
On the design of VLSI arrays for discrete Fourier
transform

C.-M. Liu
C.-W. Jen

Indexing terms: VSLl arrays, Systolic algorithms, Discrete Fourier transform

Abstract: In this paper the design of VLSI arrays
for discrete Fourier transform (DFT) is investigated
through three topics: (i) algorithm exploitation,
derivation and analysis, (ii) array realisation, and
(iii) schemes to calculate arbitrarily long length
DFT using a reasonable sized array. Four DFT
systolic algorithms are examined and compared in
terms of computing parallelism and computa-
tional complexity. Among the four algorithms,
one is newly proposed. The new one exhibits
much higher computing parallelism and lower
computational complexity than the other three,
but is applicable when the DFT length is prime.
Based on the four algorithms, seven systolic arrays
and seven two-level pipelined systolic arrays are
devised. The outstanding features of these arrays
are that the number of 1/0 channels is indepen-
dent of the DFT length and the time overhead in
manipulating consecutive data bundles are elimi-
nated. Two schemes are presented to calculate
long-length DFT using arrays with a reasonable
number of processing elements. Performance of
different algorithms, arrays and schemes is com-
pared and summarised in six tables to serve as the
selection criteria for different applications.

1 Introduction

Evolution in VLSI technology has propelled a review for
the criteria of evaluating digital processing algorithms.
The efficiency of an algorithm to be implemented by
VLSI is based more on the degree of the communication
complexity required between arithmetic elements rather
than on the number of computations. Hence, the fact
having been observed by many researchers [l-51 is that
FFT (fast Fourier transform)-like algorithms that have
been used extensively for their low numbers of multipli-
cations are not well suited for VLSI implementation.

Systolic arrays [I , 21 can meet the increasing demands
of processing speed and are suitable for VLSI implemen-

Paper 87236 (ElO), first received 16th April 1991 and in revised form
17th January 1992
C.-M. Liu is with the Department of Computer Science and Informa-
tion Engineering, National Chiao Tung University, Hsinchu, Taiwan,
Republic of China
C.-W. Jen is with the Department of Electronics Engineering & Insti-
tute of Electronics, National Chiao Tung University, Hsinchu, Taiwan,
Republic of China

IEE PROCEEDINGS-G, Vol. 139, No. 4, A U G U S T 1992

tation. Their attributes of parallel and pipeline processing
are means to attain high computing power while struc-
tural regularity, modularity, and local interconnections
give the feasibility of VLSI implementation. We refer to
the paper in Reference 3 for the motivation of DFT
systolic arrays over other architectures. Since systolic
arrays designate one processing element (PE) as one pipe-
line stage, the computing parallelism can be obtained
from the multiple PES in an array. In the existing systolic
arrays for DFT [2, 3, 6, 71, a PE should perform one
complex multiplication and one complex addition. To
implement such complicated arithmetic with VLSI hard-
ware, the pipelined architecture for the arithmetic units
(AUs) in interior PES can attain higher computing paral-
lelism. Two-level pipelined systolic arrays were presented
with the idea of assigning pipeline stages into the AUs
[8]. As a result, two-level pipelined systolic arrays can
attain parallelism from the pipeline stages of AUs in an
array and offer higher throughput and less computation
time than systolic arrays. In this paper, the design of
systolic arrays and two-level pipelined systolic arrays for
DFT is investigated through algorithm derivation and
analysis, VLSI array design, and schemes to calculate
long-length DFT.

Since not every computing algorithm is suitable for
VLSI array realisation, the exploitation and derivation of
algorithms for VLSI arrays are persistently engaged. In
the literature, there were three DFT algorithms [2, 3, 61
proposed for systolic array realisation [2, 3, 6, 71. Also
these algorithms were applied to calculate the ‘discrete
cosine transform’ and ‘discrete sine transform’ [9, lo].
Although these algorithms offer about the same compu-
tation time and hardware cost when realised with systolic
arrays, they should meet another review in computing
parallelism when realised with two-level pipelined systolic
arrays. In other words, these algorithms should face
parallelism examination in AU level despite that their
parallelisms in PE level are equivalent. In Section 2 we
review the three systolic algorithms and propose a new
one which especially suits for the realisation of two-level
pipeline systolic array. The computing parallelism and
computational complexity of these four algorithms are
examined, showing that the new one exhibits much
higher computing parallelism and lower computational
complexity than the other three, but is applicable when
the DFT length is prime. The performance of the four
algorithms is summarised in Table 1.

The efficient design of a VLSI array for an algorithm
should consider the parallelism in an algorithm and the
required performance in different applications. In the lit-
erature there are systematical design procedures to design
systolic arrays and two-level pipelined systolic arrays

541

from a systolic algorithm [I 1-21]. However, these
methods do not have proper considerations in the
reduction of 1 /0 channels and 1 /0 bandwidth, and in
how to initialise arrays through limited input channels or
pump results stored in PES to output channels. These
kind of problems affect the pipelining ability to arrays
and degrade the associated performance. Such problems
are defined as I/O problems in this paper. If the existing
systolic arrays [2, 3, 6, 71 for the DFT are examined, they
can be obtained by directly applying these systematical
methods and have left the 1/0 problems unsolved. In
Section 2, we show that the four systolic algorithms
require a low number of input operands. This gives rise
to the potential of solving the 1/0 problems. The arrays
presented in this paper solve the I/O problems by adopt-
ing the scheme called tag control [22]. This scheme pro-
vides IjO channels with the controllability over the
contents of the local registers in each PE and solves the
1 /0 problems efficiently. In Section 3, seven systolic
arrays and seven two-level pipelined systolic arrays are
devised. The outstanding features of these arrays are that
the numbers of 1 /0 channels are independent of the DFT
length, and the time overhead in manipulating consecu-
tive data bundles is eliminated. These arrays are exam-
ined with various performance parameters and
summarised in Tables 2-4. These tables provide a selec-
tion criteria for the feasible arrays in different applica-
tions. These tables also show that two-level pipelined
systolic arrays have much better performance in the
latency time, the throughput rate, and the average com-
putation time than the corresponding systolic arrays.

The numbers of PES in the VLSI arrays designed in
Section 3 are proportional to the DFT length. When the
DFT length is long, schemes to compute DFT by arrays
with a reasonable number of PES should be applied. The
realization of the maximum parallelism with multiple
PES is one attribute to VLSI arrays. This attribute plus
the features of local interconnection and simple control
render the preference of DFT systolic algorithm over
FFT algorithm. However, the maximum parallelism
cannot be attained when the DFT length is too long for
VLSI implementation. Under the circumstance, the cal-
culation should be a combination of the parallel compu-
tations within the capability of small-size arrays and the
serial computations fitting for long-length DFT. From
the development of FFT-like algorithms [23-261, the
required number of multiplications and additions can be
reduced through serial computations. Hence, the increase
of computing power through the parallel computations of
VLSI arrays and the reduction of computational com-
plexity through serial computations should be a prom-
ising approach to implement long-length DFT in VLSI
circuits. In Section 4, two schemes based on this approach
are presented to calculate long-length DFT with small-
size arrays.

2 Four systolic DFT algori thms

The N-point DFT of an input sequence x(O), x(l),
x (N - 1) is defined as

N- 1

y(k) = ,I x(i)Wik for k = 0, 1, _ _ _ , N - 1
z=O

542

where W = exp (-j2n/N). Eqn. 1 can be represented by
the matrix-vector multiplication form as

If the matrix-vector multiplication is directly realised by
linear systolic arrays, each PE should have one external
connection (defined as I/O channel in this paper) to
receive the twiddle factor W" at each time step. Such an
array is not good when considering the routing complex-
ity, the IjO bandwidth, and the pin limitation of a chip
package. Observing the elements in the matrix of eqn. 2,
the powers of W increases by a constant factor both
along a column and a row. In the development of the
three systolic algorithms in [2, 3, 6, 71, the constant
increase in the powers is utilised so that the W" can be
generated in the computing process and only N values of
W" are applied from the external. The reduction in the
number of operands Wik provides the potential to design
VLSI arrays with low 1 /0 bandwidth and a low number
of 1 /0 channels. In Section 2.1, another systolic algo-
rithm with higher computing parallelism and lower com-
putational complexity is devised. These four algorithms
will be represented with graphs, named dependence
graphs (DGs). DGs are an efficient vehicle to exploit
computing parallelism and design appropriate arrays as
was indicated in the systematical design methods for
systolic arrays [I l , 13-17, 191 and two-level pipelined
systolic arrays [20, 211. In Section 2.2, four DGs are con-
structed for the four algorithms. The computing parallel-
ism and computational complexity of these algorithms
are examined based on these DGs. The results show that
the proposed algorithm possesses much higher parallel-
ism and lower complexity than the other three. However,
the algorithm is applied specifically when the DFT length
is prime. In Section 3, VLSI arrays are designed based on
these four algorithms.

2.1 A new systolic DFT algorithm
Considering first an example of 5-point DFT, it can be
represented as

(3)

Taking the periodicity property of WN = 1 and permu-
ting the input and output sequence, eqn. 3 has the form

1 1 1

1 w'
I E E PROCEEDINGS-G, Vol. 139, No. 4, AUGUST I992

The matrix in eqn. 4 has the property that the elements
in the same diagonal line has the same value exclusive the
1s in the first row and the first column. The phenomenon
was found by Rader [27], and will be utilised to develop
a new systolic algorithm here.

If N is a prime number there exists some number n,
not necessarily unique, such that there is a one-to-one
mapping from the integers i = 1, 2, . . . , N - 1 to the inte-
gers j = 1, 2, . . . , N - 1 given by

j = ni modulo N (5)

where the double parentheses in eqn. 6 denote modulo N
arithmetic on the indices, that is

((7 ~ ')) ~ = ni modulo N (6)

In the following argument, ni denotes the operation 'd
modulo N' (for short). The fourier transform in eqn. 1
will be rewritten with i and k as the powers of a primitive
element n. Because i and k take on the value zero which
is not a power of ?I, the zero frequency components must
be treated specially, that is

(7)

N - 1

y(k) = x(0) + ,I x(i)Wik fork = 1, 2, _.., N - 1 (8)
, = 1

Replace i and k by n' and nk, eqn. 8 is rewritten as

based on the required input sequence or two-dimensional
DFT realisation. The algorithm in Fig. 3 propagates W - '
instead of the W in Fig. 1 and that in Fig. 2 propagates

b

y:-yw+x
w,-w

,) x - x

Fig. 1
LI Dependence graph
h Functions ofnodes

The algorithm in Reference 2

y'-y+x
xlcx

N - 1

Ank) = x(0) + 1 x(n')W""L
' = I

Set j = N - i. Eqn. 8 then becomes

(9)

It can be shown that eqn. 4 is obtained from eqn. 10 by
setting N = 5 and n = 2. The output vector is [AO), An'),
y(rr2), ..., y(nN)] and the input vector is [x(O), x (n - ') ,
x (f 2) , ..., ~ (n - ~)] . Observe that the superscript ik of W
in eqn. 1 is now (k - j) of W" in eqn. 10. It is the (k - j)
term that leads to the same value in the same diagonal
line of the matrix in eqn. 4. To help analyse the algorithm
in the following subsection, this algorithm is expressed as
the recursive form as follows

y(j, k') = y (j , nk) = y(j - 1, n') + x (n - j) ~ * ' - ' (1 1)

where y (j , nk) indicates the value of (n')th or kth DFT
sample at the jth recursive iteration. Here,
l < k < N - 1 , l < j < N - 1 and y(O,n')=x(O). The
DFT samples are obtained after N - 1 iterations, that is

(12) y(n') = y(N - 1, n')

2.2 The algorithms analysis and comparisons
Based on the method in [15], the recursive form in eqns.
1 1 and 12 can be used to construct the DG for the pre-
sented algorithm in Fig. 4a. In the graph, the nodes rep-
resent the operations to be executed as described in Figs.
4b and c. The directed arcs mean the data dependence
between two nodes; that is, the computed result from one
node should be sent along an arc for operating in the
other node. The DGs in Figs. I , 2, and 3 are constructed
for the three algorithms in [2, 3, 61. The systolic algo-
rithm illustrated in Fig. 1 was derived based on the
Horner's rule [2], and was used to design the arrays in
References 2 and 7. The algorithms illustrated in Fig. 2
and Fig. 3 are two other alternatives that were derived

IEE PROCEEDINGS-C, Vu1 139, No 4, A U G U S T 1992

y ' t y i - x w
x'-- x w

W ' t w

Fig. 2
a Dependence graph
b Functions of nodes
c Functions of dark nodes

The algorifhm in Reference 4

W' along another direction. The designed arrays in Ref-
erences 3, 6 and 9 are based on the two algorithms. One
major distinction between Fig. 4 and others is that the
two operands of each multiplication in Fig. 4 are
obtained from transmitted data, instead of the iterated
results from other operations. It will be shown that the
distinction leads to the benefits in computational com-
plexity and computing parallelism.

0 f Y (O) f Y (l) fY(2) fY(3) fY(4)

Fig. 3
a Dependence graph
b Functions of nodes

The algorithm in Reference 3

b

Y l I w

Y'+(Y+X)W
w'- w
x'- x

543

The computational complexity of the algorithms illus-
trated in References 2, 3, and 6 can be inspected from the
node operations in the associated DGs. If input data x(i)
are complex, one complex multiplication in the nodes of
these DGs can be computed by four real multiplications
and two real additions typically. The first column in
Table 1 lists the number of multiplications for these DGs
when the input data are complex. If input data are real,

Y:-Y+x
x-x

w / Y l
yL- y + X w
X#- X
w c w

Fig. 4 The presented algorithm
a Dependence graph
b Functions ofshaded nodes
c Functions of dark nodes

one multiplied operand in the node of Fig. 4c is real.
Hence, one complex multiplication in Fig. 4c can be com-
puted by two real multiplications. However, both oper-
ands of the multiplications in the nodes of other DGs are
still complex numbers despite the input data being real.
In this case, the number of real multiplications for Fig. 4a
is 2(N - 1)* and those for Fig. la, Fig. 2a, or Fig. 3a are
0(4Nz) as illustrated in the second column of Table 1.

To examine the computing parallelism of systolic algo-
rithms, a critical computing path is introduced. A critical
computing path is the longest data flow path from input
signal to output signal. The required time in such a path
indicates the minimum required time for the computation
of a systolic algorithm. In Fig. 4a the data flow path from
x(0) to y(3) is the critical computing path. If systolic array
realisation is considered, one PE will be one pipeline
stage and the time for a signal to traverse a node in the
DGs is assumed to be a system clock cycle labelled as T.
The required time in the critical computing path is
(2N - 2) T . Similar analysis can be applied to Figs. 1-3
and the required time is listed in the third column of
Table 1. If two-level pipelined systolic array realisation is
adopted, the AUs in the PES of array will be implement-
ed with pipelined architectures and the required time of
the critical path should be checked from all the AUs in a

Table 1 : Performance comparison of the
complex addition and t , = consumDtion t i m

DG. Examining now the dark nodes in Fig. 4c, the oper-
ator from the input arc, labelled as y, to the output arc,
labelled as y', is an addition. The operators for the other
pairs of arcs labelled as x, x' and w, w' are null. This
indicates that the critical computing path involves
(N - 1) complex additions as well as one complex multi-
plication. This means that the massive multiplications in
Fig. 4a can be computed in parallel with (N - 1) complex
additions and one complex multiplication. Considering
the difference between Fig. 4 and Figs. 1-3, the operators
for the pair of arc y, y' in Figs. l b and 26 are a multipli-
cation and an addition, and the operator for the x, x' in
Fig. 3c is a multiplication. The required time in the criti-
cal computing paths for the four DGs is listed in the
fourth column in Table 1 with the assumption that a data
signal traversing a node should take at least one unit of
time. Also, the consumption time of a complex multipli-
cation and an addition of these four algorithms are
assumed to be equal so that the scrutiny of computing
parallelism can be isolated from their variances in com-
putational complexity. One interesting phenomenon is
that the computing parallelism in Fig. 4 is much higher
than that in Figs. 1-3 despite their similar functionality.
From Table 1 it is obvious that the presented algorithm
possesses higher computing parallelism and lower com-
putational complexity than the other three but is applic-
able when N is prime.

3 VLSI array realisation

As described in the preceding section, the development of
the systolic algorithms for the DFT can reduce the
number of input operands W" when computing the
DFT. The reduction provides the chances to design the
VLSI arrays which can attain high computing power, low
I/O band width, and low numbers of 1 /0 channels.
However, the systolic arrays in References 2, 3, 6, and 7
designed from these algorithms have not effectively uti-
lised this property. As described in Section 1, there are
systematical methods to design systolic arrays and two-
level pipelined systolic arrays [l l-213. But these methods
do not have proper considerations for the 1/0 problems.
The systolic arrays in References 2, 3, 6, and 7 can be
designed based on the systematical design methods and
have left the I/O problems unsolved. In this section,
seven systolic arrays and seven two-level pipelined systol-
ic arrays are so devised; that is designed with particular
attention given to the realisation of the parallelism in the
algorithm and with care being given to the manipulation
of 1 /0 problems. The performance of these arrays is sum-
marised in terms of various parameters in Tables 2-4.

3.1 Design of systolic arrays for DFT
The seven systolic arrays shown in Figs. 5-11 are based
on the four DFT algorithms presented in the preceding

four DGs (t . = consumption t ime for
e for comdex multidicationl

544

DGs Number of Number of Required time in Required time in
multiplications multiplications critical computing critical computing
for complex data for real data path when systolic path when two-level

array realisation pipelined systolic array
is considered realisation is considered

Fig. 1 4(N - l) N 4~ - 1) N (ZN - z)r
Fig. 2 4(N - l) N 4 (~ - 1) N (ZN - i) r Nf, + (N - l) f , + 1
Fig. 3 4N2 4N2 (z N - i) r Nf, +Nf , + (N - 1)
Fig. 4 4(N - 1) z 2 (~ - 1) 2 (ZN - z)r

(N - l) f , + (N - l) f , + (N - 1)

(N - l) f , +f, + (N - 1)

IEE PROCEEDINGS-G, Vol. 139, No. 4, A U G U S T 1992

Table 2: Performance comparison of the systolic arrays (T=system clock cycle or the
consumption time for one PE, L = wordlength, ACT= average computation time.
N = block length, A, = area of one multiplier, and A, = area of one adder)

Arrays Area Throughput ACT No. of Latency No. of IJO Feature of
complexity rate PES time channels l/O sequence
of PE
(for real data)

Fig. 5 4Am+34, 1/T (N - l) T N - 1 (3N - 4)T 4L + 1 Natural order
Fig.6 4A,+34, l / T NT N (4N - 3)T 3L + 1 Input sequence

are reverse
Fig. 7 4Am+4A, 1/T NT N (3N - 2)T 3L + 1 Natural order
Fig. 8 4Am+4A. l / T NT N (3N - 2)T 3L + 1 Output sequence

are reverse
Fig. 9 4A,+3A, 1/T NT N (3N - 2)T 3L + 1 Input sequence

are reverse
Fig. 10 4A,+34. 1/T NT N (4N - 3)T 3L + 1 Natural order
Fig. 1 1 2Am+2A, 1/T (N - l) T N (3 N - 4) T 6 L + 1 I/O sequence

are scrambled

section. These arrays have two distinctive features. First,
input data, twiddle factors and computed results are
piped in and drained out from the IjO channels at the
extreme ends of a linear array. Second, 'tag control' is
applied to control the contents of local registers and ini-
tialise arrays without an overhead in the average compu-

a

Xl(1) 0 t=1 t= 16 yZ(4)
Xl(2) 0 t=2 t=15 y2(3)

x l (4) 1 xl(3) 1 t=3

xl(4)W; x2(1) 0 t=5
xl(4)W; x2(2) 0 t=6
xl(4) W i xZ(3) 1 t=7
x2(4) 1 t-8

xZ(4) W t=l 0

t= 12 y2(0)

t=9 yl(2)
t p ' t t p t=8 yl(1)
t c + tc t = 7 yl(0)

t= l l y l (4)
t=10 yl(3)

If tc=1

Xl(4)WI: xZ(0) 0 t=4

x Z(4) Wh t-9

y* -yw+tp

X ' C X

Fig. 5
LI Time sequence ai intput and output data are indicated I" the same row of each
data by 'I = *'
h Functions ofthe PE m the array

A systolic arrayfor DFT with block length N = 5

a

t=22 y2(4)
wl: 0 t=l

WA
wa

t=21 y2(3)
t=20 y 2 (2
t=19 y2(1) W$ x l (4) 1 t = 4

1 x l (3) 0 t=5
Wb x l (2) 0 t=6 t=16 y l (3)

t=15 y l (2)
t=14 y l (1)
t=13 yl(0)

W; x l (l) O t = 7 x ' c x
tc'- t c

w; Xl(0) 0 t=8 If tc= 1
W$ x2(4) 1 t=9
1 x2(3) 0 t=10

w:, x2i2) 0 t= l l

then
tP:-Y
W,"P

tp',- t P
w,+ w

Y -x
else

Y +YW+X

tation time. (The average computation time is the average
time to finish one DFT calculation when consecutive
DFT calculations are applied; it also indicates the
minimum time interval between the first data of two con-
secutive DFT calculations piped in.) The performance of
these seven arrays is illustrated in Table 2.

3 Xl(0) 0 t=o

Xl(1) 0 t=l
x l (2) 0 t=2
x l (3) 0 t=3
x l (4) 1 t=4
XZO) 0 t=5
x2(1) 0 t=6
XZ(2) 0 t=7
x2(3) 0 t 8 then

x ' c t p l
w'-tp2
y ' c y +ip 1

w'- w
yc- y+wx

I

elsf
x -wx

Fig. 7
D Time sequence of input and output data are indicated in the same row of each
data by 'I = *'
b Functions ofthe PE in the array

A systolic array for DFT with block length N = 5

X Z (O 1 1 w$ t=5 I w'-w W ' C W
x ' c x w
tL-- t C
If tc=1
then

y -xw
tq-Y

else
tp'--null tp'+p

y<-y+xw

t=18 y2(0)
t=17 yZ(1)
t=16 y2(2)
t=15 yZ(3)
t= 14 yZ(4)
t=13 yl(0)

t=10 yl(3)
t=9 yl(4)

t=12 yt(1)
t = l l yl(2)

Fig. 6
a Time sequence of input and output data are indicated in the same row of each
data by 'I = *'
b Functions ai the PE in the array

IEE PROCEEDINGS-G, Vol. 139, No . 4 , AUGUST 1992

A systolic array for DFT with block length N = 5 Fig. 8
Y Time sequence of input and output data are indicated in the same row of each
data by 'I = *'
b Functions of the PE In the array

A systolic array for DFT wirh block length N = 5

545

Consider now in detail the seven systolic arrays shown
in Figs. 5-11. The arrays in Figs. 5 and 6 are derived
from the algorithm illustrated in Fig. 1 ; the arrays in
Figs. 7 and 8 from Fig. 2; the arrays in Figs. 9 and 10
from Fig. 3; and the array in Fig. 11 from Fig. 4. Multi-
ple arrays can be derived from a DG and here we present
two arrays for each DG in Figs. 1-3 and one array for
the DG in Fig. 4. Other arrays can be exploited using the
systematical design methods for systolic arrays [ll-191.
The demonstration of these particular arrays (instead of
others) is based on the performance in the number of PES
and computation time; other choices of array behave
worse in this aspect. The designs of these arrays are
based partly on the systematic design method given in
References 11-19 and partly on the application of the tag
control scheme explained in Reference 22.

In Figs. 5-11, N = 5 and consecutive DFT calcu-
lations are assumed. The first input and output data
bundles are denoted by xl(i) and yl(i), and the second
input and output data bundle are x2(i) and y2(i) and so
on. Analysing for example the array in Fig. 1 1 , input data
x(i) and twiddle factor, Wik are piped in from the left
most PE while output data y(k) are drained out from the

0

x i i 3 j 0 t=i
Xl(2) 0 t=2
Xl(1) 0 t=3

1 Xl(0) 1 t=4
W,’ x2(4) 0 t=5
Wi2x2 (3) 0 t=6

W i 4 x2(1) 0 t=8
1 X U O) 1 t=9

w i 3 x2(2) 0 t=7

w ” t=10

IT-
-

Y

tP t C

W

t=17 y2(3)
t-16 yZ(2)
t=15 yZ(1)

t=13 y l (4)
t=12 y1(3)
t-11 y l (2)

tp:- tP t=10 y l (1)
t c + tC t=9 y l (0) If tc=1

I W ;2 t=ll J
else

X“ x
y,-(y+x)w

Fig. 9
Y Time sequence of input and output data are indicated in the same row of each
data by ’t = *’
b Functions of the PE in the array

A systolic arrayfor DFT with block length N = 5

0

w” 0 t= l
wiz 0 t=2

wl;” xu01 1 t=4

Wk3 0 t=3

1 x1(1)0t=5
W? xl(2) 0 t=6
Wiz xl(3) 0 t=7

W;y’ xl(4) 0 t=8
w i 4 x2(0) 1 t=9

w” 2(2j 0 t= l l
1 XX1) 0 t=10

X ’ - x
t c ’ c tc
If tc=1

then
tP,‘-Y

te- tP

w - t p
y,--xtp

e lse

w - w
Y’ - (Y +x)w

t=22 yZ(4)
t=21 yZ(3)

t=18 yZ(0)
t=17 y l (4)
t=16 y l (3)
t=15 yl(2)

t=20 y2(2)
t-19 y2(1)

t = l 4 y l (1)
t=13 y l (0)

Fig. 10 A systolic arrayfor DFT with block length N = 5
(I Time sequence of input and output data are indicated in the same row of each
data by ‘t = *’
b Functions of the PE in the array

546

right most two PES. The time instants for the input and
output data sequence are also indicated in the same row
of each data. Fig. 1 lb illustrates the functions of the PES

Xl(2) W $ 0 ’ t=o

XNl) w; 1 Xl(0) t=3
XX2) w;; 0 Xl(0) t=4

x211) w;: 1 XXO) t=7

x3(4) w;: 0 X2(0j t-9

xl(4) W a 0 .. t=l
xl(3) W? 0 ’’ t=2

xZ(4) W,?, 0 xl(0) t=5
x Z 3) Wd 0 xl(0) t=6

x3(2) W k 0 xX0) t=8
0

1 1
yX0) t=15

yZ(1) t=14
y2(3) t=13
yZ(4) t=12
y2(2) Yl(0) t= l l
y l (1) t=10
y l (3) t=9
~ 1 1 4) t=8
y l (2) t=7

t“c tp-f$f+ tc‘ t p y x + x (o) tc __..

Y

Y#+Y

tp’- tP
w‘- w

t C ’ C tC
If tc=l.

then

else

X ’ C t p
y C y + w t p

x;-x
y c y + w x

If ta=l.
then

else
t p ’ c x (0) + t p

X’f x + t p

b

Fig. 11 A systolic arrayfor DFT with block length N = 5
a Time sequence of input and output data are indicated in the same row of each
data by ‘f = *’
b Functions of the PES In the array

in the array, Fig. 12 depicts the activity of the array at
successive six clocks from t = 3 to t = 8, where the yp’(k)
is the iterative result y (j , k‘) in eqn. 1 1 of the pth data
bundle. Each PE in the array has two additional links
named ‘tp’ and ‘tc’ as depicted in Fig. l lb. Link ‘tp’ is
used to carry data to appropriate PES and the data in
link ‘tc’ is to tell PES when to load the data in link ‘tp’
into its local register. The data in ‘tc’ is a one-bit control
signal, called ‘tag control’, and are used to tell PE when
to perform suitable operations. Based on the control
scheme, the data in the local register of each PE can be
controlled appropriately from the input channels at the
extreme ends of a linear array. The hardware overheads
paid for the scheme in each PE is (L + 1) one-bit links
and about one demultiplexer. The time overhead is
(N - l)T units of time, where T is the time period
required for the operation in a PE. However, the time
overhead can be skipped by overlapping the computation
time of two consecutive DFT calculations. As depicted in
Fig. 11, there is no extra time between the input of the
first bundle xl(i) and the second x2(i), or between the
output bundle yl(k) and the bundle y2(k). In other words,
the tag control should give overhead to the latency time
of a DFT problem and no overhead to the average com-
putation time. (The latency time is the consumption time
from the input of first data to the output of the final data
for a DFT calculation.) The phenomenon can also be
checked from the array activity in Fig. 12. From t = 4 to
t = 7, the array calculates the first DFT problem by
using xl(i) and simultaneously brings x2(i) for the second

IEE PROCEEDINGS-G, Vol. 139, No. 4, AUGUST 1992

DFT problem. Such concurrent computing favours the
average computation time.

By the same analytical method just described, the
other arrays in Figs. 5-10 can be checked. The one-bit

one real addition. Since one complex multiplication can
be realised by four multipliers and two adders, the com-
plexity of a PE is (4 4 + 3A,), where A,,, and A, are the
layout area required for one multiplier and one adder,

t =3

t=4

t=6

t =7

t=8

Fig. 12 The activity of the systolic array in Fig. I 1 at seven successive instants of t ime

control link ‘tc’ is used in these arrays either to control
the contents of local registers or to assign suitable oper-
ations for PES. The link ‘tp’ in the array is used to carry
input data x(i) or twiddle factor W k from the left-most
PE to appropriate ones, or carry output result y(k) from
the PES to the right-most one. The ‘tp’ links in Figs. 6-8
are used to carry the twiddle factors and output data
simultaneously. The performance of these arrays in the
area complexity of a PE, average computation time, the
number of PES, latency time, the number of 1/0 channels
and the features of 1/0 sequence is listed in Table 2
where the area complexity of a PE is approximated by the
area required for the adders and multipliers in the white
PES of the associated array. The area complexity of a PE
is evaluated by the required multiplications and additions
in a PE. Considering for example the PE functions of
Fig. 5b, this consists of one complex multiplication and

I E E PROCEEDINGS-G, Vol. 139, No. 4 , A U G U S T 1992

respectively. Here, the area complexity is evaluated only
when input data’is real instead of complex because all the
complexity of the arrays in Figs. 5-11 is (4 4 , + 4A,)
when input data are complex. For the array in Fig. 11 the
input sequence is nk for k = 1, 2, . . . , N and the output
sequence is n-j for j = N , N - 1, . . ., 1. For comparison,
it is assumed that the consumption time of a PE (or the
system clock period) in all the arrays in Table 2 is T . If
the required multiplications and adders in a PE are per-
formed serially by one multiplier and one adder, the area
complexity for all the PES in these arrays will be equal
although the clock period will be proportional to the
area complexity listed in Table 2. That is, the area com-
plexity and the system clock is a trade-off.

In addition to using the systematic methods given in
References 11-19 and tag control to design systolic
arrays in Figs. 5-11, another detail (or ‘trick’) is used to

547

Table 3: Performance comparisons of the two-level pipelined systolic arrays (TLPSAs) (t. = units of consump-
tion t ime for the adders in a PE, t , = units of consumption t ime for the multipliers in a PE, r = units of con-
sumption t ime for the multipliers and adders in a PE, L = DFT wordlength. ACT = average computation time,
N = block length. A, = area of one multiplier, and A, = area of one adder

Arrays Area Throughput ACT No. of Latency No. of 110 Feature of
complexity rate PES time channels I/Q sequence
of PE
(for real data)

TLPSA for Fig. 5 U , + 34* 1 N - 1 N - 1 (N - l) T + (2 N - 3) 3 L + 1 Naturalorder
TLPSA for Fig. 6 4A,+34, l / r N T N (3N - 2) T + (N - 1) 3L + 1 Input sequence

are reverse
TLPSA for Fig. 7 4A, + 4A, l / t , Nf, N N T + (N - 1) I , 3L + 1 Natural order
TLPSA for Fig. 8 4A, + 4A, l l r , Nf, N N T + (N - 1) f a 3L + 1 Output sequence

are reverse
TLPSA for Fig. 9 4A, + 1 N N N T + (2N - 2) 3L + 1 Input sequence

are reverse
TLPSAfor Fig. 10 4Am+34, l /T ' N T N (3N - 2)T + (N - 1) 3L + 1 Natural order
TLPSA for Fig. 1 1 24, + 24, 1 (N - 1) N (N - l) t a + t , + (2 N - 4) 6 L + l I/Osequence

are scrambled

design the array in Fig. 1 1 . This is also the reason why
two arrays result from every DG in Figs. 1-3 but only
one array from Fig. 4. Considering the DGs in Figs. 1-4,
there are (2N - 3) values of Wik which will be supplied
for the computation of Fig. 4 but only N values will be
supplied for others. It seems that this may result in addi-
tional cost in computation time or the number of input
channels. As shown in Fig. 1 1 , it can be found that only
one input channel is used for W" and the output data for
N points of DFT can be obtained for every (N - 1)
clocks. How, then, can it be possible that the 2N - 3
values can be transmitted in (N - 1) clocks through one
channel? The 'trick' used here is that the consequent sets
of DFT computations can be overlapped so that, on
average, only (N - 1) values is needed for a DFT compu-
tation. For the array shown in Figs. 1 1 and 12, the W"
values are piped in from t = 0 to t = 6 to compute the
first data bundle yl(i). Likewise, the second data bundle
y2(i) is computed by using the W" piped in from t = 4 to
t = 9. It means that those W" values piped in from t = 4
to t = 6 are used to calculate both the first and the
second output bundles. It is the overlap that avoids over-
head in time or channels. The existent condition for the
overlap comes from the cyclic property underpinning the

From Table 2 it can be seen that the throughput rate
of all the arrays in Figs. 5-1 1 is equal. The average com-
putation time, the number of PES, and the number of 1 /0
channels in Figs. 6-10 are equivalent. The latency time of
the arrays in Figs. 6 and 10 are longer than the others;
this comes from the time to initialise appropriate twiddle
factors for arrays and to drain results to the boundary
PE. The area complexity of PES in Figs. 7 and 8 is larger
than the others. The array in Fig. 5 has one less PE than
all other arrays and provides a smaller latency time than
those in Figs. 6-10. One special array which requires
notice is that of Fig. 11 : this array provides an area com-
plexity of a PE with approximately one half that of the
others. The benefit comes from the lower computational
complexity of the associated algorithm presented in the
preceding section. Table 2 provides a selection criteria for
the feasible systolic arrays in different applications.
Despite the variance among these arrays, all have two
attributes when compared with others [2, 3, 6, 71. First,
the input data, twiddle factors and computed results are
piped in and drained out from the 1/0 channels at the
extreme ends of a linear array, and the number of chan-
nels is independent of DFT length. Secondly, the tag
control is applied to control the contents of local regis-

modulo operation in eqn. 5, that is n - (N - -i) - - n.

548

ters and initialise arrays without any overhead in average
computation time.

3.2 Design of two-level pipelined systolic arrays for
DFT

The systolic arrays in the preceding subsection can be
redesigned into two-level pipelined systolic arrays with
performance as listed in Table 3. In this table, we assume
the numbers of pipeline stages for an adder and a multi-
plier are t , and t,, respectively. If the basic pipeline
period is one, t, and t , are also the consumption time of
an adder and a multiplier. Also, T is assumed to be the
sum of t,, and t , , i.e. T = t , + t , . If the required time of
the adder and the multiplier in two-level pipelined systol-
ic arrays is compatible with that in systolic arrays, i.e.
T T , the performance of these two types of arrays can
be compared from Tables 2 and 3. It can be seen that the
redesigned arrays have the same performance as the orig-
inal arrays in the area complexity, the number of PES,
the number of I/O channels, and the features of I/O
sequence. But these two-level pipelined systolic arrays
have much better performance in the throughput rate,
the average computation time, and the latency time than
the associated systolic arrays. If the last rows of Tables 2
and 3 are checked by substituting N = 5, t, = 2, t, = 3,
and T = 5, the associated systolic array exhibits through-
put rate being I/$ latency time being 55, and average
computation time being 20 while the associated two-level
pipelined systolic array exhibits throughput 1, latency 18,
and time 4. Fig. 13 is the two-level pipelined systolic
arrays redesigned from Fig. 1 1 by setting t, and t , as 2
and 3, respectively. Table 4 list the required number of
registers associated with each link in these redesigned
arrays in terms of the parameters t, and t, . From tables

Table 4: The number of register elements required for each
link in various arrays (t . and t , are, respectively. the
number of pipeline stages or the units of consumption t ime
for the adders and multipliers in a PE). Note: the link names
are consistent w i t h the names given in Fig. 511.

Arravs Reaister numbers

X Y W tD tc
____ ~

TLPSA for Fig. 5 1 0 f , + I , 1 , + I , + 1 f a + f ,

TLPSAforFig.6 1 0 f , + f , f , + f , + l 1
TLPSA for Fig. 7 1 , 0 1 f , + I , f a
TLPSAfor Fig. 8 1 , 0 1 f a + f m f,

TLPSAforFig.9 1 0 f , + t , f , + f , + l f , + f ,
TLPSA for Fig. 10 1 0 f , + t , 1, + I , + 1 1
TLPSA for FIP. 1 1 1 0 I . + 1 f. + 1 f.

IEE PROCEEDINGS-G, Vol. 139, N o . 4 , A U G U S T 1992

3 and 4, the desired two-level pipelined systolic arrays
can be configured. Consider for example the array in Fig.
11, the five links in Fig. l l b are labelled as x, JJ, w, 'tp'
and 'tc'. If t, and t, are set as 2 and 3, the number of
delay elements associated with each links of the array in
Fig. 1 3 is then obtained by substituting the values oft,
and t , to the seventh row in Table 4. The time sequence
of input data and computed result of the array can
be configured from the performance prescriptions in
Table 3.

t=10
t=14

xlf4I Wz 0 " t = l

R

y2(1) t-21

y2(4) yZ'(0) t-19
y 2 m y 2 (0) 1-16
yl(1) 1-17
yI(3) t-16
yI(4) yI'(0) 1-15
y l (2) y l (0) t- 14

yZ(3) t-20

x (0) :
tc

Y

Y'- Y
w'- w

tC -tc
If tc I,

then

if t c l= 1 or tc2= 1,
then

else

t P,'- tP x'-x(O) -
x -x'+tp

x'-X
x -x'+tp x'-tp

y'- y +wtp
else

x'-x
y<-y+wx

b
Fig. 13 A two-level pipelined systolic array for DFT with block length
N = 5
(I Time sequence of input and output data are indicated in the same row of each
data by ' t = *'
b Function of the PES in the array

From the performance of these arrays in Table 3, the
arrays redesigned from Figs. 5, 9 and 11 exhibit better
performance in the throughput rate and the average com-
putation time. Also, it can be seen that the array
redesigned from Fig. 11 possesses higher speeds than the
others. As listed in Table 1, the critical computing path
for Fig. 4 is (N - 1)t. + t , + (N - 1). Checked with the
latency time (N - 1)t. + t, + (2N - 4) in Table 3, the
array needs an additional (N - 3) time units for initial-
isation. Similar checks can be made for other arrays to
show that the two-level pipelined array in Table 3 can

realise the maximum parallelism with some overheads in
the initialisation of arrays.

Two specialties in the two-level pipelined systolic
array redesigned from Fig. 11 are that the latency time is
related with the computation time of only one multiplier
and the average computation time is independent of the
computation time of multipliers or adders. The two spe-
cialties indicate that the hardware cost required for the
multiplier is much more important than the associated
speed when the implementation of the two-level pipelined
systolic array is considered. From the latency time, an
interesting result is that the (N - 1)' multiplications in
Fig. 4 can be computed by (N - 1) multipliers in a linear
array in a time related with just one multiplier. Obvi-
ously, the required time of (N - 1)' multiplications has
been suitably absorbed by the pipelined stages of AUs in
[N - l)t, + t, + (2N - 4)] unit of time. The absorption
results from the inherent parallelism of the computing
algorithm.

One special point in Fig. 1 3 is that the data in link 'tp'
are piped in every clock while the number of pipeline
stages in an adder is two. Hence, the required yp(0) will
be accumulated as two separated parts in the two pipe-
line stages of adder and extra manipulation is needed to
add the yp'(0) and yp"(0) to obtain final yp(0). The argu-
ment can be extended to the general case where the
number of pipeline stages in an adder is q. There will be q
links, labelled as tcl, tc2, . . . , tcq, between the white PE
and the shaded PE. yp(0) will be obtained by adding q
parts of data. The delay elements associated with the
links of Fig. 1 3 are designed with the assumption that t,
is two and t, is three. For a general consideration, the
number of delay elements between white PES is listed in
Table 4 and the number of delay elements between a
shaded PE and a white PE is one for link 'tp' and 1, 2,
. . . , y for links tcl, tc2, . . . , tcp, respectively.

4

The numbers of PES in the VLSI arrays presented in
Section 3 are equal to the DFT length N or N - 1. When
the DFT length is long, the realisation of the DFT in an
array with a reasonable number of PES is necessary. In
this section, two schemes are presented to consider this
issue: Scheme 1 decomposes one DFT problem with
length N into P DFT problems each with size Q and
Scheme 2 factorises a one-dimensional DFT problem
into a two-dimensional DFT problem. The factorised
results can be efliciently computed by small-size arrays
without sacrificing much time. Comparisons of the two
schemes show that Scheme 1 requires smaller interme-
diate storage and lower control overhead while Scheme 2
gains benefits in computing speeds. The performance of
the two schemes is summarised in Tables 5 and 6.

VLSI arrays for long-length DFT

Table 5: Performance of scheme 1 (t, and t , are, respectively, the units of con-
sumption time for the adders and multipliers in a PE; T = units of consumption of
time for the multipliers and adders in a PE, and N = PO)

Arrays Throughput ACT Latency No. of I/O No of Suggested
rate time channels PE P

Fig. 5 1 /PT PNT (w + ~ ~ - z) r 3 ~ + 1 Q f (~)
Fig. 7, Fig. 9 l /PT PNT (P N + Z Q - 2) T 3 L + 1 Q 2
TLPSA for Fig. 5 1 /P PN (P N + Q T + Q - 2) 3 L + 1 Q f (N, T)
TLPSA for Fig. 9 1/P PN (P N + Q T + Q - 2) 3 L + 1 0 (T + l)
TLPSA for Fig. 7 l/&- PNf.. (P M - + Q T - f -) 3L + 1 Q (f , + f.Mm

IEE PROCEEDINGS-G, Vol. 139, N o . 4 , A U G U S T 1YY2 549

Table 6: Performance of scheme 2 (N = n'n" for n'

Arrays Throughput ACT Latency t ime No. of 110 No. of

Fig. 5 1 /T NT (2N + n' +n" - 4) T + (n' - l) T (4 L + 1) 2 n ' + n " - 2

Fig. 1 1 N / (N - n')T (N - n')T (2N + n' - 4)T (6 L + 1) 2 n'+n"
TLPSA for Fig. 5 1/T NT [2N + (n ' - 1) T + (n " - l) T - 21 + (n ' - 2) (4L + 1) 2 n '+n" - 2
TLPSA for Fig. 9 1/T NT (2 N + n ' T + n " T - 2) + (n ' - 1) (3 L + 1) 2 n'+n"
TLPSA for Fig. 7 l / t , Nf , (2 N + n ') f , + (n ' + n ") f , - f , (3 L + 1) 2 n'+n"

T L P S A f o r Fig. 1 1 N / (N - n ") (N - n ") 2 (N - l l + (n ' - l) (n ' + n " - 2) t . + 2 r - (6 L + 1) 2 n ' + n "

n")

rate channels PE

Fig. 7, Fig. 8. Fig. 9 1/T NT (2N + n' + n" - 2) T + (n' - l) T (3 L + 1) 2 n'+n"

TLPSA for Fig. 8 l / f , Nf , (2 N + n ') t , + (n ' + n ") r , - f , (3 L + 1) 2 n'+n"

4.1 Scheme 1
The DFT problem is described as

y(k) = DFT(x(i)) = x(i)Wik
N - 1

i = 0

One method of realising a DFT with length N in array
with PE number Q is to decompose the DFT problem
into P DFT problems each with length Q , where P is
equal to N / Q . The idea can be achieved by replacing the
index i in eqn. 13 by a coarse index and a vernier index
as follows:

i" = 0, 1,. . ., Q ~ 1 i = (i" + Qi') i' = 0, 1, , . _, P - 1

Then,
P - 1 Q - 1

i ' = o y - 0
(14) y(k) = 1 x(i" + Qf)Wi"+Qi')k

for i' = 0, 1 , . .. , P - 1; i" = 0, 1, . . ., Q - 1; and k = 0, 1,
..., N - 1. Eqn. 14 can then be expressed as P DFT
problems each has length Q and N outputs as foliows:

where
Q - 1

i" = 0
y(k , i') = 1 x(i" + Qi')Wyk

with i' = 0, 1, ..., P ~ 1; k = 0, 1, ._., N - 1. The P DFT
problems; i.e. y(k, i'), can be serially computed by the
arrays presented in preceding section, and the final result
Ak) is obtained by computing eqn. 16. For the arrays in
Figs. 5, 7 and 9, the two-step computation can be efi-
ciently computed by feeding the output links 'y" and 'tc"
in the right-most PE to the input links 'y' and 'tc' in the
leftmost PE through first-in first-out buffer (FIFO) and
one demultiplexer. The size of the FIFO is (N - Q).

Taking Fig. 5 as an example, eqn. 16 can be rewritten
as

y(k) = ((. . . (y(k, P - 1)WQk + y(k, P - 2))WQk

+ ' ' ' + y(k, l))WQk + y(k, 0) (1 7)
The y(k , i') can be serially computed by the array in Fig. 5
and the multiplication of W Q k can be computed through
the Q consequent multiplications of W k in Q PES. Fig. 14
depicts the modified version of the array in Fig. 5 for the

5 50

realisation of long-length DFT. Fig. 14 has an extra link
with FIFO to transmit the result and tag signal from the
right most PE to the input link of the left most PE. As a
result the tag signal can tell the demultiplexer in the left
most part to transmit the y(k, i') into the input link y of
the left-most PE. It is such an arrangement that distrib-
utes the computations of eqn. 17 into the Q PES without
overheads in hardware and time, and the number of PES
is Q instead of (Q - 1) as indicated by Fig. 5. A similar
scheme may be applied to the arrays in Figs. 7 and 9 by
using the same size of FIFO and demultiplexer. Based on
the scheme, the systolic arrays in Figs. 5 , 7 and 9 and the
associated two-level pipelined systolic arrays can realise
long-length DFT with performance as shown in Table 5.
By replacing P = 1, and Q = N , it can be checked that
these performances will be equal to those in Tables 2 and
3. In other words, the effect of the scheme is to reduce the
number of PES and increase the average computation
time by a factor P. It should be noted that eqn. 16 results
by replacing the index i in eqn. 13 by (i" + Qi'). Such a
replacement is suitable for the arrays in Figs. 5, 7 and 9
but not for the arrays in Figs. 6, 8 and 11. Observing the
arrays in Figs. 5, 7 and 9, we find that all x(i) must be
stored in the PES an one-to-one manner. Since index i is
the pointer to x(i) as in eqn. 13, the index i should be
suitably partitioned as indicated by (i" + Qi') to reduce
the number of PES in these arrays. If the number of PES
in the arrays in Figs. 6 and 8 is to be reduced, index k
should be similarly replaced by (k" + Qk'). However, as
we have pointed out, the scheme increases the average
computation time by a factor P . From Table 3, the two-
level pipelined systolic arrays of Figs. 6 and 8 is much
worse than that of Figs. 5 and 9. Hence, we shall not

size=N-Q

0

t=O xl lN-Si n U
t=l x l i N - i j 0

t=5 w l 0 0

!=2 xl(N-3) 0
t =3 xl(N-2) 0
t=4 1 xl(N-1) 1

t=6 Wi

t=N+2 WE-' xl(N-8) 0
!=N+3 W#' xl(N-7) 0

yl(N) t=PN+8
y 1 (N-1) !=PN+ 7

t=PN+ZW:'* x2(N-3) 0
t=PN+3 W{-l x2(N-2) 0
t PN+4 1 xZ(N-1) 1

Fig. 14
realise D F T wifh blocklength N = PQ using fhe scheme I

Modified array from that in Fig. 5 with number Q = 5 to

IEE PROCEEDINGS-G, Vol. 139, No . 4 , AUGUST I992

discuss such a replacement here. If the scheme is applied
to the array in Fig. 11, it should also induce bad per-
formance in the average computation time. As discussed
in Section 3, the average computation time of the systolic
array or two-level pipelined systolic array from Fig. 11
can be kept low by using the property, n - (N - l - i) = xi.
The property should be useless if the arrays are to
compute long-length DFT based on the scheme and the
average computation time would degrade considerably.
Because of the above reasons, the scheme is applied only
to the arrays in Figs. 5 ,7 and 9.

Comparing Tables 2 and 3 with Table 5 , we find that
scheme 1 induces an increase to the average computation
time and reduce the throughput rate by a factor P . When
the values of latency time in Tables 2 and 3 are compared
with those in Table 5, the influence of scheme 1 on the
latency time cannot be directly captured and some
analysis should be applied. Consider, for example, the
latency time (P N + QT + Q - 2) in the fourth row of
Table 5 and the time (N T + (2 N - 2)) in the fifth row of
Table 3, if scheme 1 is to have a decrease effect on latency
time, then

(18)

(19)

(P N + QT + Q - 2) < [NT + (2N - 2)]

and P should be

P < (T + 1)

This shows that the feasible value of P is independent of
N . Based on the analysis method, the entries in the fifth
column of Table 5 are filled in. In Table 6, thef(N) and
f (N , T) mean the function of N and function of N and T ,
respectively. It then follows that the scheme sometimes
gives a positive effect on both computation time and PES.
As a result, the scheme can be undoubly used when the
latency time, instead of average computation time or
throughput rate, is the decisive requirement.

4.2 Scheme2
Scheme 1 factorises a long-length DFT into multiple
small-length DFT problems and then computes these
problems serially by a small-size array. If the number of
PES is multiplied with the average computation time the
result will be a constant value. So, the serial computing in
scheme 1 has a tradeoff between the array size and

average computation time. In other words, the parallel-
ism and nearest neighbour interconnection which are
attributes of VLSI array should blend the concepts of
serial computing and temporal dependence when realis-
ing long-length DFT. If the serial computing is linked
with the FFT algorithms which emphasise the reduction
in the number of multiplications through serial comput-
ing, it may have some prominent effects on the per-
formance. The scheme developed here is based on the
idea.

The second scheme adopts the Good-Thomas factor-
isation [23 , 241 in algorithm level and fits the factorised
results into the arrays presented in Section 3. The deriva-
tion of the Good-Thomas algorithm is based on the
Chinese remainder theorem for integers. It shows that
when N = n’n’’ and n‘ and n“ are relatively prime. Eqn. 13
can be rewritten as

“ “ - 1 “‘-1

(20) y(k’, y) = p i ’ k ’ 1 ,.(i?, q f k ”
y - 0 i ,=o

where fi = exp (- j2n/n”) and y = exp (-j2n/n’). Eqn. 20
is a two-dimensional DFT and can be computed serially
through one-dimensional DFT process. The number of
multiplication-adders is about N(n’ + n”) in the comput-
ing process. Compared with the N 2 in eqn. 13, eqn. 20
possesses simplified computational complexity.

If eqn. 20 is realised by two arrays with the numbers of
PES being n’ (or n’ - 1) and n” (or n” - I) , the computing
procedure is given in Fig. 15a. The input data is first
mapped to a two-dimensional form and fed into a linear
array with size n” (or n” - 1) to compute the n’ DFT
problems serially. The computed result from the first
array is then fed to the second array with size n’ (or
n’ - 1) to compute the n” DFT problems serially. The
final two-dimensional result is mapped to one-
dimensional form in original order. Fig. 15b shows the
diagram of the arrangement for input data, two-
dimensional input data, two-dimensinal result, and final
natural order with n’ and n” are assumed to be five and
three respectively. The performance of various .VLSI
arrays which realise the computing procedure in Fig. 1%
is repiesented in Table 6 by neglecting the overhead in
scrambling the input and output data and the communi-
cation of the two arrays. Compared with Tables 2 and 3,
the scheme in Table 6 retains the average computation

1

Array 2 with s izen” ~ ~ $ & n 9
input

Ar ray 1 with size n‘

I ~

map input map two-
indice to two- dimensional
d imensional da ta in to
fo rm natura l order a

15-point 15-point

indices indices
input output

+ 5 8 1 1 1 4 2

resul t
13 13

b

Fig. 15
a Blocklength N = n’n” using scheme 2

The computing procedure for DFT
b Arrangement of input and output data in the input and output processing

IEE PROCEEDINGS-G, Vol. 139, No. 4 , AUGUST 1992 551

time, gives small overhead to the latency time, doubles
the number of I/O channels, and greatly reduces the
number of PES. One special case in Table 6 is that the
two-level pipelined systolic array modified from Fig. 11
can reduce the average computation time. Comparing
scheme 1 in Table 5 and scheme 2 in Table 6 by
assuming n’ = P and n” = Q, scheme 2 has superiority in
throughput rate, average computation time, latency time
but inferior in the number of 1/0 channels and PES. The
benefit of time for scheme 2 can be traced to be the
reduction in the computational complexity. However, the
points that should be noted is that the overheads in the
scrambling indices, communicating two arrays and
storing intermediate data, are neglected in Table 6. The
overheads should be considered when an architecture
system is built.

5 Conclusions

The design of VLSI arrays for DFT has been considered
through three topics. In the first topic, four algorithms
which are suitable for VLSI array realisation were con-
sidered. Among them, three algorithms were of interest
for systolic array realisation; these are illustrated through
‘dependence graphs’ and a new systolic algorithm is pro-
posed. The four algorithms were examined for functional
parallelism and computational complexity. The results
showed that the proposed algorithms has much higher
computing parallelism and lower computational com-
plexity than the other three. The benefits in parallelism
and complexity were effectively exerted when the algo-
rithm is realised with systolic arrays and two-level pipe-
lined systolic arrays.

Secondly, seven systolic arrays and seven two-level
pipelined systolic arrays were devised from the four algo-
rithms. From analysis these arrays were shown to have
short average computation time. Also, the required
number of 1/0 channels in these arrays is independent of
the number of PES. The performance of these arrays is
summarised in Tables 2 and 3.

The third topic considered is the scheme to calculate a
long-length DFT problem using small-size arrays. Two
schemes were presented with their performances listed in
Tables 5 and 6. These schemes first factorise a one-
dimensional DFT into two-dimensional DFT. Then the
two-dimensional DFT is effectively calculated by using
small-size arrays. Scheme 1 has been shown to be
superior to scheme 2 in the number of 1/0 channels and
PES, but inferior in throughput rate, average computa-
tion time and latency time.

6 A c k n o w l e d g m e n t

The authors wish to thank the anonymous reviewers for
their helpful and constructive comments. This work was
supported by DRPCC, Taiwan, R.O.C. under contract
CS80-0210-D009-08.

7 References

1 KUNG, H.T.: ‘Why systolic architectures?’, Comput. Mag., 1982, 15,
(I), pp. 37-45

2 KUNG, H.T.: ’Special purpose devices for signal and image pro-
cessing: An opportunity in very large scale integration (VLSI)’, in
Proceedings of SPIE, (Real Tune Signal Processing 111), 241, 1980,
pp. 76-84

3 BERALDIN, J.A., ABOULNASR, T., and STEENAART, W.: ‘Eff-
cient onedimensional systolic array realization of discrete Fourier
transform’, IEEE Trans., 1989, CAS%, (1). pp. 95-100

4 CURTIS, T.E., and WICKENDEN, J.T.: ‘Hardware-based Fourier
transforms: algorithms and architectures’, IEE Proc., 1983, 130F,
(9, pp. 423-432

5 THOMPSON, C.D.: ‘Fourier transforms in VLSI’, IEEE Trans.
Comput., 1983, C-32, (I) , pp. 1047-1057

6 CHANG, L.W., and CHEN, M.Y.: ‘A new systolic array for discrete
Fourier transform’, IEEE Trans. ASSP, 1988, 36, (lo), pp. 1665-
1667

7 BAYOUMI, M.A., JULLIEN, G.A., and MILLER, W.C.: ‘A VLSI
array for computing the DFT based on RNS‘, in Proceedings of
ICASSP 86, Tokyo, pp. 2147-2150

8 KUNG, H.T., and LAM, M.S.: ‘Wafer scale integration and two-
level pipelined implementations of systolic arrays’, J . Parallel and
DistribComput. , 1984, pp. 32-64

imolementations’. IEEE Trans. ASSP. 1990.38. (1). DU. 121-127
9 CHO, N.I., and LEE, S.U.: ‘DCT algorithms for VLSI parallel

10 LEE, M.H., and YASUDA, Y.: ‘New 2D systolIc a k y algorithm for
DCTPST’, Electron. Lett., 7 Dec. 1989, pp. 1702-1703

11 QUINTON, P.: ‘Automatic synthesis of systolic arrays from recur-
rence equations’. Proceedings of the 11th Annual Symposium on
Computer Architecture, pp. 208-214.

12 LI, G.L., and WAH, B.W.: ‘The design of optimal systolic arrays’,
IEEE Trans. Comput., 1985, C-34, pp. 66-77

13 DELOSOME, J.M., and IPSEN, I.C.F.: ‘An illustration of a meth-
odology for the construction of effcient systolic architectures in
VLSI’. Proceedings of the 2nd International Symposium on VLSI
Technology, Systems and Applications, Taipei, 1985, pp. 268-273

14 CHEN, M.C.: ‘A design methodology for synthesizing parallel algo-
rithms and architectures’, J. Parallel & Distrib. Comput., Dec. 1986,
pp. 461-491

15 KUNG, S.Y., LO, S.C., and LEWIS, P.S.: ‘Optimum systolic design
for transitive closure and shortest path problems’, IEEE Trans.
Comput., 1987, C-36, (5), pp. 603-614

16 JAGADISH, H.V., RAO, S.K., and KAILATH, T.: ‘Array architec-
ture for iterative algorithms’, IEEE Proc., 1987, 75, (9), pp. 1304-
1321

17 RAO, S.K., and KAILATH, T.: ‘Regular iterative algorithms and
their implementation on processor arrays’, Proc. IEEE, 1988,76, (3),
pp. 256-269

18 FORTES, J.A.B., and MOLDOVAN, D.I.: ‘Parallelism detection
and algorithm transformation techniques useful for VLSI architec-
ture design’, J. Parallel Distrib. Comput., 1985, pp. 277-301

19 LIU, C.-M., and JEN, C.-W.: ‘On the design of algorithm-based
fault-tolerant VLSI array processor’, IEE Proc., 1989, 136E. (6), pp.
539-547

20 JEN, C.-W., and LIU, C.-M.: ‘Two-level pipeline design for image
resampling’. International Conference on ASSP, Glasgow, Scotland,
1989, pp. 244-2444

21 LIU, C.-M., and JEN, C.-W.: ’Hierarchical synthesis of two-level
pipelined systolic arrays’, under revision in IEEE Trans. Circuits
and Systems.

22 JEN, C.-W., and HSU, H.Y.: ‘The design of a systolic array with
tags input’. International Symposium on Circuits and Systems,
Finland, 1988, pp. 2263-2266

23 GOOD, I.J.: ‘The interaction algorithm and practical Fourier
analysis’, J. Royal Statist. Soc., 1958, 820, pp. 361-375, and Adden-
dum, 1960,22, pp. 372-375

24 THOMAS, L.H.: ‘Using a computer to solve problems in physics’,
in ‘Applications of Digital Computers’ (Ginn and Co., Boston, MA,
1963).

25 WINOGRAD, S.: ‘On computing the discrete Fourier transform’.
Proceedings of khe National Academy of Science, USA, 73, 1976,
pp. 1005-1006

26 WINOGRAD, S.: ‘On computing the discrete Fourier transform’,
Math. Comput., 32, 1978, pp. 175-199

27 MEAD, C., and CONWAY, L : ‘Introduction to VLSI systems’.
Addison-Wesley, pp. 214-275

28 RADER, C.M.: ‘Discrete Fourier transforms when the number of
data samples is prime’, Proc. IEEE, 1968, pp. 1107-1 108

552 I E E PROCEEDINGS-G, Vol. 139, No. 4, AUGUST I992

