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Abstract: Root-form eigen-based methods for 
direction-of-arrival (DOA) estimation represent a 
class of estimators that exhibit a higher resolution 
capability relative to spectral-form estimators in 
detecting closely spaced sources with a linear, 
equally spaced (LES) array. These methods 
require an eigenvalue decomposition (EVD) and a 
polynomial rooting. Although the numerical com- 
plexity associated with the EVD is greatly reduced 
with the use of beamspace transformation, large- 
order polynomial rooting still raises practical diffi- 
culties. As a remedy, the author proposes a novel 
iterative implementation of beamspace root-form 
methods without the need for large-order poly- 
nomial rooting. The new method exploits the 
banded structure of the augmented noise eigen- 
vector matrix associated with an LES array. It 
requires only rooting in parallel several small- 
order polynomials and some minor matrix manip- 
ulations at each iteration. It is shown that the 
proposed method offers the performance of beam- 
space root-MUSIC. 

1 Introduction 

Eigen-based methods for DOA estimation represent a 
class of techniques that offer a much better resolution 
performance than that of conventional beamformers. In 
eigen-based methods, signal and noise subspaces are 
identified first via an M x M generalised EVD (GEVD) 
of the array data/noise correlation matrix pencil, where 
M equals the number of array elements. A search is then 
conducted over a null spectrum associated with the noise 
subspace, to locate the minima, from which the source 
DOAs can be determined. In the case where an LES 
array is employed, the null-spectrum searching can be 
converted into a polynomial rooting problem. ‘Two well 
known examples are the root-MUSIC [l] and root- 
minimum-norm [2] methods. They belong to the so- 
called weighted root-form eigen-based methods. 
Compared to their spectrum-searching or spectral-form 
counterparts, root-form methods exhibit a higher 
resolution capability in dealing with closely spaced 
sources. Rao and Hari [3] argue that a zero of the null 
spectrum, having a large radial error, will cause the cor- 
responding spectral minima to be less defined, but does 
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not affect the DOA estimates. As for the mean-squared 
errors of the DOA estimates, Li and Vaccaro [4] show 
that both spectral and root-form methods yield the same 
expression. It should be borne in mind, however, that the 
result holds only when each of the sources has a 
minimum corresponding to it in the null spectrum. 

A major issue regarding eigen-based methods is the 
heavy computational load associated with the GEVD. 
This is more significant when M is large. To remedy this, 
the concept of beamspace transformation was proposed 
[5] as a means of reducing the dimension of the array 
data. In beamspace processing, the M x 1 ‘element-space’ 
data vectors are transformed into K x 1 ‘beamspace’ 
data vectors via an M x K matrix beamformer, where K 
is assumed to be greater than the number of sources D. 
Eigen-based methods applied to these reduced-dimension 
beamspace data then require only a GEVD of the K x K 
beamspace data/noise correlation matrix pencil, leading 
to a substantial reduction in computation when K is 
much less than M. In addition, processing in the beam- 
space can also improve the resolution-SNR (signal-to- 
noise ratio) threshold, enhance the estimation per- 
formance and reduce sensitivity to the spatial noise corre- 
lation and errors in the array manifold. Lee and 
Wengrovitz [6] show that, by judiciously choosing a 
M x 3 beamformer, the resolution-SNR threshold of the 
MUSIC method dealing with two closely spaced sources 
can be reduced by a factor of M - 2. In the light of these 
advantages and the efficacy of root-form methods, a 
beamspace root-form eigen-based scheme is highly desir- 
able. 

A practical case of importance that receives little 
attention in the area of array processing is the develop- 
ment of a high-performance and yet computationally effi- 
cient algorithm for the localisation of a group of closely 
spaced sources. We find, from the above observations, 
that the beamspace root-form eigen-based method is a 
good candidate for this purpose, provided that an LES 
array is available. Unfortunately, such methods usually 
require a 2(M - 1)th-order (for root-MUSIC) or an 
(M - 1)th-order (for root-minimum-norm) polynomial 
rooting as the final stage in determining the DOAs. This 
becomes inefficient as M becomes much greater than D. 
In practice, phased arrays may have up to 100 elements 
and may be operated to track a group of few targets. This 
makes the direct application of beamspace root-MUSIC 
or root-minimum-norm too costly. Research efforts have 
been made to remedy the difficulty of large-order poly- 
nomial rooting [7, 81. In Reference 8, the common 
out-of-band nulls property associated with a set of 
Butler-type beams [9] is exploited as a means of reducing 
the 2(M - 1)th-order root-MUSIC polynomial into a 
2(K - 1)th-order one. There are, however, two reasons 
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for not restricting ourselves to the use of the Butler 
beamformer. First, it is costly to implement on a system 
with large M. Secondly the Butler beamformer does not 
achieve the best performance in resolving tightly spaced 
sources. A scheme that employs a specifically constructed 
beamformer and does not require rooting a large-order 
polynomial is thus required. In this paper, we propose a 
novel implementation of beamspace root-form eigen- 
based methods. The new method exploits the distinctive 
banded structure of the augmented noise eigenvector 
(EV) matrix and the Vandermonde structure of the array 
manifold vector associated with an LES array. The noise 
EV matrix has a bandwidth of D + 1, such that the 
resulting null spectrum can be manipulated into a 
reduced form corresponding to a ( D  + 1)-element LES 
array. As a consequence, the final DOA estimates can be 
determined by rooting either a 2Dth- or Dth-order poly- 
nomial. Since the construction of the augmented noise 
EV matrix and the subsequent polynomial rooting 
require the knowledge of the DOAs, an iterative imple- 
mentation is suggested. To further improve the estima- 
tion accuracy, we suggest a scheme that determines each 
of the DOAs individually, by rooting in parallel D 2Dth- 
or Dth-order polynomials, i.e. a 2Dth- or Dth-order poly- 
nomial rooting is executed to determine a single DOA 
estimate. The new method offers the performance of 
beamspace root-MUSIC, but requires a much lower 
computational load. The algorithm converges within a 
few iterations and is not sensitive to the errors in the 
initial DOA estimates. The most computationally 
demanding part of the algorithm involves concurrently 
solving K - D systems of linear equations of size M - D. 
Fortunately, these systems of equations are sparse, and 
banded in structure such that fast solution can be easily 
achieved. 

2 Beamspace root-form eigen-based methods 

We here consider the scenario of D narrowband sources 
with a common centre frequencyf, impinging on an LES 
array of M identical sensor elements. The sources are 
assumed to be in the far field of the array, such that the 
planewave assumption holds at each element. We further 
assume that the sensor elements have a common pass- 
band centred at f, . Additive noise uncorrelated with the 
source field, with a known cross-spectral density, is also 
assumed to be present at each element. The complex 
envelopes of the array data received at the M elements 
can be expressed in the following vector form 

(1) 
The mth component of the M x 1 array data vector x(t) 
represents the complex envelope received at the mth 
element. The ith component of the D x 1 source signal 
vector s(t) represents the complex envelope received at 
some reference point of the array due to the ith source. 
The ith column of the M x D DOA matrix A accounts 
for the phase variation across the entire array due to the 
planewave nature of the ith source. Finally, the mth com- 
ponent of the M x 1 vector n(t) denotes the complex 
noise envelope present at the mth element. The ith 
column of A has a distinctive Vandermonde structure 
described by 

x(t)  = As@) + n(t) 

a(u) = [I ,  p(f<//&, p ( / c / / o ) "  &M- l)=(J-<//d" T 
7 ..., 1 (2) 

with U = ui = sin (ei), where Bi is the DOA of the ith 
source measured with respect to the broadside of the 
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array. f, is the frequency corresponding to half- 
wavelength array element spacings. For convenience, we 
will assume f, =f,. Note that we have set the reference 
point of the array to be at its first element. 

In beamspace array signal processing the data 
envelopes are obtained from a set of K beamformer 
ports. This may be accomplished by using a set of K 
beamforming weight vectors to simultaneously form K 
linear combinations of the received array data. Mathe- 
matically speaking, we transform the M x 1 element 
space array data vector into a K x 1 beamspace data 
vector according to 

xdt )  = WHx(t) (3) 

where W is the M x K beamforming matrix having the 
form 

w = C W l  I w2 I ' ' ' I w d  (4) 

where wk is the kth beamforming weight vector. Here, K 
is chosen to be such that D < K < M. Note that xdt )  has 
the same structural form as x(t) 

xd t )  = W'[As( t )  + n(t)] = Bs(t) + ndt) (5 )  

where B =  WHA is the beamspace DOA matrix whose 
ith column is the beamspace manifold vector 
Nu) = WHu(u) evaluated at U = u i ,  and ndt) = W"n(t) is 
the beamspace noise vector. Note that b(u) does not 
possess a Vandermonde structure. To facilitate discrete- 
time processing, xdt )  is sampled over a time interval to 
produce a set of N beamspace data 'snapshot' vectors 
xs[n] = xAnT,), n = 1, .. ., N, where T, is the sampling 
period. The general beamspace DOA estimation problem 
is then formulated as one that estimates the DOAs U,, 
i = 1, . . . , D, based on the N vector observations x,[n], 

A class of DOA estimators that exhibit high resolution 
capability and excellent asymptotical performance are 
those based on the principle of eigen decomposition. A 
common feature of these eigen-based methods is the 
execution of the GEVD of the data/noise correlation 
matrix pencil. For the beamspace case, the data corre- 
lation matrix has the following structural form 

(6) 

where R, = E{s(t)sH(t)} is the D x D source correlation 
matrix, QBs = E{ndt)nf(t)} is the K x K beamspace 
noise correlation matrix, and H denotes the complex con- 
jugate transpose. In practice, R ,  is not available and is 
typically estimated by its sample version 

n = 1, ..., N .  

RBB = E{xd t )x f ( t ) }  = BR,BH + QBB 

(7) 

Beamspace eigen-based procedures usually consist of the 
following steps. First, the GEVD of the K x K pencil 
{ f i B B ,  Q,} is computed. Secondly, a set of noise EVs is 
determined as those generalised eigenvectors (GEV) 
associated with the K - D smallest GEVs. Let EB denote 
the K x (K - D )  matrix composed of these noise EVs. 
Thirdly, the noise EVs are ideally orthogonal to each of 
the D columns of B, such that Efb(ui)  = 0, i = 1, .. ., D. 
This suggests that we determine the DOAs by solving the 
following nonlinear equation in U 

(8 )  
where P is a positive semidefinite matrix serving to 
weight the respective noise EVs. Converting back into 

sdu) = bH(U)B!?B PB!?f Nu) = 0 
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element space terms, we have 

S ~ U )  = a"(u)WEBPEf W"a(u) 

= #(u)E, PE& a(u) = 0 (9) 
where E, = WEB. Note that we have used 
b(u) = W"a(u). The expression in eqn. 9 is referred to as 
the weighted beamspace null spectrum. As two popular 
methods, beamspace MUSIC corresponds to P = Z and 
beamspace minimum-norm corresponds to_ P = CI?, 

where c is the transpose of the first row of E,. Eqn. 9 
may not hold for any U in practice, due to noise/error 
corruption, which may arise from electronic thermal 
motions, external interferences, array shape perturba- 
tions, and finite snapshot formulations of the data corre- 
lation matrix, etc. A direct implementation of beamspace 
MUSIC or minimum-norm, then, is to search over U to 
locate the minima of Sdu). This is referred to as the 
spectral-form realisation. As an alternative, we may 
convert Sdu) into a polynomial of the order 2(M - I), by 
exploiting the Vandermonde structure of a(u). Letting 
42) = [I, z, . . . , zM-']*, we can rewrite eqn. 9 as 

Sdz) = u'(z - ' ) E ,  PE& 42) = 0 (10) 
with z = p. For brevity, we refer to Sdz) as the 'signal 
polynomial'. An obvious way to obtain the DOA estim- 
ates is to root Sdz) and pick D 'signal roots' ii, i = 1, . . . , 
D, which are closest to the unit circle. The DOA esti- 
mates are then related to the signal roots by lii = 
( l /n)  arg {fi}. This is referred to as the root-form realis- 
ation. Note again that, due to noise/error corruption, the 
signal roots may not lie exactly on the unit circle. The 
comparative study of spectral and root-form methods [3] 
shows that the latter exhibit a lower resolution-SNR 
threshold in resolving two closely spaced sources. For 
well separated sources, the two methods are statistically 
identical, i.e. the mean-squared errors of the DOA estim- 
ates obtained with the two methods are the same [4]. 

Although beamspace transformation greatly reduces 
the eigenanalysis dimension, to determine the DOAs via 
the root-form approach requires rooting a 2(M - 1)th- 
order signal polynomial. As a practical matter, the 
number of elements M may be so large that rooting a 
polynomial of the order 2(M - 1) becomes infeasible in 
real-time applications. Moreover, only D of the 2(M - 1) 
roots are needed, such that directly rooting the signal 
polynomial seems to be very inefficient. Research efforts 
have been made to develop algorithms that do not 
require rooting the signal polynomial [7, 81. In Reference 
8, the property of common nulls of the Butler type beam- 
former was utilised to convert the beamspace root- 
MUSIC signal polynomial into a smaller one of the order 
2(K - 1). The Butler beamformer is an analogue equival- 
ent of the fast Fourier transform which simultaneously 
forms M beams pointed at equally spaced angles. It 
requires (M/2) log, M hybrids and (M/2)(log, M - 1) 
fixed phase shifters [SI. For the beamforming network to 
operate losslessly, M must be a power of two. Owing to 
its hardware complexity, the Butler network is not quite 
suitable for large arrays. Another issue regarding the 
Butler beamformer is the high sidelobes due to uniform 
weighting. This can be alleviated by combining the beams 
with additional circuitry to obtain an effective lower side- 
lobe weighting. Unfortunately, the modified network is 
no longer lossless. Finally, from the viewpoint of beam- 
space DOA estimation, the Butler beamformer does not 
offer the best resolution performance [6]. The flexibility 
of forming a set of 'optimum' beams is obviously not pos- 
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sessed by the Butler beamformer. A computationally efi- 
cient beamspace root-form scheme that works in 
conjunction with any specifically constructed beam- 
former is thus desirable. 

3 

Simplifications in computation due to polynomial order 
reduction is motivated by the characteristic structure of 
Null{AH}, or the noise subspace, where Null{ . }  denotes 
null space. Recall that A is an M x D full-rank Vander- 
monde matrix. A basis of Null{A"} may be chosen as 
composed of the columns of the following M x (M - D)- 
banded Toeplitz matrix 

Simplifications due to  polynomial order 
reduction 

10 0 " '  g] 

where g = [I ,  y,, ..., yo]' is a ( D  + 1) x 1 vector 
satisfying 

D 
y:ejmxM2 = 0 i = 1, ..., D 

m = O  

with y o  = 1, and 0 is a scalar. This is a manifestation of 
the fact that the polynomial 

D 

g(z) = c y:zm 
m = O  

has D roots at zi = 8"': i = 1, ..., D. A one-to-one 
relationship between Null{AH}, g, g(z) and the DOAs can 
thus be established. The feasibility of working with 
Null{AH} to determine the DOAs, of course, lies in the 
fact that Null{A"} is properly estimated. 

3. I Element space implementation 
In conventional element space eigen-based methods, 
Null{AH} is estimated as spanned by the GEVs of the 
data/noise correlation matrix pencil, associated with the 
M - D smallest GEVs. For brevity, we denote as E the 
M x (M - D)  matrix consisting of these GEVs. Motiv- 
ated by eqn. 11, we conduct the following matrix conver- 
sion 

whereg,, 1 = 1, . . ., M - D are ( D  + 1) x 1 vectors with a 
unit leading component, T is an (M - D )  x ( M - D )  
nonsingular matrix, and 0 is a scalar. Note that eqn. 12 
consists of M - D equations of the form 

where 6, I = 1, .. ., M - D are the columns of T-' as 
described by 

- -  
~ - ' = [ t ~ l t ~ l . . . ~ t ~ ~ ~ ]  (14) 
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There are two noteworthy points in eqn. 13. First, the g, 
vectors are unknown. Secondly, each of the equations 
represents an overdetermined system which does not in 
general lead to an exact solution for 4. Nevertheless, 
invoking the fact that the leading component of g, equals 
1 does lead to a unique solution for 1, as obtained by 

E(1 : I , : )  
[ E ( D + l t l : M , : )  ];-e I -  I = 1 ,  ..., M - D  (15) 

where M ( n , : n , , : )  denotes a submatrix consisting of the 
n,th to the n,th row of M and e, is the Ith column of the 
(M - D)  x (M - D )  identity matrix. Note that numerical 
instability may occur if the submatrix on the left-hand 
side of eqn. 15 is nearly rank-deficient for some I. 
Although there seems no obvious way to assure that this 
does not happen under severe noise/error corruption, one 
may argue that under moderately good conditions, E is a 
full-rank matrix well representing the true noise sub- 
space, which is in turn represented by the banded Toe- 
plitz structure in eqn. 11. In such a case, the full rank of 
the left-hand side of eqn. 15 should be retained, and the 
conversion in accordance with eqn. 12 should yield g, 
g, N . . . .U g M - D  U g. Now, with the above-obtained t , ,  
I = 1, . . . , M - D, we can compute g,,  I = 1, . . . , M - D 

g, = @ I :  D + I ,  : )< I = 1, . . . , M - D (16) 

Note that under noise/error corruption, g,  # g, # . . . # 
g & D ,  as opposed to eqn. 11. In fact, the disparity 
between these g, vectors reflects the severity of the cor- 
ruption. Although the banded matrix on the right-hand 
side of eqn. 12 does not represent the true noise subspace 
as d3es eqn. 1 1 ,  it does span the same range space as that 
of E, as T is nonsingular. As the direct correspondence 
between the DOAs and the g vector no longer exists, we 
need to invoke the orthogonality condition between E 
and A in the ideal case, and work with the weighted 
element space null spectrum 

S(u) = aH(u)EPEHa(u) (17) 

S(u) = $(U)FD*(U)TPTHD(U)FHU,(U) (18) 

aD(u) = [I, @, . . . , dDXu] (19) 

F=k11g21 " '  I g M - D I  (20) 

which, by eqn. 12, can be rewritten as 

where 

and 

D(u) = Io  'r 1 '  . .  . 

0 1  
P I  

A characteristic feature in eqn. 18 is that the array mani- 
fold vector a , (~ )  involved is ( D  + 1) x 1, instead of 
M x 1 as in eqn. 9. Note that, except for the 
(M - D)  x (M - D )  diagonal matrix D(u), the null spec- 
trum in eqn. 18 is essentially that associated with a 
( D  + 1)-element LES array. To fully exploit this 
reduction in dimension, it is natural to replace D(u) with 
a constant matrix by fixing U = uo,  and rewrite eqn. 18 as 

(22) S(U I U,) = ag(u)FD*(u,)TPT~D(u,~uD(u) 
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Converting back into element space formation, we obtain 
S(u I U,) = ag(u)FD*(u)TT- 'D(u)D*(u,) 

X TPTHD(U,)D*(U)(TT- ' ) H D ( U ) F H U ~ ( U )  

= d'(u)ET- 'D(u - UJ 
x TPTHD*(u - u,)(T- ')Hj?"'~) 

= aH(u)EP,(u)EHU(u) (23) 

where 
Po@) = T-'D(u - u,)TPTHD*(u - u,)(T-')H 

Note that we have used D*(u)D(u) = I and D(u)D*(uo) = 
D(u - U@). We see from eqn. 23 that replacing D(u) with 
@U,) is, in fact, tantamount to replacing P with an angle- 
dependent weighting matrix P,(u). Since P,(u) is positive- 
semidefinite, the modified null spectrum eqn. 23 will 
provide the true DOAs under no noise/error condition. 
In practical noisy cases, the estimation accuracy may 
degrade using eqn. 23 if P,(u) differs greatly from P for 
U _N ui, i = 1, . . , , D [lo]. To gain further insight, consider 
the orthogonality conditions under no noise/error 

qui )  = U H ( U i ) E P E H U ( U )  

= a~(ui )FD*(ui )TPTHD(ui)~H~~ui)  

= 0 i = 1, ..., D (24) 
Comparing eqns. 22 and 24, it is evident that in order to 
achieve the performance of element space eigen-based 
methods working with P, we must choose U, U ui in 
estimating ui. In short, to retain the feature of reduced- 
dimension null spectrum and the efficacy of eigen-based 
processing, a set of fixing angles tip v ui, i = 1,  . .., D 
must be chosen. However, this requires the knowledge of 
the DOAs that we are trying to estimate, and thus sug- 
gests an iterative procedure wherein we begin with the 
formation of the D reduced-dimension null spectra 

S(u I tip, = ag(u)FD*(tip)TPTHD(tio)FHudU) 
i = 1, ..., D (25) 

A new set of DOA estimates ti!, i = 1, ..., D is obtained 
as the solutions to S(u I lip) = 0, i = 1, . . . , D, respectively, 
corresponding to the first iteration. To exploit the high 
resolution of root-form methods, these are done by 
rooting the following 2Dth-order reduced-order signal 
polynomials 

S(z I lip, = U 2 2  - ')FD*(ep)TPTHD(tip)FHuD(z) 
i = 1, ..., D (26) 

where udz) = [l, z, . . . , zqT .  Note that the coefficients of 
S(z I ti:) exhibit conjugate centrosymmetry, such that the 
corresponding 2 0  roots form D conjugate reciprocal 
pairs. That is, if z, is a root of S(z I lip), then so is l/z,*. As 
a consequence, only D distinct values are observed 
regarding the phase angles of the 2 0  roots. Specifically, 
we choose ti! as that phase angle closest to tip. It should 
be pointed out that, in the above, only a single DOA 
estimate is extracted from each reduced-order signal 
polynomial. A new set of reduced-order signal poly- 
nomials S(z 1 l i f ) ,  i = 1, . . . , D is then formed, based on li!, 
i = I, . . . , D. The procedure is iterated until the DOA 
estimates converge. The execution of the algorithm is 
concurrent in nature, making parallel processing a suit- 
able way of implementation. 

The above procedure converts the original problem of 
determining D roots from a 2(M - 1)th-order polynomial 
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into D parallel problems, each of determining a single 
root from a 2Dth-order polynomial. Unfortunately, the 
reduction of the polynomial order from 2(M - 1)  to 2 0  
requires that the full element-space noise subspace is 
available, so that the conversion in accordance with eqn. 
12 is possible. This, in turn, requires the full M x M 
eigenanalysis of the element-space data/noise correlation 
matrix pencil. The heavy computational load associated 
with eigenanalysis necessitates the previously stated 
beamspace transformation. 

3.2 Beamspace implementation 
Recall that in beamspace eigen-based procedures, the 
vectors available that lie in the element-space noise sub- 
space are those K - D columns of E, as given in eqn. 9. 
As in eqn. 12, we conduct the following matrix conver- 
sion 

where h, ,  I = 1,  ..., K - D are (M - K + D + 1) x 1 
vectors with unit leading components, U is a 
(K - D)  x (K - D)  nonsingular matrix, and 0 is a scalar. 
Note that since E ,  has only K - D columns, it cannot be 
converted into a banded form with bandwidth D + 1 
unless K = M and/or SNR = CO. Direct implementation 
of the iterative procedure prescribed in eqn. 13-26, based 
on E,, then requires rooting in parallel 
D 2(M - K + D)th-order polynomials at each iteration. 
Summarising at this point, the general computational 
requirement includes a K x K GEVD and the rooting of 
several 2(M - K + D)th-order polynomials. This is in 
contrast to that associated with element-space implemen- 
tation: an M x M GEVD and the rooting of several 
2Dth-order polynomials. In fact, for M @ K, the conver- 
sion in accordance with eqn. 27, along with the sub- 
sequent iterations, is an overaction. In other words, the 
simplification due to reduced-dimension eigenanalysis is 
offset by the increased complexity due to higher-order 
polynomial rooting. To take full advantage of working 
with the reduced-dimension beamspace eigenanalysis and 
the reduced-order signal polynomials, a complete noise 
subspace of dimension M - D must be estimated, based 
on the beamspace data. To this end, we propose the 
concept of noise subspace augmentation. The augmenta- 
tion is done by appending M - K columns to &, to 
obtain an M x (M - D )  matrix representing the full 
noise subspace. 

3.3 Noise subspace augmentation 
Consider appending to Ew an M x (M - K) matrix E, 
to form an M x (M - D )  matrix EAUc 

Ex is so selected that EAUc represents the noise subspace 
to a good approximation, i.e. A N 0. Clearly Ex 
depends on A and must thus be determined from a set of 
DOA estimates. This, again, suggests an iterative imple- 
mentation wherein we refine EA,,, each time a new set of 
DOA estimates is obtained. Suppose that preliminary 
DOA estimates lip, i = 1, ..., D, and a corresponding 
DOA matrix estimate A  ̂ are available, we may choose E, 
to be composed of the M - K basis vectors for 
NuIl{[Ew I A]"}. Although this approach ensures that the 
columns of the resulting EAuG form a linearly independ- 
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ent set, we do not recommend it, because of its numerical 
complexity. As an alternative, we suggest the following 
much simpler implementation. 

With 120, i = 1, . .., D, we can form a Dth-order poly- 
nomial go(z) = (y3*zm, with y! = 1, whose roots 
are zp = dXoio, i = 1, .. . , D. Let go = [l, yy, .. ., y $ l T  be 
the ( D  + 1) x 1 coefficient vector associated with go(z). 
According to eqn. 11, the columns of the M x (M - D)  
matrix 

(29) 

form the basis of Null{AH} and approximately span the 
full element-space noise subspace, as long as the prelimi- 
nary DOA estimates are not too erroneous. In such a 
case, any set of M - K columns of Go may be chosen to 
constitute E,. However, care must be taken to ensure 
that the resulting EAuG is full-rank, to avoid numerical 
instability in the subsequent development. An empirical 
criterion would be to check if any K - D rows of Ew 
nearly form a linearly dependent set. If this happens, we 
should not append all zeros to these rows._For simplicity, 
we assume that the first K - D rows of E, are linearly 
independent and choose Ex = Go(: ,  K - D + 1 : M - D), 
where M ( : ,  n, : n2) denotes a submatrix composed of the 
n,th to n,th column of M .  The augmented noise EV 
matrix now has the following form 

With the EAuG obtained in eqn. 30 and the procedure 
outlined in Section 3.1, we find a (M - D)  x (M - D)  
nonsingular matrix T, such that 

where Tis determined by 

E",,,( 1 : I, : ) 
E",,,(D + r + 1 : M , : )  

]<=e, I = 1 ,  ..., M - D  (32) 

The various vectors g, ,  6 and e, ,  I = 1, . . . , M - D are as 
previously defined. Comparing eqns. 30 and 31, it is 
easily seen that T-' has the following form 

(33) 

where Z is (K - D)  x ( K  - D), r is ( M  - K )  x ( K  - D), 
0 is the (K - D )  x (M - K) zero matrix, and I M - K  is the 
( M  - K) x (M - K) identity matrix. The substitution of 
eqns. 31 and 33 into eqn. 30 yields 

(34) g,=go r = K - D  + 1,  ..., M - D 

To obtain E, andg,,  I = 1, ..., K - D we need only to 
solve the first K - D equations in eqn. 32. Now, compar- 
ing the corresponding columns in eqns. 30 and 31, and 
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using eqns. 33-34, we have 
rgl ... 0 0 " '  0 1  . . .  . . . .  . . .  . .  . .  . . .  .I! jl: gK;D .". :Ij : I T w  

0 ... 0 ... go 

where T ,  consists of the first K - D columns of T 

(35) 

(36) 

Note that, as opposed to eqn. 12, the same go vector is 
used to form the right submatrix in eqn. 35. This rep- 
resents an approximation under the noise/error corrup- 
tion due to-eqn. 30. The development up to this point has 
converted E, into a banded form, with bandwidth D + 1, 
as was originally achieved with element-space implemen- 
tation. Now, substituting eqn. 35 into eqn. 9, and follow- 
ing the manipulations in eqns. 17-21, we obtain 
Sdu) = oH(u)Bw PE; a(u) 

= a:(u)F, D*(u)T, P G  D(u)FE uD(u) (37) 
where a,@) and D(u) are given by eqns. 19 and 21, 
respectively, and 

F W = k l /  " ' ~ g K - D ~ g o ~  " '  lgo] (38) 
To work with a ( D  + 1) x 1 manifold vector, we need to 
fix the angle U in @U). Following the development in 
Section 3.1, we first choose a set of preliminary DOA 
estimates Po, i = 1, . . . , D. These angles are available from 
the earlier stage of noise subspace augmentation. We 
then construct a set of reduced-dimension null spectra 

S ~ U  1 ria) = a ~ ( u ) F , D * ( r i ~ ) T , P T ~ D ( r i ~ ) F ~ a ~ u )  
i = 1, ..., D (39) 

A new set of DOA estimates ii!, i = 1, ..., D is obtained 
by solving Sdu I @) = 0, i = 1, . . . , D, respectively, corres- 
ponding to the first iteration. Again, these are done by 
rooting the following 2Dth order reduced-order signal 
polynomials 

S ~ Z  I rip) = U ~ ( Z - ~ ) F , D * ( ~ ~ ~ ) T , P T ~ D ( ~ ~ ~ ) F : : ~ , ( ~ )  

i = 1, ..., D (40) 
The signal roots are selected in the same way as sug- 
gested for element-space implementation. Based on the 
new DOA estimates, we can proceed to perform noise 
subspace augmentation, which, in turn, produces a new 
set of reduced-order signal polynomials. The procedure is 
iterated until the DOA estimates converge. 

In summary, beamspace transformation reduces the 
dimension of the eigenanalysis from M x M to K x K, 
whereas noise subspace augmentation, along with 
banded form conversion, reduces the order of the signal 
polynomial from 2(M - 1) to 20. Each iteration of the 
algorithm is concurrent in nature, in that both the 
rooting of the reduced-order signal polynomials and the 
banded form conversion involved can be executed in 
parallel. This helps to alleviate the extra complexity due 
to eqns. 30-36. 

3.4 Determination of preliminary DOA estimates 
Good preliminary DOA estimates are essential to the 
above new method. As we are mainly interested in detect- 
ing closely spaced sources, the effective angular passband 
of the beamformer is typically narrow, to minimise 
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out-of-band noise power. Suppose that the passband of 
the beamformer is [uL ,  uR], where uL < ui < uR, i = 1, 
. . . , D. Without any further information about the DOAs, 
a natural guess is that ui = U = ;(U, + uR), i = 1, . .., D. 
With these coarsely guessed DOAs, a set of preliminary 
DOA estimates can be obtained via the execution of the 
algorithm outlined in the previous section, for a single 
iteration. In so doing, we simply set l ip = U, i = 1, . . ., D, 
and replace go in eqn. 29 by g, the coefficient vector of 
g(z) = (z - P ) O .  A reduced-order signal polynomial 
Sdz lU)  is then constructed according to eqn. 40. Note 
that in this case there is only one polynomial to work 
with. Finally, the preliminary DOA estimates are deter- 
mined from the D roots &, i = 1, . .., D, of Sdzl  U), 
according to l i p  = (l/x) arg {fi}, i = 1, . . . , D. 

3.5 Convergence behaviour of the algorithm 
The convergence behaviour of the new algorithm can be 
described as follows. As demonstrated by eqn. 23, fixing 
the angle in @U), or replacing the true null spectrum by a 
reduced-dimension one is, in fact, equivalent to replacing 
P by another positive-semidefinite angle-dependent 
weighting matrix. It follows that each of the reduced- 
dimension null spectra in eqn. 39, or each of the reduced- 
order signal polynomials in eqn. 40, will provide the true 
DOAs under no noise/error condition. In practical noisy 
cases, the estimation accuracy may degrade, as the new 
weighting matrix may not be optimum compared to P. 
Nevertheless, the degradation is insignificant if the fixing 
angles are close to the true DOAs. We conclude that the 
general situation is that good DOA estimates help to 
improve the reduced-order signal polynomials, and vice 
versa. Hence, so long as preliminary DOA estimates are 
not too erroneous and the SNR is not too low, the new 
DOA estimates should approach the DOAs obtained 
with the true signal polynomial as the iterations proceed. 
It should be pointed out that the final DOA estimates 
upon convergence are not exactly those obtained with 
the true signal polynomial. This is due to the fact that the 
signal roots associated with the true signal polynomial 
may not lie on the unit circle, but the conversion from 
eqn. 39 to eqn. 40 inherently assumes that all signal roots 
are on the unit circle. However, the disparity is insignifi- 
cant if the SNR is not too low. 

Simulations show that, under moderate conditions, the 
algorithm typically converges in 4-5 iterations, with a 
precision of lo-' beamwidth of the array. The behaviour 
of the algorithm under severe noise/error corruption is 
not clearly predictable. It is found by simulations that the 
DOA estimates still converge at a very low SNR, but it 
takes more iterations to achieve it. We do not here intend 
to tackle the problem of extremely low SNR, since eigen- 
based methods are known to perform poorly under such 
conditions [lo]. 

3.6 Selection of weighting matrix 
The selection of the weighting matrix P greatly affects the 
performance of the corresponding DOA estimator. Two- 
commonly employed beamspace root-form eigen-based 
methods - beamspace root-MUSIC and beamspace 
root-minimum-norm - correspond to P = Z and 
P = CC", respectiyely, where c denotes the transpose of 
the first row of E,. Statistical performance analysis [4] 
shows that the mean-squared error of the DOA estimates 
associated with root-minimum-norm is lower-bounded 
by that associated with root-MUSIC, with the disparity 
increasing as the number of elements M increases. The 
superiority of root-MUSIC over root-minimum-norm, 
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however, is overshadowed by the issue of numerical com- 
plexity. Note that root-MUSIC requires rooting a 
2(M - 1)th-order polynomial, whereas root-minimum- 
norm requires only rooting a (M - 1)th-order one. The 
problem of excessive computations associated with root- 
MUSIC with large M is greatly alleviated by invoking 
the proposed idea of polynomial order reduction. By 
order reduction, root-MUSIC would require rooting in 
parallel D 2Dth-order polynomials at each iteration, 
whereas root-minimum-norm requires only rooting Dth- 
order ones. For small D, the difference between the 
numerical complexity associated with these two methods 
is negligible, as opposed to the case without order 
reduction. Hence, for the case of large M and small D, it 
is recommended that root-MUSIC be used in conjunc- 
tion with order reduction. 

As an alternative, the weighting matrix may be con- 
sidered as acting on the (D  + 1) x (K - D)  reduced- 
dimension noise EV matrix E,(;;) as follows 

SA2 I ii:) = oaz - ')Edaf)P;E;(af)u,(z) 

i = 1, ..., D (41) 
where 

E,($) = FwD*(lif)Tw i = 1, . . . , D (42) 
We denote the weighting matrix in eqn. 41 as P; to 
emphasise its dependence upon E,(@). That is, we may 
use different weighting matrices for different sources at 
different iterations. In this case, we treat Sdz I r i f )  as the 
signal polynomial associated with the noise EV matrix 
Ed$) generated by the data obtained from a ( D  + 1)- 
element LES array. Applications of root-MUSIC and 
root-minimum-norm from such a viewpoint correspond 
to P: = I and P; = c,(i$)cg(@), respectively, where c,(iif) 
is the transpose of the first row of E,(;:). Note that root- 
MUSIC remains unchanged, whereas root-minimum- 
norm requires a different weighting matrix for each 
reduced-order signal polynomial at each iteration. We 
now briefly discuss the effect of working with the 
reduced-dimension noise EV matrices. We first observe 
from eqn. 38 that, upon the convergence of the algorithm, 
Ed23 is approximately rank-one, since g, E . . . 1 
gK-, E 2. This implies that upon the convergence of 
the algorithm, Efl(G3Eg(t$) is approximately equal 
to E,(li:)cdlif)cg(r:)E~(~f) up to a scalar multiple. Hence, 
both root-MUSIC and root-minimum-norm applied in 
this manner should yield approximately the same DOA 
estimates upon the convergence of the algorithm. This is 
confirmed by simulation results. The advantage of 
working with root-minimum-norm is that only Dth-order 
polynomial rooting is required at each iteration. 

3.7 Algorithm summary 
An outline of the above proposed beamspace DOA 
estimation procedure is as follows 

(i) Collect the beamspace data snapshot vectors 
xB[n]  = WHx[n],  n = 1, . . . , N ;  form the beamspace data 
correlation matrix 

where W is the M x K beamforming matrix, and deter- 
mine the beamspace noise correlation matrix QBe . 

(ii) Perfo-rm the GEVD of the K x K pencil {RBB,  
QBB}.  Let EB be composed of the K - D GEVs corres- 
ponding to the K - D smallest GEVs. Let E ,  = WEB. 
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Obtain the preliminary DOA estimates 20, i = 1, ..., D, 
according to Section 3.4. Initialise with k = 0. 

(iii) With the DOA estimates l i f ,  i = 1, . . . , D, execute 
the procedure described by eqns. 29-36 to obtain the 
decomposition of E, described by eqn. 35. 

(iv) Construct the reduced-order signal polynomials 
SB(z I @), i = 1, . . ., D in accordance with eqn. 40. Select 
the weighting matrix 

Root-MUSIC: P = I 
Root-minimum-norm-1 : P = CI? 

Root-minimum-norm-2: P = pi" = cdi?f)cg($) 
where e is the transpose of the first row of E ,  and CA@ 
is the transpose of the first row of Edtif), as defined by 
eqn. 42. 

(v) Root SAz I @), i = 1, . . . , D in parallel. Among these 
roots, determine a new set of DOA estimates I?:", i = 1, 
. . . , D,  according to Section 3.1. 

(vi) Check the convergence of the DOA estimates. If 
yes, terminate the algorithm. Otherwise, go back to (iii), 
with 12: replaced by iif", i = 1,. . . , D .  

4 Computer simulations 

Computer simulations were conducted to demonstrate 
the performance of the proposed methods. The array 
employed consisted of 33 identical elements equally 
spaced by a half wavelength. The source signal was mod- 
elled as a Gaussian random process with zero mean and 
a variance of U:. The noise present at the array elements 
was assumed to be spatially white zero-mean Gaussian, 
with power U: such that the beamspace noise correlation 
matrix is given by QBB = u:WHW. The SNR in dB was 
defined as 10 loglo(u:/u:). 

The first set of simulations compared the performance 
of the various root-form eigen-based methods presented 
in the paper. For all cases, N = 50 snapshots were col- 
lected at each trial to obtain the DOA estimates, and 50 
independent Monte-Carlo trials were executed to obtain 
the sample statistics. For brevity, we refer to the original 
and the proposed versions of the beamspace root- 
MUSIC method as rt-MUSIC, and rt-MUSIC,, respec- 
tively. Note that the subscripts indicate the respective 
dimensions involved in the two methods. Likewise, we 
refer to the original and the two proposed versions of the 
beamspace root-minimum-norm method, as described in 
the algorithm summary, as rt-MN,, rt-MN,-1 and 
rt-MN,-2 respectively. The scenario involved three 
uncorrelated equal-power sources at 7", 8.5" and 12" with 
respect to the broadside of the array. The angular separa- 
tion between the first two sources was 1.5", which is less 
than one-half the 3-dB beamwidth of the array (~3 .5" ) .  
The matrix beamformer employed was composed of five 
Chebyshev beams with -25 dB sidelobes pointed at So, 
7", 9", 11" and 13". Fig. 1 shows the superposition of 
these beam patterns. For this particular beamformer, the 
initial guesses for the DOAs were chosen to be U = 
sin (9"). The algorithms were terminated if all three DOA 
estimates converged within 0.01". The respective sample 
means and sample standard deviations of the DOA esti- 
mates obtained with the aforementioned methods for 
three different SNR levels are listed in Table 1. Observing 
the proximity among the results obtained with 
rt-MUSIC,, rt-MUSIC, and rt-MN,-2 confirms our 
earlier claim that both rt-MUSIC, and rt-MN,-2 should 
perform comparably to rt-MUSIC, . Similar observa- 
tions were made regarding rt-MN, and rt-MN,-1. Note 
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that, for this simulation, root-MUSIC and root- For each acquisition, the two beams were steered simul- 
minimum-norm yield similar results, as the number of taneously via progressive phase-shifting to a position for 
noise EVs is relatively small. To evaluate the convergence which their bisector angle (boresight angle) was closest to 
rates of the proposed methods, the average number of the target angle. Note that, in this particular tracking 
iterations executed per trail was listed for each case. environment, the preliminary angle estimate for the 

t 
- 9 0 1  I 

-50  -40 -30 -20 -10 0 10 20 30 40 50 

spatial angle, degrees 

Fig. 1 
sidelobes 

Superposition of K = 5 beampatterns (in dB) generated by an M = 33-element LES array employing Chebysheu weighting with - 25 dB 

Impressively, all three methods require fewer than five present acquisition can be simply chosen to be the angle 
iterations to converge. estimate from the previous acquisition. The target echo- 

The second set of simulations demonstrates the effi- to-noise ratio was 10 dB and N = 1 snapshot corres- 
cacy of the proposed methods applied to monopulse ponding to the monopulse was used for each acquisition. 
bearing estimation. Two Chebyshev beams with -25 dB The simulation was initialised with the preliminary angle 
sidelobes were formed in the vicinity of a single target estimate eo = sin-'(u0) = - lo ,  and the initial pointing 
flying above the array. The target angle varied from 0" to angles of the two beams were set to be - 1.5" and 1.5", 
45", with a step size of 1". The two beams were steered to respectively. For each acquisition, the proposed 
effectively illuminate the targets. To take into account the rt-MND-2 algorithm was executed for three iterations to 
practical limitation of analogue beamforming, the obtain the angle estimate. Fig. 2 shows the trajectory of 
minimum step size of the beamsteering was set to be 4". the resulting angle estimates obtained from 46 acquisi- 

Table 1 : Comparison of the performance of five root-form methods for 
three signal-to-noise ratio values. 6,s and 5,s represent the sample 
means and sample standard deviations (in degrees) of the DOA esti- 
mates from 50 independent trials. NIT standards for 'number of iter- 
ations'. 

SNR -+ -5 dB 10 dB 20 dB 

Rt-MUSIC, 

Rt-MUSIC, 

NIT 
Rt-MN, 

Rt-MN,-l 

NIT 
Rt-MND-2 

a B 6.9998 
a: & 8.5275 
a,: B: 11.9896 a,, B 6.9935 
a,. 8: 8.5249 
a,, B, 1 I .9909 

a,. B 7.0037 

a,, B, 11.9868 
a,. B, 7.0267 
a,, B, 8.5216 a,. B. 11.9887 

4.7 

6,. &, 8.5298 

~~ 

0.3224 
0.3954 
0.1 51 2 
0.3238 
0.3968 
0.1512 

0.3333 
0.4601 
0.1 538 
0.3207 
0.3945 
0.1 529 

'4 

7.0024 0.0522 
8.5022 0.0580 

11.9989 0.0238 
7.0023 0.0523 
8.5021 0.0580 

11.9989 0.0238 
4.72 

7.0032 0.0541 
8.5034 0.0603 

11.9984 0.0241 
7.0031 0.0541 
8.5034 0.0602 - -  11.9985 0.0240 

4.94 4.08 
a,. B ,  7.0008 0.3368 7.0023 0.0523 
a,, B, 8.4990 0.3965 8.5022 0.0580 
a,, B, 11.991 1 0.1 51 5 11.9987 0.0240 

4.82 4.36 

7.0008 0.0165 
8.5008 0.01 81 

11.9997 0.0074 
7.0008 0.01 65 
8.5008 0.0181 

11.9996 0.0075 
4.86 

7.0010 0.0171 
8.501 2 0.01 88 

11.9995 0.0076 
7.0010 0.0171 
8.501 2 0.01 88 

11.9995 0.0076 
4.92 

7.0008 0.0165 
8.5008 0.01 81 

11.9995 0.0075 
NIT 4.40 
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Fig. 2 Trajectory oftarget-angle estimates (in degrees) obtained by a 
33-element LES manopulse array employing Chebyshev weighting with 
-25 dB sidelobes. The target angle variedfrom 0” to 45”. The SNR was 
10 dB. For each acquisition, the proposed rt-MND-2 algorithm was exe- 
cuted for three iterations to obtain the angle estimate. 
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