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EXISTENCE OF POSITIVE NONRADIAL SOLUTIONS
FOR NONLINEAR ELLIPTIC EQUATIONS IN ANNULAR DOMAINS

SONG-SUN LIN

Abstract. We study the existence of positive nonradial solutions of equation

A« + f(u) = 0 in Sïa , u = 0 on d£la , where ß„ = {x 6 W : a < \x\ < 1}

is an annulus in R" , n > 2 , and / is positive and superlinear at both 0 and

oo . We use a bifurcation method to show that there is a nonradial bifurcation

with mode k at ak € (0, 1 ) for any positive integer k if / is subcritical and

for large k if / is supercritical. When / is subcritical, then a Nehari-type
variational method can be used to prove that there exists a* e (0, 1 ) such that

for any a e {a* , 1 ), the equation has a nonradial solution on 0,a .

1. Introduction

In this paper we shall study the existence of positive nonradial solutions of

the equation

(1.1) Au + f(u) = 0   inÇla,

(1.2) u = 0   ond0.a,

where ila = {x e R" : a < \x\ < 1} is an annulus in R" , « > 2, and / satisfies
the following conditions:

(H-0) feCx(Rx)   and   f(u)>0   for«>0,

(H-l) /(0) = 0   and    limf(u)/u = 0,
u—»0

(H-2) liminfuf(u)If(u)> I.
u—»oo

This paper is motivated by the work of Brezis and Nirenberg [3] and Coffman

[4]. In [3], Brezis and Nirenberg proved that for any fixed domain Cla- if

f(u) = u" and p < (n + 2)/(« - 2), « > 3, and is near to it, then (1.1) and

(1.2) has a positive nonradial solution. Later on, in [4], Coffman studied (1.1),

(1.2) with f(u) = -u + up , p > 1 and « = 2. He proved that the number of

rotationally nonequivalent positive solutions grows without bound as a —> 1~ .

In both papers, problems are subcritical and variational methods are used.

In this paper, we shall use two approaches to study the problems: the bifur-

cation method and the variational method.
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In applying the bifurcation method, we shall take a (the inner radius) as

a bifurcation parameter. In spherical coordinates, the linearized equation of

equations (1.1) and (1.2) at positive radial solution ua is

(1J) <P"(r) + ^V(r) + [f(ua) - k{k + 2" " 2) } <p(r)

= -Pk,t(ua)<P(r),        a <r< 1,

(1.4) v(a) = 0 = <p(l),

where k and / are positive integers. It is well known that if there is a nonradial

bifurcation at ua , then pk ¡(ua) = 0 for some k and /. Therefore, to look for

pkyi = 0, it is worth knowing the signs of pkyX(ua) as a approaches to 1 or

0. We shall show that the condition (H-2) implies that, for any positive integer

k, Pk,\{Ua) < 0 as a approaches 1. On the other hand, if "wa tends to a

positive radial solution w0 of (1.1), (1.2) on the unit ball," then pXyX(ua) > 0

as a approaches 0.

Hence, if / is subcritical, i.e., / satisfies

,    „,   „        . „, ,      I cup for some p <-   if « > 3,
(H-3)  for « large,    /(«)<< n-2

( exp A(u) with A(u) = o(u2) at oo   if « = 2,

then, for any k > 1, a nonradial bifurcation would occur at some ak e (0, 1).

On the other hand, if / is supercritical, i.e., / satisfies

(H-4) uffu)>!L±lfiu)   fOru>0,
n — 2

we shall apply the McLeod-Serrin identity to show that px, i (ua) # 0 for any ua ■

For such /, we can prove that pky\(ua) > 0 if k is large enough. Therefore a
nonradial bifurcation would also occur at some ak e (0, 1) when k is large.

For the subcritical case, a Nehari-type variational method will also be used
to study the existence of positive nonradial solutions. Indeed, consider the

functionals

(1.5) J(v)= [   \\w\2-F(v),

(1.6) I(v)= f  \Vv\2-vf(v),

on H0x(Q.a), where F(v) = ¡Qv f(t) dt, and the numbers

(1.7) j(a) = inf{J(v): v e H¿(Qa) and I(v) = 0},

and

(1.8) ./00(a) = inf{J(v): v e H¿(Qa), I(v) = 0 and v is radial}.

If the minimizers of j(a) and jao(a) are achieved with

(1.9) j(a)<joc(a),

then the minimizers of j(a) will be nonradial, positive solutions of (1.1), (1.2).

For a e (0, 1 ), we can obtain ( 1.9) provided that all positive radial solutions

of (1.1), (1.2) are "unstable with respect to nonradial modes," i.e., if ua  is
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NONRADIAL SOLUTIONS 777

a positive radial solution of (1.1) and (1.2), then there exists an eigenvalue

ßk,\(ua) < 0 for some positive integer k . Therefore, nonradial solutions exist,

provided a is close to 1.

Existence and/or uniqueness of positive radial solutions of (1.1) and (1.2)

have been studied by many authors, see, e.g., Ni and Nussbaum [17], Bandle,

Coffman and Marcus [1], Garaizar [5] and Lin [11]. In case f(0) > 0, the

existence of nonradial solutions has been studied by Suzuki and Nagasaki [21],

Suzuki [22] and Lin [10, 12].
The paper is organized as follows: In §2, we briefly discuss some properties

of positive radial solutions. In §3, we study the linearized equations (1.3) and

(1.4) as a -» 0+ or a —> 1~. In §4, we use the McLeod-Serrin identity to

study pkyx = 0. In §5, an argument of degree theory is used to show that

nonradial bifurcation actually occurs at ua that satisfies pkyx(ua) = 0 and

some appropriate conditions. In §6, a Nehari-type variational method is used

to show that there exists a nonradial solution if / is subcritical and the annuli

are narrow enough.

2. Radial solutions

In this section, we shall discuss some properties of positive radial solutions

of (1.1) and (1.2) which will be used later.
A radial solution u = u(r) of (1.1) and (1.2) satisfies the following equations

(2.1) u"(r) + r^-u'(r) + f(u(r)) = 0,        re (a, I),

(2.2) u(a) = 0 = u(l).

In Lin [ 11 ], it was proved that for any a e (0, 1 ), (2.1 ) and (2.2) have a positive

radial solution ua provided that / satisfies (H-0), (H-l) and

(H-2)' lim f(u)/u = oo.
u—>oo

It is clear that (H-2) implies (H-2)'. Therefore, if / satisfies (H-0) ~ (H-2), then
for any a e (0, 1), (2.1) and (2.2) have at least one positive radial solution.

For « > 3 , set 5 = r2~n and w(s) = u(r), then (2.1) and (2.2) can be written

as

(2.3) w"(s) + p(s)f(w(s)) = 0   in (so, ii),

(2.4) w(s0) = 0 = w(sx),

where p(s) = (n - 2)~2s~2~£, e = 2/(« - 2), So = I and s» = a2"" . For

« = 2, set
s = -logr   and   w(s) = u(r),

then equations (2.1), (2.2) can also be written as (2.3), (2.4) with p(s) = e~2s,

so = 0 and s- = - loga .
It is easy to check that solution w of (2.3) also satisfies the following integral

equation

(2.5) w(s) = w(s) + w'(s)(s -s)+  _(t- s)p(t)f(w(t)) dt

for s, s & (so, Sx).

We first study radial solutions ua when a is close to 1.
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Proposition 2.1. If ua is a solution of (2.1) and (2.2), then we have

(i)   ||"a||oo —> °°   OS  a -* 1~ ,

(ii) /n |Vwa|2 ->oo as a-» 1".

Proof. Let w(s, a) be the solution of the following initial value problem

(2.6) w"(s) + P(s)f(w(s)) = 0,       s>s0,

(2.7) w(so) = 0   and   tu'(so) = a > 0.

Set Sx (a) = sup{s: w(s, a) > 0 in (so, s)} , we claim that if s-(a/) -> So as

/ —> oo, then Qj: -» oo . We first prove that for any s» > so, there exists <5 > 0

such that for any a e (0, 6),

(2.8) w(s,a)>0   in(s0,sx].

In fact, if w(s, a) > 0 in (so,s»), by (2.5), we have w(s,a) < as~x for

5 e [in, sx ]. Now, w satisfies

w"(s) + p(s)^^-w(s) = 0.
w(s)

By (H-l) and the Sturm Comparison Theorem, (2.8) follows.

Next, we show that for any 0 < m < M,

(2.9) inf{sx(a):a£[m,M]}>s0.

If (2.9) were false, then there would be a sequence {a,} c [m, M] such that

ctj -> a0 > 0 and Si(oy) —> Si(ao) = So, a contradiction. This proves (2.9).

Therefore, if Sx(otj) —> so as / —> oo, then a7 —» oo .

For large a, let r(a) € (so, Sx) suchthat w(x(a), a) = \\w(-, a)||oo. Then by

the same argument as in Lemma 2.1 of [11], we have lima_00 if;(T(a), a) = oo .

This proves (i).

(ii) Let x(a) € (a, 1) such that ||wa(*)lloo = ua(x(a)). Then

rx(a) (   rx(a) ) 1/2

ua(x(a))= u'(s)ds<(x(a)-a)x'2i u'(r)2dr\

<(x(a)-a)x'2a^/2co-i/2i[^ |VMû|2}'/2 ,

where 0)n is the area of unit sphere S"~x . Hence, (ii) follows.

This completes the proof.

Next, we shall study radial solutions ua when a is close to 0. Let ua =

u(-,a) be the solution of (2.1), (2.2) with a = a(a) e (0, 1), and

(2.10) u'(l,a) = -a<0.

It is easy to check that there exists a unique x(a) G (a(a), 1) suchthat u(x(a), a)

= \\u(-, a)Hoc . For such ua , define

,..n - t \     -/       ^     I u(r,a) if r € [t(q) , 1],
2.11 ua(r) = u(r, a) = i

[ u(x(a), a)    if re [0, x(a)].
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Note that uq is a positive radial solution of (1.1), (1.2) on the unit ball F20 if

it satisfies

(2.12) u"(r) + lzlu'(r) + f(u(r)) = 0,        re (0,1),

(2.13) m'(0) = 0 = k(1).

Proposition 2.2. Assume

(i) «o = «(•, a0) is a positive radial solution on the unit ball,

(ii) there is ö > 0 such that for any a e(a0, ao + S) (or (a0-ô, a0)), ua =

u(-, a) is a positive radial solution on the annulus with a = a(a) e (0, 1) such

that

(2.14) l|"a||oo< M <00.

Then, ua converges uniformly to Uo on [0, 1] as a —> ao»

Proof. Let x(a) e (a(a), 1) such that u(x(a), a) = \\ua\\oo ■ We first prove that

(2.15) limT(a) = 0.
a—»«0

If (2.15) were false, there would be a sequence a, —> ao and x(ctj) --> To > 0.

Since u'(x(cxj), a;) = 0, by the continuous dependence of o.d.e.'s, we have

m'(to , ao) = 0. Since u(-, ao) is a solution on ball, by the result of Gidas,

Ni and Nirenberg [6], u (r, a0) < 0 on (0, 1), a contradiction. This proves

(2.15).
Denote

(2.16) F(u)= /" f(s)ds
Jo

and define

(2.17) V(r) = V(r,a) = \u'2(r) + F(u(r)).

Since

K'(r) = -—l-u'2(r)<0,

by (2.14), we have

(2.18) \u'2(r, a) < F(u(x(a), a)) < Mx < oo

for all r e [x(a), I], where Afi  is a constant.  Therefore, (2.11) and (2.18)

imply that

K(r)|<(2M,)'/2   on [0,1].

Hence, by the Ascoli-Arzela Theorem, there exists a ü e C([0, 1]) such that

ua —> it uniformly on [0, 1] as a —> ao . On the other hand, by (2.15), for any

r e (0, 1), we have u(r, a) —> wo(r) as a -t ao. Hence, ü = Uo on [0, 1].

The proof is complete.

It is not clear whether or not (2.14) always holds in Proposition 2.2. Here,

we give some sufficient conditions which imply (2.14).
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Proposition 2.3. If
(i) « > 3 and there exists ô > 0 such that

(2.19) JL-f(u)>f(u)u>(\+ô)f(u)   foru>0,

or

(Ü)

(2.20) f(u) = up,   I <p <(n + 2)l(n-2),  if«>3 and p is finite if« = 2,

i«<?« there exists ao> 0 such that u(-, ao) is the unique solution on the ball and

for any a e (ao, oo), u(-, a) is the unique solution on the annulus (a(a), 1).

Moreover, there exists M < oo, such that for any a e (ao, ao + 1 ), (2.14) holds.

Proof. By Theorems 1.2 and 1.4 of Ni and Nussbaum [17], we have the first

part of the theorem. By Theorem 6.6 of Bandle et al. [1], there exists a unique

positive radial solution for (2.1) with the boundary condition u'(a) = 0 = u(l).

Finally, by Theorems VII and IX of Nehari [14], (2.14) holds.
The proof is complete.

Remark 2.4. In [2], Bandle and Peletier proved that if f(u) = M("+2)/(«-2), then

IIWallt» -» °o as a-»0+.

3. Linearized eigenvalue problems

To study the existence of nonradial solutions using bifurcation method, we

need to investigate the linearized eigenvalue problem of (1.1), (1.2) at positive

radial solutions ua :

(3.1) Av + f'(ua)v = -pv   inQa,

(3.2) v = 0   on dQa ■

In spherical coordinates, (3.1), (3.2) are reduced to

(3 3) <P"(r) + ^V(F) + {f'(ua) - ^} <p(r)

= -Pk,i(ua)<P(r),        a<r<l,

(3.4) y{a) = 0 = q>(l),

where ak = k(k + n - 2), k and / are positive integers. Note that ak are the

eigenvalues of Laplacian -A on S"~x , the unit sphere, and the dimension of

the eigenspace Snk of associated eigenfunctions is

. fk + n-2\n + 2k-2
"•*     V      k      ) n + k-2 '

Let x = (jci,... ,x„_i). A function v defined on 5"_1 or Cla is called

0(n - l)-invariant if v(Tx, x„) = v(x, xn) for all F e 0(n - 1). Then, for

any positive integer k, the dimension of Vnk = {v e S„yk\v is 0(n - 1)-

invariant} is one, for details see [19].
We first prove that if / satisfies (H-2), then for any positive integer k,

Pk i(Wa) < 0 when a is close to 1.
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Lemma 3.1. //(H-0) ~ (H-2) are satisfied. Then, for any k > 1, we have

(3.5) lim pkx (a) = -oo.
a—>l~

Proof. It is well known that pk x can be characterized as

(3.6) Mfc.i(«a)= inf Qk(ip)/I2(<p)
iyexa

where

(3.7) Qk(¥)^Qk,a(¥) = J r»-x{ip'2-f'(ua)ip2 + ^y,2}dr,

(3.8) I2(ip) = I2ya(w)= [ r"-xW2dr,
Ja

and Xa = Hx((a,l)).

If ua is a positive radial solution of (1.1), (1.2), then

(3.9) /    |V«a|2 =   /    Uaf(Ua).
Jila Jaa

By (H-2), there exist e > 0 and Af > 0 such that

(3.10) f'(u)u>(l+e)f(u)   foru>M.

By (3.9), (3.10) and Proposition 2.1, we have

o)nQk(ua) = con      rn~x lu12 - f(ua)u\ + %u2a\ dr
Ja l '

= /  {uaf(ua) - f'(ua)u2a} + ak /   u2ar~2
Jaa Jq„

< -e /   Uaf(Ua) + ak      u2ar-2 + /       uaf(ua) - f'(ua)u2a
Jila Jila Jua<M

<-e /   \Vua\2 + aka~2      u2a + M\,
Jaa Jiia

for some constant Mx > 0.
Let ux (a) be the least eigenvalue of -A on Cla with the Dirichlet boundary

condition. Then, it is easy to check that

(3.11) lim vx(a) = oo.
«—»l-

Using the Poincaré inequality

(3.12) /   \Vv\2>vx(a) [ v2
JSla JCla

for all v e H0x(Çla), we obtain

o)nQk(Ua) < {-e + aka-2v-x(a)} [  |V«a|2 + Af,.
Ja„

Therefore, by using (3.11) and (3.12) again, (3.5) follows.
The proof is complete.

Next, we prove that if annulus solutions ua tend to a solution uo on the

ball, in the sense of Proposition 2.2, then w» yX(ua) > 0 as a approaches 0.
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Lemma 3.2. Under the hypotheses of Proposition 2.2. Then for any positive inte-

ger k,

(3.13) lim pkyX(ua) = pkyX(u0) >0.
a—»ao

Proof. We first prove that pXyX(u0) > 0. Since u0(r) satisfies (2.12), (2.13)
with u'0(r) < 0 in (0, 1), then v   (= -u'0) satisfies

(3.14) v''(r) + rLzlv'(r) + lf'(uo)-t^-^v = 0   in (0,1),

(3.15) w(0) = 0   and   v >0in(0, 1).

Therefore, by using the Sturm Comparison Theorem, we have ßx,x(uo) > 0.

Hence, pkyX(uo) > 0 for any positive integer k .

Next, we shall divide the proof of (3.13) into two parts:

(i) limsupa_Q0pkyx(ua)<Pk,\{uo),

(ii) liminfQ^Q0Pk,\(ua)>pkyx(w0) »

(i) Let y/o > 0 be the eigenfunction associated with pkyx(uo), i.e., Qkyo(Wo)

= ßk,i(¥o) with the normalization I2yo(Vo) = I • Define ipa: (a, 1) —> Rx , by

Va{r) = y/0((r-a)/(l - a)), where a = a(a) e (0, 1).

Then

Qk.aiVa) = f rn~x {K2 - f\ua)vl + ytvl) dr

= Qi(a) + Q2(a) + Qi(a),

where

Qx(a)= í {(l-a)-2ipl2{t)-fl(uo)v¡(t)
Jo

+ ak[a + (l- a)t]-2ip¡(t)}[a + (1 - a)t]"-x(l -a)dt,

Ô2(«) = I r»-l{f(uo)-f'(üa)}rí (j^) dr>

and

ß3(a) = I'" rn-x{f(üa)-f'(ua)}xpl(j^j dr.

By Proposition 2.2 and (2.15), for any e>0,wehave Qkya(y/a) < pkyX(uo) + e

when a is sufficiently close to ao .

This proves (i).

(ii) Let ipa be the eigenfunction associated with pkyX(ua) and I2ya(ipa) - I ■

Define

¥a{r)~\0 ifre[0,fl].

Then

QkMWa) = [ r"~x {K2 - f(uoWl + ^¥Í] dr

= [r"-x{K2-f'(ua)^a + ^¥2}dr

+ ! r"-x{f'(ua)-f'(uo)}92dr
Ja

= Pk,\(ua) + 04(a) + »25(a),
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where

and

04(a) = í    rn-x{f'(ua)-f(uo)}v2adr
Jx(a)

ß5(a) = r{a)r"-x{f'(ua)-f'(uo)}ip2dr.
Ja(a)

We claim that

rx(a)

(3.16) lim / ° r"-xip2(r)dr = 0.
a^Q° Ja(a)

Since  ua  are uniformly bounded, it is easy to check that pkyX(ua)  are

bounded, say,

(3.17) \Pk,l(Ua)\<Cx,

for some constant Q > 0. Therefore, by (3.6), (3.7), and (3.17), we obtain

In |Vi^Q|2 < C2, for some constant C2 > 0. By the Sobolev Imbedding The-

orem, we have /n \pl"l(n~2) < C3 for some constant C3 > 0. Finally, by the

Holder inequality, we have

rx ( fx       -, 2ln ( rT 1 ("_2)/"

J   rn~Xml < [J  r"-l\     |jf   ^/(-2)| < C4r(a)2

for some constant C4 > 0. This proves (3.16). By (3.16) and Proposition 2.2,

we have

lim Q4(a) = 0   and     lim Q5(a) = 0.
a—»a0 a^a0

This proves (ii), and the proof is complete.

Definition 3.3. Let ua , a e (0, 1), be a family of positive radial solutions of

(1.1) and (1.2). ua is called smooth in a if ua is continuous in a with respect

to the L°° norm.

Definition 3.4. A smooth family of positive radial solutions ua is said to con-

verge to a positive radial solution w0 on unit ball if ua converges uniformly to

«o on [0, 1] as a —» 0+ , where ua is as in (2.11).

Theorem 3.5. Assume (H-0) ~ (H-2) are satisfied. Let ua, a & (0,1), be a

smooth family of positive radial solutions of (I.I) and (1.2) which converges to

a positive radial solution Uo on the unit ball as a —» 0+ . Then, for any k > I,

there exists ake(0, 1) such that

(3.18) «*,i(waJ = 0.

Proof. The result follows from Lemmas 3.1 and 3.2 and the continuous depen-

dence of eigenvalue pkx on ua.

Theorem 3.6. If f satisfies (2.19) or (2.20), then for any k > I, there exists

ak e (0, 1) such that pkyX(uak) = 0. Moreover, we have

(3.19) pkyl(uak)>0

for all integers I > 2 .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



784 SONG-SUN LIN

Proof. By Proposition 2.3 and Theorem 3.5, we obtain the first part of the

results. Since the unique radial solutions ua , a e (0, 1), can be obtained by a

Nehari-type variational method. By Lemma 6.3 of Bandle et al. [1],

(3.20) P0,l(Ua)>0

for all integers / > 2. Hence (3.19) follows from (3.20).
The proof is complete.

For supercritical case, we have the following result.

Theorem 3.7. Assume (H-0) ~ (H-2) are satisfied. Let ua, a e (ô, 1) and 6 >

0, be a smooth family of positive radial solutions of (1.1) and (1.2). Then, for

sufficiently large k, there exists ak e (â, 1) such that pkl(uak) = 0.

Proof. For a fixed a e (ô, 1 ), there exists ko > 1 such that for any k > ko , we

have ctk/r2 > f'(ua) on [a, 1]. Hence, pkyx(ua) > 0 for k > ko. Therefore,

the result follows from Lemma 3.1.

The proof is complete.

4. McLeod-Serrin identity

In this section we shall use the McLeod-Serrin identity [ 13] to study pkx = 0.
We first recall the identity and let u and y/ satisfy

(4.1) u" + -^—-V + f(u) = 0

and

(4.2) l//» + !lZ±¥> + g(r)y, = ri}

respectively. Let

Y = ra~b\p, Z = {ra(u-c)}', W = YZ' - ZY1

and D = (rmw)', where m = « - 1 - 2a + 2/3 and a, b and c are constants,

then

= {(b-l)(b + n-3) + r2[g(r) - f'(u)]}Z
rm-2Y

(4.3) +2ra(b- l)(a-n + 2)u'

+ ara+x^(u-c)f'(u)-[l + 2^jf(u)Y

If we choose c = 0 and g(r) = f'(u) - a/r2 , then (4.3) can be written as

(4.4) (rmW)' = {Ar"-*+bu + Brn~Mu' + rn~2+bC(u)}y/,

where

(4.5) A = a{(b-l)(b + n-3)-a},

(4.6) B = (b - l)(b + « - 3) - a + 2(6 - l)(a - « + 2),

(4.7) C(u) = auf'(u)-(a + 2b)f(u)

and

rmW = a(b - l)r"-3+buy/ + (a + b+l- n)r"-2+bu'y/

- arn~2+buip' - r"-x+bu'y/' - r"-x+bf(u)y/.
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Furthermore, if we choose a and b such that B = 0, i.e.,

(4.9) (b - l)(b + « - 3) - a + 2(b - l)(a - « + 2) = 0,

and assume that u and \p satisfy

(4.10) u(R) = 0 = u(l)   and   \p(R) = 0= \p(l),

where R e (0, 1). Then, by integrating (4.4) from R to 1, we have

Rn~l+bu'(R)yf'iR)-A í r"-4+buip- [ rn-2+bC(u)y/

V4-11) JR Jr

= u'(l)¥'(l).

By choosing appropriate a and b, we can now prove the following result

for supercritical /.

Theorem 4.1. Assume f satisfies

(H-4) uf'(u)>^~f(u)   foru>0.

If Ur is a solution of (2.1 ) and (2.2) with a = R, then pxy ■ (ur) ^ 0.

Proof. Suppose Px,x(ur) = 0. Let y/ be an associated eigenfunction with
i// > 0 in (R, 1). Since a = a» = « - 1, it is easy to check that a (= 0) and b

(= 0) satisfy (4.9) and thus A = 0 and C(u) = 0. Therefore, (4.11) becomes

(4.12) Rn-xu'(R)ip'(R) = u'(l)y/'(l).

On the other hand, a (= « - 2) and b (= 2) satisfy (4.9) too. For these

choices, we have A = 0 and C(u) = (« - 2)uf'(u) - (n + 2)f(u). Therefore,

(4.11) becomes

(4.13) Rn+lu'(R)ip'(R) - J /•"{(« - 2)uf'(u) - (« + 2)f(u)}ip

= u'(l)w'H).

Therefore, if / satisfies (H-4), then (4.12) and (4.13) lead to a contradiction.

The proof is complete.

Corollary 4.2. For « > 3 and p > (« + 2)/(« - 2), let ur be the unique positive

radial solution of

(4.14) u" +r^-u' + up = 0   in(R,l),

(4.15) u(R) = 0 = u(l).

Then Px,\(ur) < 0 and pky¡(uR) > 0 for k > 1 and / > 2.

Proof. By Theorem 4.1,  pXyX(uR) ̂ 0.   By Lemma 3.1,  Px,\(ur) < 0 for
R close to 1.  Hence pXyX(uR) < 0 for all R e (0, 1).  By (3.20), we have

Wa:,/(wr) > 0 for all k>\ and / > 2.
The proof is complete.

Also the McLeod-Serrin identity has to do with pk x ̂  0 for k > 2. As an

example, we prove the following results.
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Theorem 4.3. For « > 3 and p > I + 2(k + l)/(« - 2), let Ur be the solution

of (4.14) and (4.15). Then pkx(uR)<0 if

(4.16) R>R(k,p,n) = {2(k - l)/[(« - 2)(p - 1) - 2(/c+ l)]}1'2* .

Proof. For any fixed a, in equation (4.9), a can be solved in terms of b ; in
fact,

(4.17) a=n-^ + ^-Y),    ftri/1.

Let a = ak = k(k + « - 2). Then

^ = -2{o - (/c + l)}{/3 + (k + n - 3)}{/3 -(n + k- l)}{/3 + /c - l}/(¿> - 1)

and
C(u) = cup,    where c = a(p - I) -2b.

Choosing bx = -(k- 1) and b2 = (k+ 1), we have Ax= A2 = 0, cx= 2(k- 1)
and c2 = (n-2)(p- l)-2(k+l). By (4.10) and (4.11), we have

R"-ku'(R)ip'(R)-cx [ r"-k-xupy/
Jr

= Rn+ku'(R)ip'(R)-c2 [ rn+k'xupip,

Jr
which implies

cx í r"-k-xupip>c2 [ rn+k-xupip.
Jr Jr

Therefore, if for any r e [R, 1]

(4.18) cxrn-k < c2rn+k ,

then (4.10) does not hold, i.e., pkyx(uR) / 0.   Finally, (4.16) follows from
(4.18) by a straightforward computation.

The proof is complete.

Remark 4.4. For a fixed k > 2, R(k, p, n) —» 0 as p —> oc. Therefore, it
is of interest to know whether or not there exists a finite p*(k, n) > 0 such

that pk x(uR) < 0 for all R e (0, 1) if p > p*(k, n). Note that p*(l, «) =

(« + 2)/(«-2).

5. Symmetry breaking

In this section, we shall study the problem of nonradial bifurcation (symmetry

breaking) of (1.1) and (1.2) at a positive radial solution ua with pkl(ua) = 0,
where k > 1.

To begin with, we shall take a as a bifurcation parameter, (i.e., we vary

domains). As for handling these problems we shall work in the Lagrangian

formulation and then in the Eulerian formulation for computational purpose

(see, e.g., Henry [7]).
We begin with the Lagrangian formulation. Fix a constant c e (0, 1) and

denote Q, = Qf.  Then for any t e (0, 1), Q, = h,(Q), where in spherical

coordinates, h, is given by

(5.1)

ht(r,0x,...,en-x)= (l + ^j(r-l),0,,...,0B_i) ,        r e (c, 1).
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The pull back ft; : Cm(Qt) -» Cm(Q) is defined by

(5.2) w(y,t) = (h;u)(y) = u(ht(y)),        ye a.

Then, equations (1.1), (1.2) on Q. can be rewritten as

(5.3) Ltw + f(w) = 0,    inQ,

(5.4) w = 0,    ondQ,

where Lt = h*A(h*)~x . Moreover, (5.3) and (5.4) are equivalent to the nonlin-

ear operator equation

(5.5) w(.,t)-<S>t(w(-,t))=0

on CX+S(Q) x (0, 1), where the nonlinear operator <P,: C01+<5(Q) x (0, 1) ->

C0x+S(ñ) is given by

(5.6) Qt{w) = 4>(w,t) = (-Ll)-xf(w),

ô e (0, 1) is a constant.

Since O, is a compact operator on C01+<5(Q) x [a, b], [a, b] c (0, 1), the
method of degree theory can be applied to equation (5.5).

On the other hand, in the Eulerian formulation, let u(x, t) be a positive so-

lution of (1.1), (1.2) on Q., which is smooth in t. Let v(x, t) = du(x, t)/dt.

Then v satisfies the following linearized equations of (1.1) and (1.2) at u :

(5.7) Av(x,t) + f'(u(x,t))v(x,t) = 0,    inQ.,

(5.8) v(x,t) + V(x,t)-Vu(x,t) = 0,    on dQ(,

where in spherical coordinates,

(5.9) F(X)i)=^j£L_l50,...,o) .

If u(x, t) = u(\x\, t) is a positive radial solution of (1.1) and (1.2), let v(x, t)

= 9(r, t)y/(9x, ... , 6„-X). Then (5.7) and (5.8) are reduced to

9"(r, t) + -^V(r, t) + [f'(u) - ^} 9(r, t)

= -Pk,i<P(r, t),        re(t, 1),

9(t,t) = 0 = 9(l,t),

for k > 0 and / > 1. These equations have been studied in previous sections.

We need the following terminology:

Definition 5.1. Let ut, t e (ao, bo) c (0, 1), be a smooth family of positive
radial solutions of (1.1) and (1.2). a e (0, 1) is called a nonradial bifurcation

point (with respect to ut) if every neighborhood of (ua, a) in C01+<5(Q)x(0, 1)

contains a nonradial positive solution of (1.1) and (1.2). If a is a bifurcation

point and pky x(ua) = 0, k > 1, then a is called a nonradial bifurcation point

with mode k. Similarly, [a, b] c (ao, bo) is called a nonradial bifurcation

interval if every neighborhood of {(ut, t), t e [a, b]} in C01+<5(f2) x (0, 1)
contains a nonradial positive solution of (1.1) and (1.2). In both cases, we say

that ut has a nonradial bifurcation (or symmetry breaking) on (0, 1).

We shall restrict (5.5) on the 0(n - 1)-invariant subspace {w e C01+7(Q) x

(0, 1): w is 0(n - l)-invariant}, see the end of the first paragraph of §3. The
following result is a variant of bifurcation theorems of Krasnosel'ski [9] or

Rabinowitz [18], which was proved essentially in Lin [12]. The proof is omitted.
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Theorem 5.2. Let ut be the family of positive radial solutions 0/(1.1) and (1.2)

which are smooth in t e (ao, bo) C (0, 1).

If a e (ao, bo) and there exist e > 0 and k > 1 such that

(i) pkyX(ua) = 0 and Pk,\{Ut)Pk,\{ut') < 0 for t e (a -e, a) and t' e
(a,a + e),

(ii) pky2(t) > 0 for t e (a-e, a + e), then a is a nonradial bifurcation point

with mode k.
Similarly, if(i) and (ii) are replaced by

(i)' pk x(ut) = 0 on [a, b] and pkyx(ut) ■ pk, 1 («/' ) < 0 for t e (a - e, a)
and t' e(b, b + e),

(ii)' /•**:,2(0 > 0 for t € (a-e, b + e), then [a, b] is a nonradial bifurcation
interval.

Theorem 5.3. // / satisfies (2.19) or (2.20), then for any k > 1, the radial
solution ua has a nonradial bifurcation with mode k on (0,1). If f(u) = up

with p > (n + 2)/(« - 2), then there exists k*(p) > 1, such that for any k >

k*(p), ua has a nonradial bifurcation with mode k on (0, 1).

Proof. The results follow from Theorems 3.6, 3.7 and 5.2.

6. Variational method

In this section, we shall use the Nehari-type variational method to study the

existence of positive nonradial solution of (1.1), (1.2).

Consider the functional

(6.1) J(v)= I   hw\2-F(v)
Jaa ¿

and

(6.2) I(v)= [   \Vv\2-vf(v)
Jaa

on H0X(Q.), where F(v) = JQV f(t) dt. Let

(6.3) M = {v€Hx(Qa):I(v) = 0},

(6.4) AL = {v e M: v is radial}.

Let ua be a positive radial solution of (1.1) and (1.2) which is unstable with

respect to nonradial mode, i.e., the following conditions hold:

(U) there are eigenvalues px < p2 < 0 and eigenfunctions vx = vx(r) > 0

and v2 = 9(r)\p(6x, ... , 6„-X) with 9(r) > 0 in (a, I) and y/ ̂  0 such that

(6.5) Avx +f'(ua)vx = -pxvx    inCla,

(6.6) ^1 = 0   on dCla,

and

(6.7) Av2 + f'(ua)v2 = -p2v2   in Qa,

(6.8) v2 = 0   on dna ■

We first prove the following lemmas which generalize the results of Bandle

et al. [1].
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Lemma 6.1. Assume f satisfies (H-0), (H-l) and

(H-2)" there is x > 0 such that uf'(ü) > ( 1 + x)f(u) for allu>0.

Let ua be a positive radial solution of (I.I) and ( 1.2) and satisfy (U). Then there

exist an e > 0 and a smooth function 5: (-e, e) —> E1 with 6(0) = S'(0) = 0

such that for any t e (-e, e),

(6.9) /(Mfl-(-(J(0wi+rt;2) = 0.

Proof. Define the function H(S, t) : R2 -> R1 by H(ô, t) = I(ua + ôvx + tv2).
Then, it is easy to verify that

H(S , 0) = ô [   {f(Ua) - f'(Ua)ua}Vx + 0(ô2)
Jaa

as ô ~ 0. Hence,

(6.10) 7nr(°'°)=   /   {f(Ua)-f'(Ua)ua}Vx<0.

By the implicit function theorem, there exist e > 0 and a smooth function

a: (-e, e) -> Rx with -3(0) = 0 such that (6.9) holds. To show ¿'(0) = 0, we
note that

,s .,n dH/c., .     .dô     dH... .    .     -
(6.11) —m,t)lï + —(ô(t),t) = 0,

and as t ~ 0, we have

H(0,t) = I(ua + tV2)

= i   |VMû|2-t-2iVMû-Vv2 + /2|Vw2|2

- (Ua + tV2) ¡f(ua) + f'(ua)tV2 + \f"(ua)t2V2J + 0(i3)

= t /    2Vtta • VV2 - {/(Wfl) + Uaf'(Ua)}v2
JOa

+ t2   I    |Vî72|2 - f(Ua)v2 - \f"(Ua)UaV2 + 0(t3)

= t2 [  p2v¡-^f"(ua)uav¡ + 0(t'),

here,

(6.12) [     y/(8x,...,en-x) = 0
Js"-1

has been used repeatedly. Therefore, dH(0, 0)/dt = 0. By (6.11), we have
<5'(0) = 0.

The proof is complete.

Lemma 6.2. Assume (H-0), (H-l) and (H-2)" are satisfied. Let ua be a positive

radial solution o/(l.l) and (1.2) and satisfy (U). Then

(6.13) J(ua + S(t)vx + tv2) = J(ua) + \p2t2 + 0(tA)
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as r —> 0. In particular, J(ua) is not the infimum of J over M.

Proof. After some calculations, we have

J(ua + ö(t)vx + tv2) - J(ua)

= \pxô2(t) í  v2 + \p2t2 Í  v2 + 0(t4),
1 Jaa l       Jo.a

here (6.12) are used. Since ô(0) = ô'(0) = 0, (6.13) follows.
The proof is complete.

Now, we can prove the following theorem.

Theorem 6.3. Assume (H-0), (H-l), (H-2)" and (H-3) are satisfied. Then there
exists an a* e (0, 1) such that for any a e (a*, 1), (1.1) and (1.2) have a
nonradial solution.

Proof. We note that (H-2)" implies Af] = 0 in the proof of Lemma 3.1. There-

fore, by Lemma 3.1, there exists an a* e (0, 1) such that px,i(ua) < 0 for

any positive radial solution ua of (1.1) and (1.2) with a e (a*, 1). Hence, by

Lemma 6.2, we have J(ua) > j(a) = infv€MJ(v)» Since jia) is achieved by

some ua £ M and ua is a positive solution of (1.1) and (1.2), (see, e.g., Ni

[16]). Therefore, ua is nonradial.

The proof is complete.
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