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Abstract: We consider the problem of partitioning the vertex-set of a tree to p parts to minimize a cost
function. Since the number of partitions is exponential in the number of vertices, it is helpful to identify
small classes of partitions which also contain optimal partitions. Two such classes, called consecutive
partitions and nested partitions, have been well studied for the set partition problem, which is a special
case of the tree-partition problem when the tree is a path. We give conditions on the optimality of these
classes on tree partitions and also extend our results to tree networks. q 1997 John Wiley & Sons, Inc.
Networks 30: 75–80, 1997

1. INTRODUCTION it is impractical to search an optimal partition by brute
force. One approach to significantly reduce the load of
searching is to identify a much smaller class of partitionsLet T denote a tree with vertex-set V and edge-set E .
which still contains an optimal partition. Two classesConsider a p-partition p which partitions V into p disjoint
which have been extensively studied in set partitionnonempty parts V1 , . . . , Vp . The problem is to find an
(which can be viewed as a special case of the tree partitionoptimal partition for a given p which minimizes the cost
when T is a path) are consecutive partitions and nestedC(p) . A p-partition is called a p

V
-partition if empty parts

partitions. Hwang and Chang [4] extended the notion ofare allowed.
these classes to graphs. They showed that the number ofSuppose that ÉVÉ Å n . Then, the number of p-parti-
consecutive partitions is polynomial in n and also gave ations is the Bell number
linear time algorithm to count the number of nested 2-
partitions.1

p!
∑

p01

kÅ0

(01) kS p

kD(p 0 k) n , In a graph partition problem, it is typical to partition the
vertices into subsets to maximize certain internal relations
within the subsets. For example, if each vertex represents
a component in an integrated circuit and an edge betweenwhich grows extremely fast. The number of p

V
-partitions

two components represents the fact that they need beis pn , which is, of course, an even bigger number. Thus,
connected, then one would like to partition the compo-
nents into subsets (chips) of bounded sizes (a chip cannot

Correspondence to: F. K. Hwang carry too many components) such that the number of
Contract grant sponsor: National Science Council of the Republic edges external to the chips are minimized. Unfortunately,of China

this problem is well known [3] to be NP-complete evenContract grant number: NSC 82-0208-M009-050
Contract grant sponsor: DIMACS, Rutgers University for a partition into two parts. In this paper, we study the
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76 CHANG AND HWANG

graph partition problem for simple graphs, like trees. We
give conditions for the optimality of consecutive and
nested p-partitions. We then extend these results to tree
networks, i.e., when points on edges (not necessarily ver-
tices) can be considered. The motivation of this extension
is that many set-partition problems involve points lying
between set elements (e.g., the mean of a set of numbers) .
So, the network model is more suitable for them than is
the graph model. In particular, we extend our results to
the case that the underlying set is a multiset and disprove
a conjecture of Boros and Hwang in a clustering problem.

Fig. 1. A nonnested partition with pairwise nestedness.
2. SOME PRELIMINARY REMARKS

of a proper subset S , V, it is understood that the underly-Let T(V, E) be a tree and let l(e) ú 0 denote the length
ing graph has vertex set S * fl S .of an edge e . The distance d(u , £) between two vertices

Surprisingly, the example in Figure 1 shows that nest-u and £ is simply the length of the path u 0 £. We say
edness is not 2-consistent for the tree, hence, not k-sort-that T has general lengths if for every vertex £ there do
able, for any k ¢ 2. To establish the optimality of nestednot exist two vertices u and w such that d(u , £) Å d(w ,
partitions, we need to take a whole different approach by£) . A convex hull H(S) of a subset S ⊆ V is a minimal
looking at things globally.connected subgraph induced by any subset of V con-

taining S . For a tree, H(S) is the unique minimum Steiner
tree of S . A subset S is said to penetrate another disjoint
subset S * if S > H(S *) x M. A partition is consecutive 3. OPTIMAL PARTITIONS ON TREES
if no part penetrates another part; it is nested if penetration
defines an acyclic digraph with the parts as vertices and All results in this section deal with the tree T(V, E) .
an edge from part Vi to part Vj if Vi penetrates Vj .

Let p Å (V1 , . . . , Vp) be a partition of V and let K be Theorem 1. Suppose that the cost of a partition p Å {V1 ,
a k-subset of {1, . . . , p}. Define V ( K) Å <i√K Vi . . . . , Vp} is
Consider a partition property Q , such as consecutiveness
or nestedness, which is hereditary, i.e., if p has property

C(p) Å ∑
p

iÅ1

∑
e√H (Vi )

l(e) .Q , then for any k and any k-subset K , {Vi : i √ K} is a
partition of V ( K) with property Q . Q is said to be k-
consistent if whenever Q holds for any subset K then Q

An optimal p-partition can be obtained by deleting a set
holds for p. A class M of partitions of V is said to be k-

L of p 0 1 longest edges of T . If L is unique, then it is
Q-sortable locally if for any partition p √ M and any

the unique optimal p-partition.
k-subset K there exists a partition p* √ M which is ob-
tained from p by sorting K into property Q . Q is said to Proof. Let p Å {V1 , . . . , Vp} be an optimal partition.
be k-sortable if for any class M which is k-Q-sortable Since H(Vi ) is connected for each i , at most p 0 1 edges
locally there exists a partition in M with property Q . can be missing from < p

iÅ1 H(Vi ) . Hence,
Hwang et al. [5] proved that k-sortable implies k-consis-
tent. Note that if Q is a k-sortable property then the exis- C(p) ¢ ∑

e√<p
iÅ1H (Vi )

l(e) ¢ ∑
e√/ L

l(e) .
tence of an optimal p-partition with property Q can be
established by verifying that the class of optimal p-parti-
tions is k-Q-sortable locally, thus transferring a global On the other hand, deleting L yields p components C1 ,
condition to a local one. . . . , Cp . The partition p* Å {C1 , . . . , Cp} has cost

It is easily seen that consecutiveness is 2-consistent
for the tree. Chang et al. [2] proved that it is also 2- C(p*) Å ∑

e√/ L

l(e) . j
sortable. Therefore, the optimality of consecutiveness can
be proved by inspecting some local (pairwise) condition.

Corollary 1. All optimal p-partitions (unique if L isHowever, the subgraph induced by the vertices in Vk <
unique) are consecutive.Vj may be disconnected—hence, it has no consecutive

partition. Therefore, we have to bring in H(Vk < Vj) as
the underlying connected graph, which may contain verti- The distance d(x , y) between two vertices x and y is

simply the sum of l(e) over all e on the path from x toces not in Vk < Vj . So when we are dealing with partitions
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y . For a given function f and a subset S ⊆ V, a vertex c p
V
-partition if either Wk õWj or Wk ÅWj but T has general

lengths.√ V is called a weighted f-centroid vertex of S if

Proof. Suppose to the contrary that p is an optimal p-∑
x√S

wx f ( d(x , c)) Å min
y√V

∑
x√S

wx f ( d(x , y)) , partition such that Vk penetrates Vj . Let z √ Vk > H(Vj)
and let y be a vertex in Vj such that z lies on the path y
0 cj . From Lemma 1,where wx ú 0 denotes a weight associated with vertex x .

In particular, ci denotes the weighted f-centroid vertex
Wk f ( d(z , ck)) ° Wj f ( d(z , cj)) , (1)of an nonempty part Vi . We define (x√Vi

wx f ( d(x , ci ))
Å 0 if Vi is an empty part. Note that (x√S wx f ( d(x , c)) Wj f ( d(y , cj)) ° Wk f ( d(y , ck)) . (2)
is a general measure for weighted deviations of a set of
points. For example, when T is a path, f ( d) Å d 2 and wx Since Wk õ Wj (or Wk ° Wj and T has general lengths)
Å (ÉSÉ 0 1)01 , then c is the mean and (x√S wx f ( d(x , and f is increasing, (2) implies that
c)) the variance.

f ( d(y , cj)) õ f ( d(y , ck)) ,
Lemma 1. Suppose that

d(y , cj) õ d(y , ck) .
(3)

C(p) Å ∑
p

iÅ1

Wi ∑
x√Vi

wx f ( d(x , ci )) , From (1) and (2), we also have that

where Wi ú 0 is a weight associated with i th part of p.
f ( d(z , ck))
f ( d(z , cj))

° Wj

Wk

° f ( d(y , ck))
f ( d(y , cj))

. (4)
Let p Å (V1 , . . . , Vp) denote an optimal pV -partition. Sup-
pose that £ √ Vk . Then, Wk f ( d(£, ck)) ° Wj f ( d(£, cj))

It follows thatfor all j x k .

Proof. Suppose to the contrary that there exists a £ ln f ( d(z , ck)) / ln f ( d(y , cj))
√ Vk such that Wk f ( d(£, ck)) ú Wj f ( d(£, cj)) . Let p*

° ln f ( d(z , cj)) / ln f ( d(y , ck)) .
(5)

Å {V *1 , . . . , V *p } be a partition obtained from p by
switching £ to Vj .

Since z is between y and cj ,

C(p*) Å ∑
p

iÅ1

Wi ∑
x√V =i

wx f ( d(x , c *i ))
d(y , cj) Å d(y , z) / d(z , cj) .

Furthermore,° ∑
p

iÅ1

Wi ∑
x√V =i

wx f ( d(x , ci ))

d(z , ck) ¢ d(y , ck) 0 d(y , z)

õ ∑
p

iÅ1

Wi ∑
x√Vi

wx f ( d(x , ci )) Å C(p) , ú d(y , cj) 0 d(y , z) (6)

Å d(z , cj) .
contradicting the assumption that p is optimal. j

Therefore,
Corollary 2. Suppose that f is increasing and either Wi

d(z , cj) õ min{d(z , ck) , d(y , cj)}Å W for i Å 1, . . . , p , or f (0) Å 0. Then, Lemma 1
holds for the p-partition. õ max{d(z , ck) , d(y , cj)} õ d(y , ck) .

Proof. Suppose that ÉVkÉ Å 1. Then, ck Å £ and
Furthermore,

Wk f ( d(£, £)) õ Wj f ( d(£, cj))
d(z , cj) / d(y , ck) Å d(z , cj) / d(y , z) / d(z , ck)

by the assumptions on f and Wi . Suppose that ÉVkÉ ¢ 2. Å d(y , cj) / d(z , ck) .
Then, ÉV *kÉ ¢ 1 and p* remains a p-partition. The proof
of Lemma 1 remains valid. j

From the strict concavity of ln f ,

Lemma 2. Suppose that C(p)Å ( p
iÅ1 Wi (x√Vi

wx f ( d(x , ln f ( d(z , ck)) / ln f ( d(y , cj))
ci )) , where f is nonnegative and ln f is strictly concave
increasing. Then, Vk does not penetrate Vj in an optimal ú ln f ( d(z , cj)) / ln f ( d(y , ck)) ,

(7)

8U12 772/ 8u12$$0772 07-14-97 17:56:40 netwal W: Networks



78 CHANG AND HWANG

contradicting (5) . Hence, Vk cannot penetrate Vj in p. j ¢ d(y , z) / d(z , ck) Å d(y , ck) .

Corollary 3. If f (0) Å 0 is added to the condition Wk Therefore, d(y , cj) Å d(y , ck) , which, in turn, forcesõ Wj , then Lemma 2 applies to p-partitions.
d(z , ck) Å d(z , cj) .

Let Y Å {y √ Vj : z lies on the path y 0 cj}. Then, Y
Theorem 2. Let is a proper subset of Vj . Switch Y to Vk . Then, z is no

longer in Z . Furthermore, since all vertices on the opposite
side of cj with respect to z are in Vk , this switch does notC(p) Å ∑

p

iÅ1

Wi ∑
x√Vi

wx f ( d(x , ci )) ,
introduce any new vertex into Z . Hence, ÉZÉ decreases
by at least one. Repeating this operation, eventually Z
becomes our empty set, or Vj and Vk become consecutivewhere f is nonnegative and ln f is strictly concave increas-
to each other. jing. Then, every optimal p

V
-partition is nested if either the

Wi are all distinct or T has general lengths.

Proof. Consider the partial order P defined on Wi by
4. AN EXTENSION TO NETWORKSthe ‘‘greater than’’ relation, i.e., Wi and Wj are compara-

ble in P if and only if one is greater than the other. Since
Note that when T is a path then the tree-partition problemVk can penetrate Vj in an optimal p-partition only if Wk

is reduced to the well-studied set-partition problem whereú Wj in P , the penetration relation on the parts also
the vertices can be represented by a set of real numbers.defines a partial order (which is a suborder of P) . Thus,
In such a problem, a centroid, e.g., a mean, can be a realan optimal partition is nested. j
number not in the given set. To cover these cases, we
need to allow a centroid to be a point in the graph, notCorollary 4. Suppose that f (0)Å 0 is added to the condi-
necessarily a vertex. Therefore, we need to deal withtion that the Wi are all distinct. Then, Theorem 2 applies
distances between a point and a vertex.to p-partitions.

We now extend the definition of length so that the
distance of any two points, not necessarily vertices, onCorollary 5. Suppose that Wi Å W for i Å 1, . . . , p , T
the tree can be quantified. An edge (u , £) is interpretedis of general lengths and ln f is strictly concave increas-
as a straight line between u and £ and we assume that noing. Then, every optimal p-partition is consecutive.
two edges cross in this representation. A point w on the
edge (u , £) can be represented by w Å lu / (1 0 l)£

For consecutiveness, we can use its 2-sortable property
for some 0 ° l ° 1, and l(u , w) Å ll(u , £) . d(x , y) is

to get rid of the nuisance condition that T is of general
defined as before except if x(y) is not a vertex then the

lengths and also relax the condition on f .
edge involving x(y) is a partial edge.

For a given function f and a subset S ⊆ V, a point c
Theorem 3. Suppose that is called a weighted f-centroid of S if

C(p) Å ∑
p

iÅ1

∑
x√Vi

wx f ( d(x , ci )) , ∑
x√S

wx f ( d(x , c)) Å min
y√T

∑
x√S

wx f ( d(x , y)) .

For a network, the notion of general lengths must bewhere f is increasing. Then, there exists a consecutive
redefined as ‘‘for each vertex x and points y , z , d(x , y)optimal p-partition.
Å d(x , z) implies y Å z .’’ Clearly, the assumption of

Proof. Let p Å (V1 , . . . , Vp) denote a nonconsecutive general lengths is much less tenable in networks than in
optimal p-partition. Since consecutiveness is 2-consistent, graphs. But, otherwise, the proof of Theorems 2 and 3
there exist two parts Vk and Vj such that Vk penetrates Vj . do not depend on ci being a vertex. Therefore, we have
By the 2-sortable property, it suffices to show that we
can always sort Vk < Vj into a consecutive 2-partition

Theorem 4. Letwithout increasing the cost (hence, preserving opti-
mality) . Define Z Å Vk > H(Vj) . We prove Theorem 3
by induction on ÉZÉ. C(p) Å ∑

p

iÅ1

Wi ∑
x√Vi

wx f ( d(x , ci )) .
Let z √ Z . Then, there exists a y √ Vj such that z lies

on the path y 0 cj . By Lemma 1, d(z , ck) ° d(z , cj) and
d(y , cj) ° d(y , ck) . On the other hand, Suppose that the Wi are all distinct and ln f is strictly

concave increasing. Then, every optimal p
V
-partition is

nested.d(y , cj) Å d(y , z) / d(z , cj)
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OPTIMALITY OF CONSECUTIVE AND NESTED TREE PARTITIONS 79

Corollary 6. If f (0) Å 0 is added to the condition the Lemma 2, and if Wk Å Wj , then by Lemma 3. The proof
now is analogous to that of Theorem 2. jWi are distinct, then Theorem 4 applies to p-partitions.

Theorem 5. Suppose that Corollary 8. If, furthermore, f (0) Å 0, then Theorem 6
applies to p-partitions.

C(p) Å ∑
p

iÅ1

∑
x√Vi

wx f ( d(x , ci )) ,

5. A COUNTEREXAMPLE TO A
where f is increasing. Then, there exists a consecutive CONJECTURE IN A CLUSTERING
optimal p

V
-partition. PROBLEM

When the tree is a path, we can improve Theorems 4
and 5. We first state a lemma:

Can Theorem 4 be strengthened to cover ‘‘consecutive-
ness?’’ The answer is no even when T is a path. In particu-Lemma 3. Suppose that T is a path and
lar, the following examples disprove a conjecture of
Boros and Hwang [1] in a clustering problem that there

C(p) Å ∑
p

iÅ1

Wi ∑
x√Vi

wx f ( d(x , ci )) , always exists a consecutive optimal p-partition if

C(p) Å ∑
p

iÅ1

wi ∑
x√Vi

(x 0 ci )2 ,where f is increasing. Then, Wk Å Wj implies that Vk does
not penetrate Vj .

Proof. As we proved in Theorem 3, Wk Å Wj implies
where wi ú 0.that

In a set-partition problem, usually, numbers in the set
can repeat themselves, i.e., the given set is a multiset.

d(y , ck) Å d(y , cj) Furthermore, if two intervals intersect at a unique point
(which is necessarily a boundary point for both intervals) ,

and then they are still considered disjoint. In terms of the tree-
partition problem, the partition is on a set N Å {n1 , . . . ,

d(z , ck) Å d(z , cj) . nm}, where N maps into V, and a partition p Å {N1 , . . . ,
Np} with < p

iÅ1 Ni Å N . If Ni > H(Wj) at a single boundary
But for two given points, the point equidistant from both point of H(Nj) , then Ni is not considered to penetrate Nj .
of them is unique. This contradicts the fact that y x z . For easier presentation, our first example is on a multiset.

j Note that two identical numbers are considered two differ-
ent elements and can be partitioned into different parts.

Corollary 7. Suppose that T is a path and We need to inspect carefully how the multiset exten-
sion affects our results. Note that arguments using the
general lengths are of suspicion since for two points y

C(p) Å ∑
p

iÅ1

∑
x√Vi

wx f ( d(x , ci )) ,
and z in N

d(x , y) ° d(x , z)where f is increasing. Then, every optimal p-partition is
consecutive.

no longer forces a strict inequality as we could have y
We are also able to eliminate the nuisance condition Å z . We also need to interpret that ‘‘x lies on the path y

that the Wi are distinct in Theorem 4. 0 z’’ to mean that x is an internal point of the interval
[y , z] . Finally, there can exist more than two points in

Theorem 6. Suppose that T is a path and N with equal distance to two given points, but these points
in N must correspond to the same vertex in V . By noting
these and changing pi to Ni , then the results reported

C(p) Å ∑
p

iÅ1

Wi ∑
x√Vi

wx f ( d(x , ci )) ,
in this paper (with the deletion of references to general
strengths) except Theorem 1 and Corollary 1 remain
valid.where f is nonnegative and ln f is strictly concave increas-

Consider the multiset {012b/100 , 12b , 9 b , 11 b , 100},ing. Then, every optimal p
V
-partition is nested.

where xy denotes y copies of x and b denotes a large
number. Let p Å 2 andProof. If Wk õ Wj , then Vk does not penetrate Vj by
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80 CHANG AND HWANG

it is easily verified that V1 Å {9 b , 11 b , 100} and V2C(p) Å ∑
x√V1

(x 0 c1) 2 / 2 ∑
x√V2

(x 0 c2) 2 ,
Å {012b/100 , 12b}. Then,

where ci is the centroid of Vi . Thus, w1 Å 1, w2 Å 2, F(p) ú 10b ú F(p*),
d(x , y) Å Éx 0 yÉ and f (z) Å z 2 . It is easily verified

contradicting the optimality of p. Therefore, we con-that f is nonnegative, f (0)Å 0, and ln f is strictly concave
clude that p* is the only optimal 2-partition.increasing. By Corollary 8, an optimal 2-partition must
A continuity argument can obviously extend the abovebe nested. We will show that p* Å (V *1 , V *2 ) , where

‘‘multiset’’ example to ‘‘set.’’ To be specific, we giveV *1 Å {012b/100 , 12b , 100} and V *2 Å {9 b , 11 b}, a
the following ‘‘set’’ example. The proof is similar andnested but not consecutive partition, is the unique optimal
omitted.2-partition. It is easily verified that c*1 Å 0, c*2 Å 10 and

Consider the set {0100a , 02a , 02a / 1, . . . , 01, 1,
2, . . . , 2a , 19a , 19a / 1, . . . , 20a 0 1, 20a / 1, 20aF(p*) Å 2b / 100 / 2b / 1002 / 2(b / b)
/ 2, . . . , 21a , 100a}, where a is a large number. Then,

Å 8b / 10100. V *1 Å {0100a , 02a , 02a / 1, . . . , 01, 1, 2, . . . , 2a ,
100a} and V *2 Å {19a , 19a / 1, . . . , 20a 0 1, 20a

Let p Å (V1 , V2) be an optimal 2-partition. Then, / 1, . . . , 21a} is the unique optimal 2-partition.

Claim 1. 01 ° min{c1c2} ° 2.
6. CONCLUSIONS

Proof. The lower bound is trivial. To prove the upper
bound, suppose to the contrary that min{c1 , c2} ú 2. We gave sufficient conditions such that the searching of
Then, for b large enough, an optimal p

V
or p-partition on a tree can be restricted to

a much smaller class, like the consecutive class and the
C(p) ú (2b / 100)(01 0 2)2 Å 18b / 900 nested class. When the tree is a path, our results cover

the well-studied set partition. In particular, we used ourú C(p*), contradicting the optimality of p. j
result to construct a counterexample against a conjecture
on consecutive optimal p-partitions.Claim 2. 8 ° max{c1 , c2} ° 12.

If a partition can have any number of parts, it is called
Proof. Suppose to the contrary that max{c1 , c2 } an open partition. Since an open partition must be a p-

ú 12 or õ8. Then, for b large enough, partition for some p , our results generalize to the class
of open partitions.

C(p) ú b(12 / 32) Å 10b ú C(p*),
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