygon and the weight of an edge 
of this graph is the Euclidian distance between 
the associated vertices in this polygon. 
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In this paper, we are interested in finding a 
subgraph of a weighted visibility graph G with a 
small number of edges such that any arbitrary 
shortest path on G is almost entirely covered by 
the subgraph. For example, in Fig. 2, consider a 
subgraph of the weighted visibility graph of the 
polygon in Fig. l(a). The shortest path between a 
and f is abdgf which is fully covered by this 
subgraph. The shortest path between a and h is 
abh. Only bh is not covered by this subgraph. In 
this paper, we show that for any arbitrary 
weighted visibility graph G of an n-gon, there 
exists a subgraph with only a linear number of 
edges such that for any arbitrary shortest path of 
G, there are most 8 log*n + 5 edges that do not 
appear in the subgraph. Note that log*n is de- 
fined to be the number of applications of the 
logarithm function required to reduce n to a 
constant value (say 2). Given an n-gon, we also 
propose an O(n) time algorithm to find such a 
subgraph. 
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2. Preliminaries 

In this section, we introduce some preliminary 
definitions and geometric properties. 

2.1. The polygon cutting theorem and decomposi- 
tion tree 

Chazelle [l] proved that for any simple poly- 
gon with at least four vertices, there is a diagonal 
that divides this polygon into two subpolygons, 
roughly of equal size. More precisely, each of the 
subpolygons P, and P, generated by this splitting 
has at least l(n + 5)/31 sides. Consider Fig. 3. 
The diagonal d, is such a diagonal. If we apply 
Chazelle’s Theorem recursively, then we obtain a 
decomposition tree. The decomposition tree for 
the triangulation shown in Fig. 3 is shown in Fig. 
4. 

2.2. Hourglasses 

Let us introduce an interesting structure, the 
hourglass [5]. Suppose that d, has endpoints A 
and B, d, has endpoints C and D and BACD is 
a subsequence of the vertex sequence of a poly- 
gon P. The union of the shortest path between A 
and C and the shortest path between B and D is - - -- 
the hourglass of AB and CD, denoted H(AB, CD). 
Note that each of the paths is inward convex. 
There are two types of hourglasses. If the paths 
are disjoint, we call it open and it is composed of 
two inward convex chains. If the paths are not 
disjoint, we call it closed. See Fig. 5 for examples 
of hourglasses. 

An interesting property of hourglasses is that 
an hourglass can be obtained by concatenating 
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Fig. 2. A subgraph of a weighted visibility graph. 

two hourglasses and only two new edges are 
introduced. There are of course many possible 
cases which we shall not describe here. Interested 
readers may consult [51. 

2.3. The factor graph 

A factor graph is constructed out of a decom- 
position tree [3,5]. Let us consider the decompo- 
sition tree in Fig. 4. Note that the subtree of each 
node is the decomposition tree corresponding to 
a subpolygon. For instance, the tree under node 
d, corresponds to the entire polygon. For the 
subtree under node d,, which is shown in Fig. 
6(a), the corresponding subpolygon is shown in 
Fig. 6(b). Let Pd denote the subpolygon corre- 
sponding to the ‘subtree under node dj in the 
decomposition tree. Thus, the subpolygon in Fig. 
6(b) will be denoted as Pd,. Now consider Pd,, 
which is shown in Fig. 7. Diagonal d, has three 
ancestors, namely d,, d,, and d,, in the decom- 
position tree. Among them, d, and d, are bound- 
aries of Pd,. Note that for every subpolygon Pdj, 
except the boundaries of the original polygon, the 
boundaries of Pd, must be ancestors of dj in the 
decomposition tree. 

A factor graph is constructed out of a decom- 
position tree by adding edges from the node 
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Fig. 1. An example of a visibility graph. 
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Fig. 3. A triangulated polygon and its dual tree. 

613 d3 d,, 614 2, d,, d, 

Fig. 4. A decomposition tree 

corresponding to dj to all of the nodes corre- 
sponding to diagonals bounding Pd unless the 
node is already a parent node of the’ node corre- 
sponding to dj. For the subpolygon in Fig. 7, both 
d,nd d, are boundaries of Pd,. Thus d,d, and 
d,d, are in the factor graph. We do not have to 
add an edge from d,, to d, because d, is already 
a parent of d,,. The entire factor graph corre- 
sponding to the decomposition tree in Fig. 4 is 
now shown in Fig. 8. 

Let us imagine that we want to find the hour- 
glass between d, and d,. From the factor graph 
shown in Fig. 8, d, is again the lowest common 

Fig. 6. A subtree and its corresponding subpolygon. 

6 

Fig. 7. Subpolygon Pd, 

d 13 d, d,2 d14 d, dlo d, 

Fig. 8. A factor graph. 

ancestor of d, and d,. The path between d, and 
d, is d, -d, + d,. We can construct H(d,, d4) 
by constructing H(d,, d,) and H(d,, dJ and 
then concatenating them. Note that on the factor 
graph, there is a path between d, and d,, which 
is d, - d, + d,. Thus we need only construct the 

Fig. 5. Examples of hourglasses. (a) An open hourglass. (b) A closed hourglass. 
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hourglass H(L14, d7) and then H(d,, d,). From 
the factor graph, we can also see that H(d,,, d,) 
will involve the following hourglasses: H(d,,, d,,), 

H(d,,, d,), H(d,, d,) and H(d,, d,). 
That the factor graph which is sufficient for 

our purpose can be found in [5]. 

3. A necessary condition 

In this section, we shall show that for any 
arbitrary weighted visibility graph of an n-gon, 
there exists a subgraph with only a linear number 
of edges such that for any arbitrary shortest path 
there are most 8 log*n + 5 edges that do not 
appear in the subgraph. Given an n-gon, we also 
propose an O(n) time algorithm to find such a 
subgraph. 

Now let us define some new terms. The modi- 
fied factor graph is defined as follows: Let U 
denote the set of nodes in the decomposition 
tree, each of which having at least log4n descen- 
dants. The modified factor graph is constructed 
out of the factor graph by adding edges from 
each node in U to all its descendants that are 
also in U if there is no edge in the factor graph 
linking these nodes. In the rest of this paper, let 
F and S denote the factor graph and the decom- 
position tree respectively. 

Fig. 9. A leap graph. 

A leap graph L is a generalization of the 
modified factor graph. Let U, be the set of nodes 
with at least log4n descendants in the decomposi- 
tion tree S. For i = 1, 2,. . . , log*n, let U, be the 
set of nodes in S whose numbers of descendants 
are less than (log%)4 and not less than 

(log”+ ‘)n14. Note that logCk’n = log logCk-‘)n and 
1og’“‘n = n. These nodes also exist in the factor 
graph F. A leap graph is constructed out of a 
factor graph by adding edges from nodes of U, in 
F to all their descendants that are also in Ui, for 
i=o, 1 , . . . , log*n. If these edges are already in 

F, they will not be added into L again. See Fig. 9. 
We now prove that the size of L is O(n). 

Lemma 1. The number of edges of a leap graph is 
O(n). 

Proof. Since the decomposition tree S is bal- 
anced, there are at most O(n/(log(‘+ 1)n>4> nodes 
in S with at least 0(00g~it’~n14) descendants. 
Thus, the cardinality of q. is only O(n/ 
(log(if’)n)4). F urt ermore, h since S is balanced 

and the number of descendants of any node in U, 
is at most (log(‘)n)4, each node in U, is reached by 
at most 4 log@+ ‘) n additional edges from its an- 

cestor. Therefore, there are at most O(n/ 
(log”+ ‘)nj3) edges added from nodes in Ui to all 
of their descendants in Ui. Thus the total number 
of edges added to F is 

= O(n/(log n)‘) + O(n/(log log n)‘) 

+ O(n/(log log log n)‘) + . . . 

= O(n). 

Since the size of the factor graph is O(n), the 
number of edges of a leap graph is O(n). 0 

Let us define some new terms before dis- 

cussing the properties of the leap graph. A diago- 
nal sequence D = Cd,,, drz,. . . , d,,) is serially 
concatenable if d,+, separates drl and d,+z in 
the original polygon for 1 < t <k - 2. It 1s not 
difficult to see that any subsequence of a serially 
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concatenable diagonal sequence is also serially 
concatenable. The following lemma points out an 
important property of the leap graph. 

Lemma 2. For every d,, dj in the decomposition 
tree S, there exists a serially concatenable diagonal 
sequence Cd,, = di, d_,. . , , drl = dj) such that t G 
4 log*n + 3 and dr,dr,+, in the leap graph L for 
1<1<t--I. 

Proof. For di and dj E S, let d’ denote the lowest 
common ancestor of di and d, in S. By the 
definition of S, d’ separates di and dj in the 

I - 
original polygon. If did EL and d,d EL, then 
the lemma is true. 

- 
Consider that case that either d,d 6 L or 

- d,d’E L. Suppose that did EL. Let Next(d,, d4) 
denote the lowest diagonal among diagonals that 
are on the path from d, to d, in S and separate 
d, and d, in the original polygon. If d, is the 
parent of d,, let Next(d,, d,) = d,. Consider the 
diagonal sequence DS = Cd,, = di, dkZ,..., dks = 
d’) where dk,+, =Next(d,, d’) for l<l<s--1. 
By the definition of Next(dr, d,), it is not diffi- 
cult to see that DS is serially concatenable. We 
now further show that dk,dk,+, E F for 1 G 1 <s - 
1. 

Consider dkldkl,,. If dk,+, = d’, by definition, 

dkldkl+l is in F. Consider the case that d, f d’. 1+1 
By definition, dkl+, separates dkl and d’. Assume 

that d kl+,dkl is not in F. By the definition of S, 

d k,+, is a boundary of PLSoNCdk 
1+1) 

and 

P RsoMd,,,,) Since dk,+, is an ancestor of d,, in 

‘, 'd, “is a subpolygon of 

P f 

PLSONCdk 
if, 1 Or 

RSON(dk,, ,)’ Since dk,+,dk, is not in F, 
171 

d kl+, is not a boundary of Pd . Therefore, there 

must be some diagonal, say dy: which separates 

d k,+, and d,, and is on the path from d,, to dk,+, 
in S. Since dk,+, separates d’ and d,, and dj 
separates dk,+, and dkl, d,’ must separate d’ and 
dkl. Besides, d,’ is younger than dk,+, in S, a 
contradiction. Thus dkl,,dk, must be in F. There- 

fore, &,dkl+, ~Fforl~l~s-1. 
For 0 <t < log*n, let LD(t) and HD(t) de- 

note the lowest and highest diagonals in U, that 
are also in DS. If no such diagonals exist, let 
these notations denote empty. Consider the sub- 

sequence DS’ = (dp = d,,, dfZ,. . . , d, = d’) of 

DS, where DS’ is composed of LD(t) and LID(t) 
for 0 G t G log*n. Consider d,d,+,. If d,+, is 

also the successor of d, in DS, then d,d, E F. ,Cl 
If %+I is not the successor of d, in DS, d, and 

df,+, 
must be in the same U,. Therefore, 

d,d,+, E L. Since DS is serially concatenable, 
DS’ is also serially concatenable. To sum up, for 

- the case that d,d P L, there exists a serially con- 
catenable diagonal sequence DS’ = (df, = di, 

drz, . . . > d, = d’) such that e G 2log*n + 2 
anddfidf,_l’ELforl<lge’-l.Ifdjd’@L,we 
similarly can show that there exists a serially 
concatenable diagonal sequence DS; = Cd,; = 
d’, d,;, . . . , dfi, = dj) such that e’ G 2 log*n + 2 

and df,df,+ I 
EL for 1 < I< t - 1. Since d’ sepa- 

rates di and d,, it follows that the combination of 
DS’ and DS; is serially concatenable. Therefore, 

there exists a serially concatenable diagonal se- 
quence (d,, = di, dr2,. . . ,d,, =d,) such that t < 

4 log*n + 3 and dr,dr,+, E L for 1 G 16 t - 1. 0 

Now we can show a necessary condition of the 
weighted visibility graph in the following theo- 

rem. 

Theorem 3. For any arbitrary weighted visibility 
graph of an n-gon, there exists a subgraph with 
only a linear number of edges such that for any 
arbitrary shortest path, there are most 8 log ‘n + 5 
edges that do not appear in the subgraph. There 
exists an algorithm to construct such a subgraph in 
O(n) time. 

Proof. Recall that by definition, an hourglass 
consists of two shortest paths. Let SL denote the 
shortest path set defined by the hourglasses cor- 
responding to edges in the leap graph L. Let 
US(SL) denote the union of SL. We will show 
that US(SL) satisfies the statement in the theo- 
rem. 

For any arbitrary vertices p and q of P, let 
~(p, q> denote the shortest path between p and 
q inside P. Let d, be a diagonal incident to p if 
one exists, or otherwise the diagonal closest to p 
that separates p from q. We define d, in the 
similar way. By lemma 2, there exists a serially 
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concatenable diagonal sequence DS = (d,, = 

d,, dr2,. . . , d,,=d,) such that t<4log*n+3 

and dr,dr,+, EL for l<l<t-1. Since DS is 
serially concatenable, H(d,, dq> can be con- 
structed by concatenating H(d,,, dr2), H(d_, 

d,.J.. . ,fU,,_,, d,,). It follows that H(d,, d,) 
can be constructed by concatenating at most 
4 log*n + 2 hourglasses corresponding to edges 
in L. Concatenating two hourglasses introduces 
only two new edges. Thus, it introduces at most 
8 1og”n + 2 new edges to construct H(d,, dq> 
from USCSL). Since at most three line segments 
of ~(p, 4) are not covered by H(d,, d,), it fol- 
lows that there are at most 8 1og”n + 5 edges of 
~(p, s> not covered by US(SL). 

Consider the problem of constructing US(SL). 
Since US(SL) is the union of shortest paths asso- 
ciated with hourglasses corresponding to edges in 
L and whenever an hourglass is found, its two 
associated shortest paths are also found, we can 
construct US(SL) \by constructing hourglasses 
corresponding to edges in L. Consider the hour- 
glasses corresponding to edges in L. Let f(k) be 
the time complexity of triangulating a k-gon. 
Guibas and Hershberger [51 proposed an f(zz> 
time algorithm to construct hourglasses corre- 
sponding to edges in F and these hourglasses can 
be stored in O(n) space such that for di and its 
descendant dj, H(d,, dj) can be constructed in 
0(log2 I Pd I) time. Since currently, the best bound 
for f(k) ib O(k) [2], Guibas and Hershberger’s 
algorithm [5] can be run in linear time. Consider 
hourglasses corresponding to edges in L \F. By 
definition, for any d, in Ui, 1 Pd, I is at most 
0((log%>4>. Thus, for d,,d, in ZJ, and d,d, in L, 
we can construct H(d,, d,) in 

0(log2(log(‘)n)4) = 0((log”+“n)2) 

time. As shown in the proof of Lemma 1, there 
are at most 0(n/(log(i+‘&z)3) edges added from 
nodes in U, to all of their descendants in Ui. 
Thus, we can construct hourglasses correspond- 
ing to edges added from nodes in U, to all of their 
descendants in lJ in 

o( U(log “+l$z)3)O((log”+‘)n)2) 

= O(n/log”+%z). 

14 

It follows that we can construct hourglasses cor- 
responding to edges in L \ F in 

1og*n 

i=O 

= O( n/log n) + O( n/log log zz) 

+ O( n/log log log zz) -t . . . 

= O(n). 

Therefore, the hourglasses corresponding to edges 
in L can be constructed in O(n) time and space. 
It follows that US(SL) can be constructed in 

O(n) time and space. 0 

4. Conclusion 

In this paper, we are interested in some theo- 
retical properties of weighted visibility graphs. 
We show that for any arbitrary weighted visibility 

graph of an n-gon, there exists a subgraph with 
only a linear number of edges such that for any 
arbitrary shortest path, there are most 8 log*n + 
5 edges that do not appear in this subgraph. 
Given an n-gon, we also propose an O(n) time 
algorithm to find such a subgraph. It is a chal- 
lenge to design a fast algorithm to find such a 
subgraph with minimum weight. It should be 
noted that we are not suggesting that this sub- 
graph should be used as data structure to find 
shortest paths. The following problem remains 
open: for any arbitrary weighted visibility graph 
of an n-gon, does there exist a subgraph with 
O(n) edges such that the maximum number of 
missing edges of any arbitrary shortest path is less 
than O(log * n)? 
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