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Abstract: In this paper the design of VLSI arrays 
for discrete Fourier transform (DFT) is investigated 
through three topics: (i) algorithm exploitation, 
derivation and analysis, (ii) array realisation, and 
(iii) schemes to calculate arbitrarily long length 
DFT using a reasonable sized array. Four DFT 
systolic algorithms are examined and compared in 
terms of computing parallelism and computa- 
tional complexity. Among the four algorithms, 
one is newly proposed. The new one exhibits 
much higher computing parallelism and lower 
computational complexity than the other three, 
but is applicable when the DFT length is prime. 
Based on the four algorithms, seven systolic arrays 
and seven two-level pipelined systolic arrays are 
devised. The outstanding features of these arrays 
are that the number of 1/0 channels is indepen- 
dent of the DFT length and the time overhead in 
manipulating consecutive data bundles are elimi- 
nated. Two schemes are presented to calculate 
long-length DFT using arrays with a reasonable 
number of processing elements. Performance of 
different algorithms, arrays and schemes is com- 
pared and summarised in six tables to serve as the 
selection criteria for different applications. 

1 Introduction 

Evolution in VLSI technology has propelled a review for 
the criteria of evaluating digital processing algorithms. 
The efficiency of an algorithm to be implemented by 
VLSI is based more on the degree of the communication 
complexity required between arithmetic elements rather 
than on the number of computations. Hence, the fact 
having been observed by many researchers [l-51 is that 
FFT (fast Fourier transform)-like algorithms that have 
been used extensively for their low numbers of multipli- 
cations are not well suited for VLSI implementation. 

Systolic arrays [ I ,  21 can meet the increasing demands 
of processing speed and are suitable for VLSI implemen- 
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tation. Their attributes of parallel and pipeline processing 
are means to attain high computing power while struc- 
tural regularity, modularity, and local interconnections 
give the feasibility of VLSI implementation. We refer to 
the paper in Reference 3 for the motivation of DFT 
systolic arrays over other architectures. Since systolic 
arrays designate one processing element (PE) as one pipe- 
line stage, the computing parallelism can be obtained 
from the multiple PES in an array. In the existing systolic 
arrays for DFT [2, 3, 6, 71, a PE should perform one 
complex multiplication and one complex addition. To 
implement such complicated arithmetic with VLSI hard- 
ware, the pipelined architecture for the arithmetic units 
(AUs) in interior PES can attain higher computing paral- 
lelism. Two-level pipelined systolic arrays were presented 
with the idea of assigning pipeline stages into the AUs 
[8]. As a result, two-level pipelined systolic arrays can 
attain parallelism from the pipeline stages of AUs in an 
array and offer higher throughput and less computation 
time than systolic arrays. In this paper, the design of 
systolic arrays and two-level pipelined systolic arrays for 
DFT is investigated through algorithm derivation and 
analysis, VLSI array design, and schemes to calculate 
long-length DFT. 

Since not every computing algorithm is suitable for 
VLSI array realisation, the exploitation and derivation of 
algorithms for VLSI arrays are persistently engaged. In 
the literature, there were three DFT algorithms [2, 3, 61 
proposed for systolic array realisation [2, 3, 6, 71. Also 
these algorithms were applied to calculate the ‘discrete 
cosine transform’ and ‘discrete sine transform’ [9, lo]. 
Although these algorithms offer about the same compu- 
tation time and hardware cost when realised with systolic 
arrays, they should meet another review in computing 
parallelism when realised with two-level pipelined systolic 
arrays. In other words, these algorithms should face 
parallelism examination in AU level despite that their 
parallelisms in PE level are equivalent. In Section 2 we 
review the three systolic algorithms and propose a new 
one which especially suits for the realisation of two-level 
pipeline systolic array. The computing parallelism and 
computational complexity of these four algorithms are 
examined, showing that the new one exhibits much 
higher computing parallelism and lower computational 
complexity than the other three, but is applicable when 
the DFT length is prime. The performance of the four 
algorithms is summarised in Table 1. 

The efficient design of a VLSI array for an algorithm 
should consider the parallelism in an algorithm and the 
required performance in different applications. In the lit- 
erature there are systematical design procedures to design 
systolic arrays and two-level pipelined systolic arrays 
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from a systolic algorithm [I 1-21]. However, these 
methods do not have proper considerations in the 
reduction of 1 /0  channels and 1 /0  bandwidth, and in 
how to initialise arrays through limited input channels or 
pump results stored in PES to output channels. These 
kind of problems affect the pipelining ability to arrays 
and degrade the associated performance. Such problems 
are defined as I/O problems in this paper. If the existing 
systolic arrays [2, 3, 6, 71 for the DFT are examined, they 
can be obtained by directly applying these systematical 
methods and have left the 1/0 problems unsolved. In 
Section 2, we show that the four systolic algorithms 
require a low number of input operands. This gives rise 
to the potential of solving the 1/0 problems. The arrays 
presented in this paper solve the I/O problems by adopt- 
ing the scheme called tag control [22]. This scheme pro- 
vides IjO channels with the controllability over the 
contents of the local registers in each PE and solves the 
1 /0  problems efficiently. In Section 3, seven systolic 
arrays and seven two-level pipelined systolic arrays are 
devised. The outstanding features of these arrays are that 
the numbers of 1 /0  channels are independent of the DFT 
length, and the time overhead in manipulating consecu- 
tive data bundles is eliminated. These arrays are exam- 
ined with various performance parameters and 
summarised in Tables 2-4. These tables provide a selec- 
tion criteria for the feasible arrays in different applica- 
tions. These tables also show that two-level pipelined 
systolic arrays have much better performance in the 
latency time, the throughput rate, and the average com- 
putation time than the corresponding systolic arrays. 

The numbers of PES in the VLSI arrays designed in 
Section 3 are proportional to the DFT length. When the 
DFT length is long, schemes to compute DFT by arrays 
with a reasonable number of PES should be applied. The 
realization of the maximum parallelism with multiple 
PES is one attribute to VLSI arrays. This attribute plus 
the features of local interconnection and simple control 
render the preference of DFT systolic algorithm over 
FFT algorithm. However, the maximum parallelism 
cannot be attained when the DFT length is too long for 
VLSI implementation. Under the circumstance, the cal- 
culation should be a combination of the parallel compu- 
tations within the capability of small-size arrays and the 
serial computations fitting for long-length DFT. From 
the development of FFT-like algorithms [23-261, the 
required number of multiplications and additions can be 
reduced through serial computations. Hence, the increase 
of computing power through the parallel computations of 
VLSI arrays and the reduction of computational com- 
plexity through serial computations should be a prom- 
ising approach to implement long-length DFT in VLSI 
circuits. In Section 4, two schemes based on this approach 
are presented to calculate long-length DFT with small- 
size arrays. 

2 Four systolic DFT algori thms 

The N-point DFT of an input sequence x(O), x(l), 
x ( N  - 1) is defined as 

N- 1 

y(k)  = ,I x(i)Wik for k = 0, 1, _ _ _ ,  N - 1 
z=O 
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where W = exp (-j2n/N). Eqn. 1 can be represented by 
the matrix-vector multiplication form as 

If the matrix-vector multiplication is directly realised by 
linear systolic arrays, each PE should have one external 
connection (defined as I/O channel in this paper) to 
receive the twiddle factor W" at each time step. Such an 
array is not good when considering the routing complex- 
ity, the IjO bandwidth, and the pin limitation of a chip 
package. Observing the elements in the matrix of eqn. 2, 
the powers of W increases by a constant factor both 
along a column and a row. In the development of the 
three systolic algorithms in [2, 3, 6, 71, the constant 
increase in the powers is utilised so that the W" can be 
generated in the computing process and only N values of 
W" are applied from the external. The reduction in the 
number of operands Wik provides the potential to design 
VLSI arrays with low 1 /0  bandwidth and a low number 
of 1 /0  channels. In Section 2.1, another systolic algo- 
rithm with higher computing parallelism and lower com- 
putational complexity is devised. These four algorithms 
will be represented with graphs, named dependence 
graphs (DGs). DGs are an efficient vehicle to exploit 
computing parallelism and design appropriate arrays as 
was indicated in the systematical design methods for 
systolic arrays [ I l ,  13-17, 191 and two-level pipelined 
systolic arrays [20, 211. In Section 2.2, four DGs are con- 
structed for the four algorithms. The computing parallel- 
ism and computational complexity of these algorithms 
are examined based on these DGs. The results show that 
the proposed algorithm possesses much higher parallel- 
ism and lower complexity than the other three. However, 
the algorithm is applied specifically when the DFT length 
is prime. In Section 3, VLSI arrays are designed based on 
these four algorithms. 

2.1 A new systolic DFT algorithm 
Considering first an example of 5-point DFT, it can be 
represented as 

(3) 

Taking the periodicity property of WN = 1 and permu- 
ting the input and output sequence, eqn. 3 has the form 

1 1 1  

1 w' 
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The matrix in eqn. 4 has the property that the elements 
in the same diagonal line has the same value exclusive the 
1s in the first row and the first column. The phenomenon 
was found by Rader [27], and will be utilised to develop 
a new systolic algorithm here. 

If N is a prime number there exists some number n, 
not necessarily unique, such that there is a one-to-one 
mapping from the integers i  = 1, 2, . . . , N - 1 to the inte- 
gers j = 1, 2, . . . , N - 1 given by 

j = ni modulo N (5) 

where the double parentheses in eqn. 6 denote modulo N 
arithmetic on the indices, that is 

( ( 7 ~ ' ) ) ~  = ni modulo N (6) 

In the following argument, ni denotes the operation 'd 
modulo N' (for short). The fourier transform in eqn. 1 
will be rewritten with i and k as the powers of a primitive 
element n. Because i and k take on the value zero which 
is not a power of ?I, the zero frequency components must 
be treated specially, that is 

(7) 

N -  1 

y(k)  = x(0)  + ,I x(i)Wik fork = 1,  2, _.., N - 1 (8) 
, = 1  

Replace i and k by n' and nk, eqn. 8 is rewritten as 

based on the required input sequence or two-dimensional 
DFT realisation. The algorithm in Fig. 3 propagates W - '  
instead of the W in Fig. 1 and that in Fig. 2 propagates 

b 

y:-yw+x 
w,-w 

,) x - x  

Fig. 1 
LI Dependence graph 
h Functions ofnodes 

The algorithm in Reference 2 

y'-y+x 
xlcx 

N - 1  

Ank) = x(0)  + 1 x(n')W""L 
' = I  

Set j = N - i. Eqn. 8 then becomes 

(9) 

It can be shown that eqn. 4 is obtained from eqn. 10 by 
setting N = 5 and n = 2. The output vector is [AO), An'), 
y(rr2), ..., y(nN)] and the input vector is [x(O), x (n - ' ) ,  
x ( f 2 ) ,  ..., ~ ( n - ~ ) ] .  Observe that the superscript ik of W 
in eqn. 1 is now (k - j) of W" in eqn. 10. It is the (k - j) 
term that leads to the same value in the same diagonal 
line of the matrix in eqn. 4. To help analyse the algorithm 
in the following subsection, this algorithm is expressed as 
the recursive form as follows 

y(j, k') = y ( j ,  nk) = y(j  - 1, n') + x ( n - j ) ~ * ' - '  (1 1) 

where y ( j ,  nk) indicates the value of (n')th or kth DFT 
sample at the jth recursive iteration. Here, 
l < k < N - 1 ,  l < j < N - 1  and y(O,n')=x(O).  The 
DFT samples are obtained after N - 1 iterations, that is 

(12) y(n') = y(N - 1,  n') 

2.2 The algorithms analysis and comparisons 
Based on the method in [15], the recursive form in eqns. 
1 1  and 12 can be used to construct the DG for the pre- 
sented algorithm in Fig. 4a. In the graph, the nodes rep- 
resent the operations to be executed as described in Figs. 
4b and c. The directed arcs mean the data dependence 
between two nodes; that is, the computed result from one 
node should be sent along an arc for operating in the 
other node. The DGs in Figs. I ,  2, and 3 are constructed 
for the three algorithms in [2, 3, 61. The systolic algo- 
rithm illustrated in Fig. 1 was derived based on the 
Horner's rule [2], and was used to design the arrays in 
References 2 and 7. The algorithms illustrated in Fig. 2 
and Fig. 3 are two other alternatives that were derived 
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y ' t y i - x w  
x'-- x w 

W ' t  w 

Fig. 2 
a Dependence graph 
b Functions of nodes 
c Functions of dark nodes 

The algorifhm in Reference 4 

W' along another direction. The designed arrays in Ref- 
erences 3, 6 and 9 are based on the two algorithms. One 
major distinction between Fig. 4 and others is that the 
two operands of each multiplication in Fig. 4 are 
obtained from transmitted data, instead of the iterated 
results from other operations. It will be shown that the 
distinction leads to the benefits in computational com- 
plexity and computing parallelism. 

0 f Y ( O )  f Y ( l )  fY(2) fY(3) fY(4) 

Fig. 3 
a Dependence graph 
b Functions of nodes 

The algorithm in Reference 3 

b 

Y l  I w  

Y'+(Y+X)W 
w'- w 
x'- x 
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The computational complexity of the algorithms illus- 
trated in References 2, 3, and 6 can be inspected from the 
node operations in the associated DGs. If input data x(i)  
are complex, one complex multiplication in the nodes of 
these DGs can be computed by four real multiplications 
and two real additions typically. The first column in 
Table 1 lists the number of multiplications for these DGs 
when the input data are complex. If input data are real, 

Y:-Y+x 
x-x  

w /  Y l  
yL-  y + X w 
X#- X 
w c w  

Fig. 4 The presented algorithm 
a Dependence graph 
b Functions ofshaded nodes 
c Functions of dark nodes 

one multiplied operand in the node of Fig. 4c is real. 
Hence, one complex multiplication in Fig. 4c can be com- 
puted by two real multiplications. However, both oper- 
ands of the multiplications in the nodes of other DGs are 
still complex numbers despite the input data being real. 
In this case, the number of real multiplications for Fig. 4a 
is 2(N - 1)* and those for Fig. la, Fig. 2a, or Fig. 3a are 
0(4Nz) as illustrated in the second column of Table 1. 

To examine the computing parallelism of systolic algo- 
rithms, a critical computing path is introduced. A critical 
computing path is the longest data flow path from input 
signal to output signal. The required time in such a path 
indicates the minimum required time for the computation 
of a systolic algorithm. In Fig. 4a the data flow path from 
x(0) to y(3) is the critical computing path. If systolic array 
realisation is considered, one PE will be one pipeline 
stage and the time for a signal to traverse a node in the 
DGs is assumed to be a system clock cycle labelled as T.  
The required time in the critical computing path is 
(2N - 2 ) T .  Similar analysis can be applied to Figs. 1-3 
and the required time is listed in the third column of 
Table 1. If two-level pipelined systolic array realisation is 
adopted, the AUs in the PES of array will be implement- 
ed with pipelined architectures and the required time of 
the critical path should be checked from all the AUs in a 

Table 1 : Performance comparison of the 
complex addition and t ,  = consumDtion t i m  

DG. Examining now the dark nodes in Fig. 4c, the oper- 
ator from the input arc, labelled as y, to the output arc, 
labelled as y', is an addition. The operators for the other 
pairs of arcs labelled as x, x' and w, w' are null. This 
indicates that the critical computing path involves 
( N  - 1) complex additions as well as one complex multi- 
plication. This means that the massive multiplications in 
Fig. 4a can be computed in parallel with ( N  - 1) complex 
additions and one complex multiplication. Considering 
the difference between Fig. 4 and Figs. 1-3, the operators 
for the pair of arc y, y' in Figs. l b  and 26 are a multipli- 
cation and an addition, and the operator for the x, x' in 
Fig. 3c is a multiplication. The required time in the criti- 
cal computing paths for the four DGs is listed in the 
fourth column in Table 1 with the assumption that a data 
signal traversing a node should take at least one unit of 
time. Also, the consumption time of a complex multipli- 
cation and an addition of these four algorithms are 
assumed to be equal so that the scrutiny of computing 
parallelism can be isolated from their variances in com- 
putational complexity. One interesting phenomenon is 
that the computing parallelism in Fig. 4 is much higher 
than that in Figs. 1-3 despite their similar functionality. 
From Table 1 it is obvious that the presented algorithm 
possesses higher computing parallelism and lower com- 
putational complexity than the other three but is applic- 
able when N is prime. 

3 VLSI array realisation 

As described in the preceding section, the development of 
the systolic algorithms for the DFT can reduce the 
number of input operands W" when computing the 
DFT. The reduction provides the chances to design the 
VLSI arrays which can attain high computing power, low 
I/O band width, and low numbers of 1 /0  channels. 
However, the systolic arrays in References 2, 3, 6, and 7 
designed from these algorithms have not effectively uti- 
lised this property. As described in Section 1, there are 
systematical methods to design systolic arrays and two- 
level pipelined systolic arrays [l l-213. But these methods 
do not have proper considerations for the 1/0 problems. 
The systolic arrays in References 2, 3,  6, and 7 can be 
designed based on the systematical design methods and 
have left the I/O problems unsolved. In this section, 
seven systolic arrays and seven two-level pipelined systol- 
ic arrays are so devised; that is designed with particular 
attention given to the realisation of the parallelism in the 
algorithm and with care being given to the manipulation 
of 1 /0  problems. The performance of these arrays is sum- 
marised in terms of various parameters in Tables 2-4. 

3.1 Design of systolic arrays for DFT 
The seven systolic arrays shown in Figs. 5-11 are based 
on the four DFT algorithms presented in the preceding 

four DGs ( t .  = consumption t ime for 
e for comdex multidicationl 
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DGs Number of Number of Required time in Required time in 
multiplications multiplications critical computing critical computing 
for complex data for real data path when systolic path when two-level 

array realisation pipelined systolic array 
is considered realisation is considered 

Fig. 1 4(N - l ) N  4~ - 1 ) N  (ZN - z)r 
Fig. 2 4(N - l ) N  4 ( ~  - 1 ) N  (ZN - i ) r  Nf, + (N - l ) f ,  + 1 
Fig. 3 4N2 4N2 ( z N - i ) r  Nf, +Nf ,  + (N - 1 )  
Fig. 4 4(N - 1 ) z  2 ( ~  - 1 ) 2  (ZN - z)r  

(N - l ) f ,  + (N - l ) f ,  + (N - 1 )  

(N - l ) f ,  +f, + (N - 1 )  
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Table 2: Performance comparison of the systolic arrays (T=system clock cycle or the 
consumption time for one PE, L = wordlength, ACT= average computation time. 
N = block length, A, = area of one multiplier, and A, = area of one adder) 

Arrays Area Throughput ACT No. of Latency No. of IJO Feature of 
complexity rate PES time channels l/O sequence 
of PE 
(for real data) 

Fig. 5 4Am+34, 1/T ( N  - l ) T  N - 1 (3N - 4)T 4L + 1 Natural order 
Fig.6 4A,+34, l / T  NT N (4N - 3)T 3L + 1 Input sequence 

are reverse 
Fig. 7 4Am+4A, 1/T NT N (3N - 2)T 3L + 1 Natural order 
Fig. 8 4Am+4A. l / T  NT N (3N - 2)T  3L + 1 Output sequence 

are reverse 
Fig. 9 4A,+3A, 1/T NT N (3N - 2)T  3L + 1 Input sequence 

are reverse 
Fig. 10 4A,+34. 1/T NT N (4N - 3)T 3L + 1 Natural order 
Fig. 1 1  2Am+2A, 1/T ( N - l ) T  N ( 3 N - 4 ) T  6 L + 1  I/O sequence 

are scrambled 

section. These arrays have two distinctive features. First, 
input data, twiddle factors and computed results are 
piped in and drained out from the IjO channels at the 
extreme ends of a linear array. Second, 'tag control' is 
applied to control the contents of local registers and ini- 
tialise arrays without an overhead in the average compu- 

a 

Xl(1) 0 t=1 t= 16 yZ(4) 
Xl(2) 0 t=2 t=15 y2(3) 

x l ( 4 )  1 xl(3) 1 t=3 

xl(4)W; x2(1) 0 t=5 
xl(4)W; x2(2) 0 t=6 
xl(4) W i  xZ(3) 1 t=7 
x2(4) 1 t-8 

xZ(4) W t=l 0 

t= 12 y2(0) 

t=9 yl(2) 
t p ' t t p  t=8 yl(1) 
t c  + tc  t = 7  yl(0) 

t= l l  y l (4)  
t=10 yl(3) 

If tc=1 

Xl(4)WI: xZ(0) 0 t=4 

x Z(4) Wh t-9 

y*  -yw+tp 

X ' C X  

Fig. 5 
LI Time sequence ai intput and output data are indicated I" the same row of each 
data by 'I = *' 
h Functions ofthe PE m the array 

A systolic arrayfor DFT with block length N = 5 

a 

t=22 y2(4) 
wl: 0 t=l 

WA 
wa 

t=21 y2(3) 
t=20 y 2 ( 2  
t=19 y2(1) W$ x l (4 )  1 t = 4  

1 x l (3 )  0 t=5 
Wb x l (2 )  0 t=6 t=16 y l ( 3 )  

t=15 y l (2)  
t=14 y l (1)  
t=13 yl(0) 

W; x l ( l )  O t = 7  x ' c  x 
tc'- t c  

w; Xl(0) 0 t=8 If tc= 1 
W$ x2(4) 1 t=9 
1 x2(3) 0 t=10 

w:, x2i2) 0 t= l l  

then 
tP:-Y 
W,"P 

tp',- t P 
w,+ w 

Y -x 
else 

Y +YW+X 

tation time. (The average computation time is the average 
time to finish one DFT calculation when consecutive 
DFT calculations are applied; it also indicates the 
minimum time interval between the first data of two con- 
secutive DFT calculations piped in.) The performance of 
these seven arrays is illustrated in Table 2. 

3 Xl(0) 0 t=o 

Xl(1) 0 t=l 
x l ( 2 )  0 t=2 
x l (3 )  0 t=3 
x l (4 )  1 t=4 
XZO) 0 t=5 
x2(1)  0 t=6 
XZ(2) 0 t=7 
x2(3) 0 t 8 then 

x ' c t p l  
w'-tp2 
y ' c  y +ip 1 

w'- w 
yc- y+wx 

I 

elsf 
x -wx 

Fig. 7 
D Time sequence of input and output data are indicated in the same row of each 
data by 'I = *' 
b Functions ofthe PE in the array 

A systolic array for  DFT with block length N = 5 

X Z ( O 1  1 w$ t=5 I w'-w W ' C W  
x ' c x w  
tL-- t C  
If tc=1 
then 

y -xw 
tq-Y 

else 
tp'--null tp'+p 

y<-y+xw 

t=18 y2(0) 
t=17 yZ(1) 
t=16 y2(2) 
t=15 yZ(3) 
t= 14 yZ(4) 
t=13 yl(0) 

t=10 yl(3) 
t=9 yl(4) 

t=12 yt(1) 
t = l l  yl(2) 

Fig. 6 
a Time sequence of input and output data are indicated in the same row of each 
data by 'I = *' 
b Functions ai the PE in the array 
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A systolic array for  DFT with block length N = 5 Fig. 8 
Y Time sequence of input and output data are indicated in the same row of each 
data by 'I = *' 
b Functions of the PE In the array 

A systolic array for  DFT wirh block length N = 5 
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Consider now in detail the seven systolic arrays shown 
in Figs. 5-11. The arrays in Figs. 5 and 6 are derived 
from the algorithm illustrated in Fig. 1 ;  the arrays in 
Figs. 7 and 8 from Fig. 2; the arrays in Figs. 9 and 10 
from Fig. 3; and the array in Fig. 11 from Fig. 4. Multi- 
ple arrays can be derived from a DG and here we present 
two arrays for each DG in Figs. 1-3 and one array for 
the DG in Fig. 4. Other arrays can be exploited using the 
systematical design methods for systolic arrays [ll-191. 
The demonstration of these particular arrays (instead of 
others) is based on the performance in the number of PES 
and computation time; other choices of array behave 
worse in this aspect. The designs of these arrays are 
based partly on the systematic design method given in 
References 11-19 and partly on the application of the tag 
control scheme explained in Reference 22. 

In Figs. 5-11, N = 5 and consecutive DFT calcu- 
lations are assumed. The first input and output data 
bundles are denoted by xl(i) and yl(i), and the second 
input and output data bundle are x2(i) and y2(i) and so 
on. Analysing for example the array in Fig. 1 1 ,  input data 
x(i) and twiddle factor, Wik are piped in from the left 
most PE while output data y(k) are drained out from the 

0 

x i i 3 j  0 t=i 
Xl(2) 0 t=2 
Xl(1) 0 t=3 

1 Xl(0) 1 t=4 
W,’ x2(4) 0 t=5 
Wi2x2 (3 )  0 t=6 

W i 4  x2(1) 0 t=8 
1 X U O )  1 t=9 

w i 3  x2(2) 0 t=7 

w ” t=10 

IT- 
- 

Y 

tP t C  

W 

t=17 y2(3) 
t-16 yZ(2) 
t=15 yZ(1) 

t=13 y l (4 )  
t=12 y1(3) 
t-11 y l (2 )  

tp:- tP  t=10 y l (1 )  
t c  + tC t=9 y l (0 )  If tc=1 

I W ;2 t=ll J 
else 

X“ x 
y,-(y+x)w 

Fig. 9 
Y Time sequence of input and output data are indicated in the same row of each 
data by ’t = *’ 
b Functions of the PE in the array 

A systolic arrayfor DFT with block length N = 5 

0 

w” 0 t= l  
wiz 0 t=2 

wl;” xu01 1 t=4 

Wk3 0 t=3 

1 x1(1)0t=5 
W? xl(2) 0 t=6 
Wiz  xl(3) 0 t=7 

W;y’ xl(4) 0 t=8 
w i 4  x2(0) 1 t=9 

w” 2(2j 0 t= l l  
1 XX1) 0 t=10 

X ’  - x  
t c ’ c  tc 
If tc=1 

then 
tP,‘-Y 

te- tP 

w - t p  
y,--xtp 

e lse 

w - w  
Y’ - (Y +x)w 

t=22 yZ(4) 
t=21 yZ(3) 

t=18 yZ(0) 
t=17 y l (4 )  
t=16 y l (3)  
t=15 yl(2) 

t=20 y2(2) 
t-19 y2(1) 

t = l 4  y l (1)  
t=13 y l (0)  

Fig. 10 A systolic arrayfor DFT with block length N = 5 
(I Time sequence of input and output data are indicated in the same row of each 
data by ‘t = *’ 
b Functions of the PE in the array 
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right most two PES. The time instants for the input and 
output data sequence are also indicated in the same row 
of each data. Fig. 1 lb illustrates the functions of the PES 

Xl(2) W $  0 ’ t=o 

XNl) w; 1 Xl(0) t=3 
XX2) w;; 0 Xl(0) t=4 

x211) w;: 1 XXO) t=7 

x3(4)  w;: 0 X2(0j t-9 

xl(4) W a  0 .. t=l 
xl(3) W? 0 ’’ t=2 

xZ(4) W,?, 0 xl(0) t=5 
x Z 3 )  Wd 0 xl(0) t=6 

x3(2) W k  0 xX0) t=8 
0 

1 1  
yX0) t=15 

yZ(1) t=14 
y2(3) t=13 
yZ(4) t=12 
y2(2) Yl(0) t= l l  
y l (1)  t=10 
y l (3)  t=9 
~ 1 1 4 )  t=8 
y l (2 )  t=7 

t“c tp-f$f ... ..+ tc‘ t p y x + x ( o )  tc __.. 

Y 

Y#+Y 

tp’- tP 
w‘- w 

t C ’ C  tC 
If tc=l. 

then 

else 

X ’ C  t p 
y C y + w t p  

x;-x 
y c y + w x  

If ta=l. 
then 

else 
t p ’ c x ( 0 ) + t p  

X’f x + t p 

b 

Fig. 11 A systolic arrayfor DFT with block length N = 5 
a Time sequence of input and output data are indicated in the same row of each 
data by ‘f = *’ 
b Functions of the PES In the array 

in the array, Fig. 12 depicts the activity of the array at 
successive six clocks from t = 3 to t = 8, where the yp’(k) 
is the iterative result y ( j ,  k‘) in eqn. 1 1  of the pth data 
bundle. Each PE in the array has two additional links 
named ‘tp’ and ‘tc’ as depicted in Fig. l lb.  Link ‘tp’ is 
used to carry data to appropriate PES and the data in 
link ‘tc’ is to tell PES when to load the data in link ‘tp’ 
into its local register. The data in ‘tc’ is a one-bit control 
signal, called ‘tag control’, and are used to tell PE when 
to perform suitable operations. Based on the control 
scheme, the data in the local register of each PE can be 
controlled appropriately from the input channels at the 
extreme ends of a linear array. The hardware overheads 
paid for the scheme in each PE is ( L  + 1 )  one-bit links 
and about one demultiplexer. The time overhead is 
( N  - l)T units of time, where T is the time period 
required for the operation in a PE. However, the time 
overhead can be skipped by overlapping the computation 
time of two consecutive DFT calculations. As depicted in 
Fig. 11,  there is no extra time between the input of the 
first bundle xl(i) and the second x2(i), or between the 
output bundle yl(k) and the bundle y2(k). In other words, 
the tag control should give overhead to the latency time 
of a DFT problem and no overhead to the average com- 
putation time. (The latency time is the consumption time 
from the input of first data to the output of the final data 
for a DFT calculation.) The phenomenon can also be 
checked from the array activity in Fig. 12. From t = 4 to 
t = 7, the array calculates the first DFT problem by 
using xl(i) and simultaneously brings x2(i)  for the second 
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DFT problem. Such concurrent computing favours the 
average computation time. 

By the same analytical method just described, the 
other arrays in Figs. 5-10 can be checked. The one-bit 

one real addition. Since one complex multiplication can 
be realised by four multipliers and two adders, the com- 
plexity of a PE is ( 4 4  + 3A,), where A,,, and A, are the 
layout area required for one multiplier and one adder, 

t =3 

t=4 

t=6 

t =7 

t=8 

Fig. 12 The activity of the systolic array in Fig. I 1  at seven successive instants of t ime 

control link ‘tc’ is used in these arrays either to control 
the contents of local registers or to assign suitable oper- 
ations for PES. The link ‘tp’ in the array is used to carry 
input data x(i) or twiddle factor W k  from the left-most 
PE to appropriate ones, or carry output result y(k)  from 
the PES to the right-most one. The ‘tp’ links in Figs. 6-8 
are used to carry the twiddle factors and output data 
simultaneously. The performance of these arrays in the 
area complexity of a PE, average computation time, the 
number of PES, latency time, the number of 1/0 channels 
and the features of 1/0 sequence is listed in Table 2 
where the area complexity of a PE is approximated by the 
area required for the adders and multipliers in the white 
PES of the associated array. The area complexity of a PE 
is evaluated by the required multiplications and additions 
in a PE. Considering for example the PE functions of 
Fig. 5b, this consists of one complex multiplication and 
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respectively. Here, the area complexity is evaluated only 
when input data’is real instead of complex because all the 
complexity of the arrays in Figs. 5-11 is ( 4 4 ,  + 4A,) 
when input data are complex. For the array in Fig. 11 the 
input sequence is nk for k = 1, 2, . . . , N and the output 
sequence is n-j for j = N ,  N - 1, . . ., 1. For comparison, 
it is assumed that the consumption time of a PE (or the 
system clock period) in all the arrays in Table 2 is T .  If 
the required multiplications and adders in a PE are per- 
formed serially by one multiplier and one adder, the area 
complexity for all the PES in these arrays will be equal 
although the clock period will be proportional to the 
area complexity listed in Table 2. That is, the area com- 
plexity and the system clock is a trade-off. 

In addition to using the systematic methods given in 
References 11-19 and tag control to design systolic 
arrays in Figs. 5-11, another detail (or ‘trick’) is used to 
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Table 3: Performance comparisons of the two-level pipelined systolic arrays (TLPSAs) (t.  = units of consump- 
tion t ime for the adders in a PE, t ,  = units of consumption t ime for the multipliers in a PE, r = units of con- 
sumption t ime for the multipliers and adders in  a PE, L = DFT wordlength. ACT = average computation time, 
N = block length. A, = area of one multiplier, and A, = area of  one adder 

Arrays Area Throughput ACT No. of Latency No. of 110 Feature of 
complexity rate PES time channels I/Q sequence 
of PE 
(for real data) 

TLPSA for Fig. 5 U ,  + 34* 1 N - 1  N - 1  ( N - l ) T + ( 2 N - 3 )  3 L + 1  Naturalorder 
TLPSA for Fig. 6 4A,+34, l / r  N T  N (3N - 2 ) T  + (N  - 1 ) 3L + 1 Input sequence 

are reverse 
TLPSA for Fig. 7 4A, + 4A, l / t ,  Nf, N N T  + (N  - 1 ) I ,  3L + 1 Natural order 
TLPSA for Fig. 8 4A, + 4A, l l r ,  Nf, N N T  + ( N  - 1 ) f a  3L + 1 Output sequence 

are reverse 
TLPSA for Fig. 9 4A, + 1 N N N T  + (2N - 2 )  3L + 1 Input sequence 

are reverse 
TLPSAfor Fig. 10 4Am+34, l /T '  N T  N (3N - 2)T + ( N  - 1 )  3L + 1 Natural order 
TLPSA for Fig. 1 1  24, + 24, 1 ( N - 1 )  N ( N - l ) t a + t , + ( 2 N - 4 )  6 L + l  I/Osequence 

are scrambled 

design the array in Fig. 1 1 .  This is also the reason why 
two arrays result from every DG in Figs. 1-3 but only 
one array from Fig. 4. Considering the DGs in Figs. 1-4, 
there are (2N - 3) values of Wik which will be supplied 
for the computation of Fig. 4 but only N values will be 
supplied for others. It seems that this may result in addi- 
tional cost in computation time or the number of input 
channels. As shown in Fig. 1 1 ,  it can be found that only 
one input channel is used for W" and the output data for 
N points of DFT can be obtained for every ( N  - 1)  
clocks. How, then, can it be possible that the 2N - 3 
values can be transmitted in ( N  - 1) clocks through one 
channel? The 'trick' used here is that the consequent sets 
of DFT computations can be overlapped so that, on 
average, only ( N  - 1) values is needed for a DFT compu- 
tation. For the array shown in Figs. 1 1  and 12, the W" 
values are piped in from t = 0 to t = 6 to compute the 
first data bundle yl(i). Likewise, the second data bundle 
y2(i) is computed by using the W" piped in from t = 4 to 
t = 9. It means that those W" values piped in from t = 4 
to t = 6 are used to calculate both the first and the 
second output bundles. It is the overlap that avoids over- 
head in time or channels. The existent condition for the 
overlap comes from the cyclic property underpinning the 

From Table 2 it can be seen that the throughput rate 
of all the arrays in Figs. 5-1 1 is equal. The average com- 
putation time, the number of PES, and the number of 1 /0  
channels in Figs. 6-10 are equivalent. The latency time of 
the arrays in Figs. 6 and 10 are longer than the others; 
this comes from the time to initialise appropriate twiddle 
factors for arrays and to drain results to the boundary 
PE. The area complexity of PES in Figs. 7 and 8 is larger 
than the others. The array in Fig. 5 has one less PE than 
all other arrays and provides a smaller latency time than 
those in Figs. 6-10. One special array which requires 
notice is that of Fig. 11 : this array provides an area com- 
plexity of a PE with approximately one half that of the 
others. The benefit comes from the lower computational 
complexity of the associated algorithm presented in the 
preceding section. Table 2 provides a selection criteria for 
the feasible systolic arrays in different applications. 
Despite the variance among these arrays, all have two 
attributes when compared with others [2, 3, 6,  71. First, 
the input data, twiddle factors and computed results are 
piped in and drained out from the 1/0 channels at the 
extreme ends of a linear array, and the number of chan- 
nels is independent of DFT length. Secondly, the tag 
control is applied to control the contents of local regis- 

modulo operation in eqn. 5, that is n - ( N -  -i) - - n. 
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ters and initialise arrays without any overhead in average 
computation time. 

3.2 Design of two-level pipelined systolic arrays for 
DFT 

The systolic arrays in the preceding subsection can be 
redesigned into two-level pipelined systolic arrays with 
performance as listed in Table 3. In this table, we assume 
the numbers of pipeline stages for an adder and a multi- 
plier are t ,  and t,, respectively. If the basic pipeline 
period is one, t, and t ,  are also the consumption time of 
an adder and a multiplier. Also, T is assumed to be the 
sum of t,, and t ,  , i.e. T = t ,  + t ,  . If the required time of 
the adder and the multiplier in two-level pipelined systol- 
ic arrays is compatible with that in systolic arrays, i.e. 
T T ,  the performance of these two types of arrays can 
be compared from Tables 2 and 3. It can be seen that the 
redesigned arrays have the same performance as the orig- 
inal arrays in the area complexity, the number of PES, 
the number of I/O channels, and the features of I/O 
sequence. But these two-level pipelined systolic arrays 
have much better performance in the throughput rate, 
the average computation time, and the latency time than 
the associated systolic arrays. If the last rows of Tables 2 
and 3 are checked by substituting N = 5, t, = 2, t, = 3, 
and T = 5, the associated systolic array exhibits through- 
put rate being I/$ latency time being 55, and average 
computation time being 20 while the associated two-level 
pipelined systolic array exhibits throughput 1, latency 18, 
and time 4. Fig. 13 is the two-level pipelined systolic 
arrays redesigned from Fig. 1 1  by setting t, and t ,  as 2 
and 3, respectively. Table 4 list the required number of 
registers associated with each link in these redesigned 
arrays in terms of the parameters t, and t, . From tables 

Table 4: The number of register elements required for each 
link in  various arrays ( t .  and t ,  are, respectively. the 
number of  pipeline stages or the units of consumption t ime 
for the adders and multipliers in a PE). Note: the link names 
are consistent w i t h  the  names given in  Fig. 511.  

Arravs Reaister numbers 

X Y W  tD tc 
____ ~ 

TLPSA for Fig. 5 1 0 f ,  + I ,  1 ,  + I , +  1 f a  + f ,  

TLPSAforFig.6 1 0 f , + f ,  f , + f , + l  1 
TLPSA for Fig. 7 1 ,  0 1 f ,  + I ,  f a  
TLPSAfor Fig. 8 1 ,  0 1 f a + f m  f, 

TLPSAforFig.9 1 0 f , + t ,  f , + f , + l  f , + f ,  
TLPSA for Fig. 10 1 0 f , + t ,  1, + I ,  + 1  1 
TLPSA for FIP. 1 1  1 0 I .  + 1 f. + 1 f. 

IEE PROCEEDINGS-G, Vol.  139, N o .  4 ,  A U G U S T  1992 



3 and 4, the desired two-level pipelined systolic arrays 
can be configured. Consider for example the array in Fig. 
11, the five links in Fig. l l b  are labelled as x, JJ, w, 'tp' 
and 'tc'. If t, and t, are set as 2 and 3, the number of 
delay elements associated with each links of the array in 
Fig. 1 3  is then obtained by substituting the values oft, 
and t ,  to the seventh row in Table 4. The time sequence 
of input data and computed result of the array can 
be configured from the performance prescriptions in 
Table 3. 

t=10 
t=14 

xlf4I Wz  0 " t = l  

R 

y2(1) t-21 

y2(4) yZ'(0) t-19 
y 2 m  y 2  (0) 1-16 
yl(1) 1-17 
yI(3) t-16 
yI(4) yI'(0) 1-15 
y l ( 2 )  y l  (0) t- 14 

yZ(3) t-20 

x (0) : 
tc 

Y 

Y'- Y 
w'- w 

tC  -tc 
If tc I, 

then 

if t c l=  1 or tc2= 1, 
then 

else 

t P,'- tP x'-x(O) - 
x -x'+tp 

x'-X 
x -x'+tp x'-tp 

y'- y +wtp 
else 

x'-x 
y<-y+wx 

b 
Fig. 13 A two-level pipelined systolic array for DFT with block length 
N = 5  
(I Time sequence of input and output data are indicated in the same row of each 
data by ' t  = *' 
b Function of the PES in the array 

From the performance of these arrays in Table 3, the 
arrays redesigned from Figs. 5, 9 and 11 exhibit better 
performance in the throughput rate and the average com- 
putation time. Also, it can be seen that the array 
redesigned from Fig. 11 possesses higher speeds than the 
others. As listed in Table 1, the critical computing path 
for Fig. 4 is ( N  - 1)t. + t ,  + ( N  - 1).  Checked with the 
latency time ( N  - 1)t. + t, + (2N - 4) in Table 3, the 
array needs an additional ( N  - 3) time units for initial- 
isation. Similar checks can be made for other arrays to 
show that the two-level pipelined array in Table 3 can 

realise the maximum parallelism with some overheads in 
the initialisation of arrays. 

Two specialties in the two-level pipelined systolic 
array redesigned from Fig. 11 are that the latency time is 
related with the computation time of only one multiplier 
and the average computation time is independent of the 
computation time of multipliers or adders. The two spe- 
cialties indicate that the hardware cost required for the 
multiplier is much more important than the associated 
speed when the implementation of the two-level pipelined 
systolic array is considered. From the latency time, an 
interesting result is that the ( N  - 1)' multiplications in 
Fig. 4 can be computed by (N - 1) multipliers in a linear 
array in a time related with just one multiplier. Obvi- 
ously, the required time of (N - 1)' multiplications has 
been suitably absorbed by the pipelined stages of AUs in 
[ N  - l)t, + t, + (2N - 4)] unit of time. The absorption 
results from the inherent parallelism of the computing 
algorithm. 

One special point in Fig. 1 3  is that the data in link 'tp' 
are piped in every clock while the number of pipeline 
stages in an adder is two. Hence, the required yp(0) will 
be accumulated as two separated parts in the two pipe- 
line stages of adder and extra manipulation is needed to 
add the yp'(0) and yp"(0) to obtain final yp(0). The argu- 
ment can be extended to the general case where the 
number of pipeline stages in an adder is q. There will be q 
links, labelled as tcl, tc2, . . . , tcq, between the white PE 
and the shaded PE. yp(0) will be obtained by adding q 
parts of data. The delay elements associated with the 
links of Fig. 1 3  are designed with the assumption that t, 
is two and t, is three. For a general consideration, the 
number of delay elements between white PES is listed in 
Table 4 and the number of delay elements between a 
shaded PE and a white PE is one for link 'tp' and 1, 2, 
. . . , y for links tcl, tc2, . . . , tcp, respectively. 

4 

The numbers of PES in the VLSI arrays presented in 
Section 3 are equal to the DFT length N or N - 1. When 
the DFT length is long, the realisation of the DFT in an 
array with a reasonable number of PES is necessary. In 
this section, two schemes are presented to consider this 
issue: Scheme 1 decomposes one DFT problem with 
length N into P DFT problems each with size Q and 
Scheme 2 factorises a one-dimensional DFT problem 
into a two-dimensional DFT problem. The factorised 
results can be efliciently computed by small-size arrays 
without sacrificing much time. Comparisons of the two 
schemes show that Scheme 1 requires smaller interme- 
diate storage and lower control overhead while Scheme 2 
gains benefits in computing speeds. The performance of 
the two schemes is summarised in Tables 5 and 6. 

VLSI arrays for long-length DFT 

Table 5:  Performance of scheme 1 (t,  and t ,  are, respectively, the units of con- 
sumption time for the adders and multipliers in a PE; T = units of consumption of 
time for the multipliers and adders in a PE, and N = PO) 

Arrays Throughput ACT Latency No. of I/O No of Suggested 
rate time channels PE P 

Fig. 5 1 /PT PNT ( w + ~ ~ - z ) r  3 ~ + 1  Q f ( ~ )  
Fig. 7, Fig. 9 l /PT PNT ( P N + Z Q - 2 ) T  3 L + 1  Q 2 
TLPSA for Fig. 5 1 /P  PN ( P N + Q T + Q - 2 )  3 L + 1  Q f (N,  T )  
TLPSA for Fig. 9 1/P PN ( P N + Q T + Q - 2 )  3 L + 1  0 ( T + l )  
TLPSA for Fig. 7 l/&- PNf.. ( P M -  + Q T -  f - )  3L + 1 Q ( f ,  + f.Mm 
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Table 6: Performance of scheme 2 (N  = n'n" for n' 

Arrays Throughput  ACT Latency t ime No. of 110 No. of 

Fig. 5 1 /T NT (2N + n' +n" - 4 ) T +  (n' - l ) T  ( 4 L + 1 ) 2  n ' + n " - 2  

Fig. 1 1  N / ( N  - n')T ( N  - n')T (2N + n' - 4)T ( 6 L + 1 ) 2  n'+n" 
TLPSA for Fig. 5 1/T NT [2N + ( n ' -  1 ) T +  ( n " -  l ) T -  21 + ( n ' -  2 )  (4L + 1 ) 2  n '+n" -  2 
TLPSA for Fig. 9 1/T NT ( 2 N + n ' T + n " T - 2 )  + ( n ' - 1 )  ( 3 L + 1 ) 2  n'+n" 
TLPSA for Fig. 7 l / t ,  Nf ,  ( 2 N + n ' ) f , + ( n ' + n " ) f , - f ,  ( 3 L + 1 ) 2  n'+n" 

T L P S A f o r  Fig. 1 1  N / ( N - n " )  ( N - n " )  2 ( N - l l  + ( n ' - l ) ( n ' + n " - 2 ) t . + 2 r -  ( 6 L + 1 ) 2  n ' + n "  

n") 

rate channels PE 

Fig. 7, Fig. 8. Fig. 9 1/T NT (2N + n' + n" - 2 ) T +  (n' - l ) T  ( 3 L + 1 ) 2  n'+n" 

TLPSA for Fig. 8 l / f ,  Nf ,  ( 2 N + n ' ) t , +  ( n ' + n " ) r , - f ,  ( 3 L + 1 ) 2  n'+n" 

4.1 Scheme 1 
The DFT problem is described as 

y(k)  = DFT(x(i)) = x( i )Wik  
N -  1 

i = 0  

One method of realising a DFT with length N in array 
with PE number Q is to decompose the DFT problem 
into P DFT problems each with length Q ,  where P is 
equal to N / Q .  The idea can be achieved by replacing the 
index i in eqn. 13 by a coarse index and a vernier index 
as follows: 

i" = 0, 1,. . ., Q ~ 1 i = (i" + Qi') i' = 0, 1, , . _, P - 1 

Then, 
P - 1  Q - 1  

i ' = o  y - 0  
(14) y(k) = 1 x(i" + Qf)Wi"+Qi')k 

for i' = 0, 1 ,  . .. , P - 1; i" = 0, 1, . . ., Q - 1; and k = 0, 1, 
..., N - 1. Eqn. 14 can then be expressed as P DFT 
problems each has length Q and N outputs as foliows: 

where 
Q - 1  

i" = 0 
y(k ,  i') = 1 x(i" + Qi')Wyk 

with i' = 0, 1, ..., P ~ 1; k = 0, 1, ._., N - 1. The P DFT 
problems; i.e. y(k,  i'), can be serially computed by the 
arrays presented in preceding section, and the final result 
Ak)  is obtained by computing eqn. 16. For the arrays in 
Figs. 5, 7 and 9, the two-step computation can be efi- 
ciently computed by feeding the output links 'y" and 'tc" 
in the right-most PE to the input links 'y' and 'tc' in the 
leftmost PE through first-in first-out buffer (FIFO) and 
one demultiplexer. The size of the FIFO is ( N  - Q).  

Taking Fig. 5 as an example, eqn. 16 can be rewritten 
as 

y(k) = ((. . . (y(k,  P - 1)WQk + y(k,  P - 2))WQk 

+ ' ' ' + y(k,  l))WQk + y(k, 0) (1 7) 
The y(k ,  i') can be serially computed by the array in Fig. 5 
and the multiplication of W Q k  can be computed through 
the Q consequent multiplications of W k  in Q PES. Fig. 14 
depicts the modified version of the array in Fig. 5 for the 

5 50 

realisation of long-length DFT. Fig. 14 has an extra link 
with FIFO to transmit the result and tag signal from the 
right most PE to the input link of the left most PE. As a 
result the tag signal can tell the demultiplexer in the left 
most part to transmit the y(k,  i') into the input link y of 
the left-most PE. It is such an arrangement that distrib- 
utes the computations of eqn. 17 into the Q PES without 
overheads in hardware and time, and the number of PES 
is Q instead of ( Q  - 1) as indicated by Fig. 5. A similar 
scheme may be applied to the arrays in Figs. 7 and 9 by 
using the same size of FIFO and demultiplexer. Based on 
the scheme, the systolic arrays in Figs. 5 ,  7 and 9 and the 
associated two-level pipelined systolic arrays can realise 
long-length DFT with performance as shown in Table 5. 
By replacing P = 1, and Q = N ,  it can be checked that 
these performances will be equal to those in Tables 2 and 
3. In other words, the effect of the scheme is to reduce the 
number of PES and increase the average computation 
time by a factor P. It should be noted that eqn. 16 results 
by replacing the index i in eqn. 13 by (i" + Qi'). Such a 
replacement is suitable for the arrays in Figs. 5, 7 and 9 
but not for the arrays in Figs. 6, 8 and 11. Observing the 
arrays in Figs. 5, 7 and 9, we find that all x( i )  must be 
stored in the PES an one-to-one manner. Since index i is 
the pointer to x(i)  as in eqn. 13, the index i should be 
suitably partitioned as indicated by (i" + Qi') to reduce 
the number of PES in these arrays. If the number of PES 
in the arrays in Figs. 6 and 8 is to be reduced, index k 
should be similarly replaced by (k" + Qk'). However, as 
we have pointed out, the scheme increases the average 
computation time by a factor P .  From Table 3, the two- 
level pipelined systolic arrays of Figs. 6 and 8 is much 
worse than that of Figs. 5 and 9. Hence, we shall not 

size=N-Q 

0 

t=O xl lN-Si n U 
t=l x l i N - i j  0 

t=5 w l  0 0 

!=2 xl(N-3) 0 
t =3 xl(N-2) 0 
t=4 1 xl(N-1) 1 

t=6 Wi 

t=N+2 WE-' xl(N-8) 0 
!=N+3 W#' xl(N-7) 0 

yl(N) t=PN+8 
y 1 (N-1) !=PN+ 7 

t=PN+ZW:'* x2(N-3) 0 
t=PN+3 W{-l x2(N-2) 0 
t PN+4 1 xZ(N-1) 1 

Fig. 14 
realise D F T  wifh blocklength N = PQ using fhe scheme I 

Modified array from that in Fig. 5 with number Q = 5 to 
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discuss such a replacement here. If the scheme is applied 
to the array in Fig. 11, it should also induce bad per- 
formance in the average computation time. As discussed 
in Section 3, the average computation time of the systolic 
array or two-level pipelined systolic array from Fig. 11 
can be kept low by using the property, n - ( N - l - i )  = xi. 
The property should be useless if the arrays are to 
compute long-length DFT based on the scheme and the 
average computation time would degrade considerably. 
Because of the above reasons, the scheme is applied only 
to the arrays in Figs. 5 ,7  and 9. 

Comparing Tables 2 and 3 with Table 5 ,  we find that 
scheme 1 induces an increase to the average computation 
time and reduce the throughput rate by a factor P .  When 
the values of latency time in Tables 2 and 3 are compared 
with those in Table 5,  the influence of scheme 1 on the 
latency time cannot be directly captured and some 
analysis should be applied. Consider, for example, the 
latency time ( P N  + QT + Q - 2) in the fourth row of 
Table 5 and the time ( N T  + ( 2 N  - 2)) in the fifth row of 
Table 3, if scheme 1 is to have a decrease effect on latency 
time, then 

(18) 

(19) 

( P N  + QT + Q - 2)  < [NT + (2N - 2)] 

and P should be 

P < (T  + 1) 

This shows that the feasible value of P is independent of 
N .  Based on the analysis method, the entries in the fifth 
column of Table 5 are filled in. In Table 6,  thef(N) and 
f ( N ,  T )  mean the function of N and function of N and T ,  
respectively. It then follows that the scheme sometimes 
gives a positive effect on both computation time and PES. 
As a result, the scheme can be undoubly used when the 
latency time, instead of average computation time or 
throughput rate, is the decisive requirement. 

4.2 Scheme2 
Scheme 1 factorises a long-length DFT into multiple 
small-length DFT problems and then computes these 
problems serially by a small-size array. If the number of 
PES is multiplied with the average computation time the 
result will be a constant value. So, the serial computing in 
scheme 1 has a tradeoff between the array size and 

average computation time. In other words, the parallel- 
ism and nearest neighbour interconnection which are 
attributes of VLSI array should blend the concepts of 
serial computing and temporal dependence when realis- 
ing long-length DFT. If the serial computing is linked 
with the FFT algorithms which emphasise the reduction 
in the number of multiplications through serial comput- 
ing, it may have some prominent effects on the per- 
formance. The scheme developed here is based on the 
idea. 

The second scheme adopts the Good-Thomas factor- 
isation [23 ,  241 in algorithm level and fits the factorised 
results into the arrays presented in Section 3. The deriva- 
tion of the Good-Thomas algorithm is based on the 
Chinese remainder theorem for integers. It shows that 
when N = n’n’’ and n‘ and n“ are relatively prime. Eqn. 13 
can be rewritten as 

“ “ - 1  “‘-1 

(20) y(k’, y) = p i ’ k ’  1 ,.(i?, q f k ”  
y - 0  i ,=o 

where fi  = exp ( - j2n/n”)  and y = exp (-j2n/n’).  Eqn. 20 
is a two-dimensional DFT and can be computed serially 
through one-dimensional DFT process. The number of 
multiplication-adders is about N(n’ + n”) in the comput- 
ing process. Compared with the N 2  in eqn. 13, eqn. 20 
possesses simplified computational complexity. 

If eqn. 20 is realised by two arrays with the numbers of 
PES being n’ (or n’ - 1) and n” (or n” - I ) ,  the computing 
procedure is given in Fig. 15a. The input data is first 
mapped to a two-dimensional form and fed into a linear 
array with size n” (or n” - 1) to compute the n’ DFT 
problems serially. The computed result from the first 
array is then fed to the second array with size n’ (or 
n’ - 1) to compute the n” DFT problems serially. The 
final two-dimensional result is mapped to one- 
dimensional form in original order. Fig. 15b shows the 
diagram of the arrangement for input data, two- 
dimensional input data, two-dimensinal result, and final 
natural order with n’ and n” are assumed to be five and 
three respectively. The performance of various .VLSI 
arrays which realise the computing procedure in Fig. 1% 
is repiesented in Table 6 by neglecting the overhead in 
scrambling the input and output data and the communi- 
cation of the two arrays. Compared with Tables 2 and 3, 
the scheme in Table 6 retains the average computation 

1 

Array 2 with s izen” ~ ~ $ & n 9  
input  

Ar ray  1 with size n‘ 

I ~ 

map input map two- 
indice to two-  dimensional 
d imensional  da ta  in to  
fo rm natura l  order a 

15-point 15-point 

indices indices 
input output 

+ 5 8 1 1 1 4 2  

resul t  
13 13 

b 

Fig. 15 
a Blocklength N = n’n” using scheme 2 

The computing procedure for DFT 
b Arrangement of input and output data in the input and output processing 
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time, gives small overhead to the latency time, doubles 
the number of I/O channels, and greatly reduces the 
number of PES. One special case in Table 6 is that the 
two-level pipelined systolic array modified from Fig. 11 
can reduce the average computation time. Comparing 
scheme 1 in Table 5 and scheme 2 in Table 6 by 
assuming n’ = P and n” = Q, scheme 2 has superiority in 
throughput rate, average computation time, latency time 
but inferior in the number of 1/0 channels and PES. The 
benefit of time for scheme 2 can be traced to be the 
reduction in the computational complexity. However, the 
points that should be noted is that the overheads in the 
scrambling indices, communicating two arrays and 
storing intermediate data, are neglected in Table 6. The 
overheads should be considered when an architecture 
system is built. 

5 Conclusions 

The design of VLSI arrays for DFT has been considered 
through three topics. In the first topic, four algorithms 
which are suitable for VLSI array realisation were con- 
sidered. Among them, three algorithms were of interest 
for systolic array realisation; these are illustrated through 
‘dependence graphs’ and a new systolic algorithm is pro- 
posed. The four algorithms were examined for functional 
parallelism and computational complexity. The results 
showed that the proposed algorithms has much higher 
computing parallelism and lower computational com- 
plexity than the other three. The benefits in parallelism 
and complexity were effectively exerted when the algo- 
rithm is realised with systolic arrays and two-level pipe- 
lined systolic arrays. 

Secondly, seven systolic arrays and seven two-level 
pipelined systolic arrays were devised from the four algo- 
rithms. From analysis these arrays were shown to have 
short average computation time. Also, the required 
number of 1/0 channels in these arrays is independent of 
the number of PES. The performance of these arrays is 
summarised in Tables 2 and 3. 

The third topic considered is the scheme to calculate a 
long-length DFT problem using small-size arrays. Two 
schemes were presented with their performances listed in 
Tables 5 and 6. These schemes first factorise a one- 
dimensional DFT into two-dimensional DFT. Then the 
two-dimensional DFT is effectively calculated by using 
small-size arrays. Scheme 1 has been shown to be 
superior to scheme 2 in the number of 1/0 channels and 
PES, but inferior in throughput rate, average computa- 
tion time and latency time. 
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