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A method employing holograms that conform with arbitrarily shaped sources has been 
developed for enhancing conventional near-field acoustic holography, which has been limited 
to sources with simple geometries, e.g., planar or cylindrical surfaces. Four holography 
transformation algorithms have been developed, based on acoustic holography theory and the 
boundary element method (BEM). Singular value decomposition (SVD) has been 
incorporated into the algorithms in order to alleviate the ill-posed nature frequently 
encountered in backward reconstruction of a field. A pulsating sphere, a cylinder with 
spherical endcaps, and a vibrating piston set in a rigid sphere have been adopted in a numerical 
simulation for verifying the algorithms. Satisfactory agreement has been achieved between the 
holographically transformed results and the analytical solutions. 

PACS numbers: 43.20.Rz, 43.35.Sx 

INTRODUCTION 

Acoustic holography, as its name suggests, provides the 
capability of projecting an image in a three-dimensional 
space, based on the sound data measured on a two-dimen- 
sional hologram surface, by virtue of spatial transformation 
algorithms. A two-dimensional fast Fourier transform 
(FFT) algorithm has been utilized in the past for efficiently 
carrying out computations involved in holography transfor- 
mation. Maynard et al. used the FFT approach in recon- 
struction of sound fields for planar sources. 1'2 The same ap- 
proach was then extended to deal with cylindrical sources by 
Williams and Dardy. 3 The FFT-based algorithm, in spite of 
its efficiency, has been limited to source surfaces (as well as 
holograms) with simple geometries, for example, planar and 
cylindrical surfaces. This requirement, however, has not al- 
ways been met in many industrial applications where irregu- 
larly shaped sound sources have been present. Under these 
circumstances, methods of eigenexpansion have generally 
not been possible for performing spatial transformation. It 
has become desirable to extend planar holography for recon- 
struction of sound fields generated by irregularly shaped 
sources. Veronesi and Maynard • first noted this need for 
generalization of near-field acoustic holography, suggesting 
a holography transformation method for reconstruction of 
sound fields radiated by irregularly shaped sources. Their 
method was based on a somewhat primitive discretization 
scheme involving the use of constant elements for approxi- 
mating field variables. The boundary element method 
(BEM), developed by Huang, 5 was an improvement on 
their method. The present research, along the same lines as 
the previous work, was conducted through an extensive nu- 
merical simulation to investigate the transformation param- 
eters; it also illustrates an entire implementation process 
which might benefit future researchers. 

A BEM-based acoustic holography technique is devel- 

oped in this study for reconstruction of sound fields genera- 
ted by irregularly shaped sources. Four numerical schemes 
are implemented to perform the required spatial transforma- 
tion. Ill-posed nature resulting from backward reconstruc- 
tion of source fields is also dealt with through the use of the 
singular value decomposition (SVD) algorithm. A pulsat- 
ing sphere, a cylinder with spherical endcaps, and a vibrating 
piston set in a rigid sphere are chosen as the test sound 
sources in a numerical simulation. This is done in order to 

verify the BEM-based acoustic holography algorithms. Ob- 
servations obtained from a comparison between the analyti- 
cal solutions and the holographically transformed results 
will be commented on in the conclusion. 

I. INTEGRAL FORMULATION OF SOUND RADIATION 
PROBLEMS 

A brief review of the integral formulation of acoustic 
radiation problems is given in this section to facilitate the 
development of the BEM-based acoustic holography algo- 
rithms. 

From linear acoustics, a monochromatic sound field is 
governed by the Helmholtz equation: a 

(•7 2 + k 2)p(x) = 0, ( 1 ) 

with boundary conditions specified on the source surface, 
where k is the wave number and p is the sound pressure. 
From the theory of Green's functions, Eq. ( 1 ) can be recast 
into the Helmholtz integral for an exterior boundary value 
problem: 7.8 

;$s(i p c• G(xp'Xq ) •p(Xp ) = (Xq) 3nq 

-- G( Xp ,Xq ) t•p ( Xq ) )dSq, •rtq 
(2) 
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where $s denotes the source surface; xp and xq are, respec- 
tively, the field point and the source point; 
G(xp,Xq ) = eikr/4rrr is the free-space Green's function cor- 
responding to the Helmholtz equation; c•/Onq = nq.17 (nq 
denotes the outward normal to the source surface $s ); 

e, xp•-Ss, Ss a smooth surface, 
ll/4rr, x•-Ss, Ss a nonsmooth surface 
. (ll is the solid angle).8 

Equation (2) requires the sound pressure œ and its gradient 
c•p/c•n on the surface to be related as if they correspond to a 
field generated solely by sources within an enclosed volume. 
The following Sommerfeld radiation condition has also been 
incorporated in the derivation of Eq. (2) :7,8 

limr( 8p -ikœ)=O. (3) r--, oo •1'/ 

Equation (2) can be written in a more succinct form by 
means of operator notations: 9-11 

ap ( x•, ) = ( Dp ) ( x•, ) -- (S r3p ) •3n q (x•,), (4) 

where 

C•nq (Xp) • G(Xp,Xq ) C•10 C•nq (Xq) 
is the representation of a single layer potential and 

fss C• G(Xp,Xq )p(Xq )dSq, (Dp) (xp)--= 3nq 
is the representation of a double layer potential. Equation 
(4) can also be differentiated with respect to an arbitrary 
direction np to yield 

cgnp (xp) = (Xq) 
•2 

• G(x•,Xq ) 

c• G(x•,Xq) c• ) c?n,o ø3rt q p ( Xq ) dSq , 
(5) 

or 

o•nv 
where 

(gaP)(x,,)--fs, a G(Xp,Xq ) • c• rt q c• rtp c• rt q p ( X q )dS'q, 

(D.p) (x• ) =d•s• On•c•n• G(x•,x• )p(x• )dS•, 
where [ K (c•p/c•n q ) ] (xp) and (Dnp) (xp) are, respectively, 
the partial derivatives of [S(c•p/c•rtq ) ] (xp) and (Dp) (xp) 
with respect to np. Here, the Euler's equation can be used to 
determine the particle velocity based on the known pressure 
gradient c•p (xp) 

1 
Vn (X•) = • p(x•). (7) 

ipco c•np 
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The sound pressure p(x• ) and the particle velocity Vn (X•) 
then lead directly to the active intensity In and reactive in- 
tensity Qn' 

/• (xp) = «Re [p(x• )On (x•)* ] (8) 

and 

Qn (xp) = «Im [p(xv )On (Xp)* ], (9) 

where Re and Im denote the real part and the imaginary 
part, with * denoting complex conjugate. 

Boundary integral equations (4) and (6) form the basis 
of sound radiation analysis for irregularly shaped sources. 
Suppose that either the sound pressureœ or the pressure gra- 
dient c•p/c•n on the source surface Ss is known apriori. Equa- 
tion (4) or (6) can then be used to calculate the other quan- 
tity by assigning a the value of 1/2 or ll/4rr, depending on 
whether the source boundary of concern is smooth or not. If 
the acoustic variables at some field point in the space are 
further desired, Eqs. (4) and (6) can again be used to propa- 
gate the previously determined boundary data to any field 
point of interest by assigning a the value of unity. These 
integral formulations will be used in the following section for 
deriving various BEM-based acoustic holography algor- 
ithms. 

II. DEVELOPMENT OF BEM-BASED ACOUSTIC 
HOLOGRAPHY ALGORITHMS 

Consider a sound source of finite volume Vs, bounded 
by a piecewise continuous surface Ss (see Fig. 1 ). A source 
radiates acoustic energy to an infinite domain V, with the 
Sommerfeld radiation condition imposed at infinity. As- 
sume that one is only able to measure sound data on the 
hologram Sh which separates the volume V into two parts: 
V0 and Vf. Holography transformation consists of two types 
of processes: backward reconstruction and forward propa- 

b: Source point 
x_,: Field point 

FIG. 1. Schematics for an exterior boundary value problem of acoustic ho- 
lography transformation. 
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gation. In backward reconstruction, one essentially propa- 
gates the hologram data measured on $h inward to a point of 
interest in the near field Vb or on the source surface Ss. In 
forward propagation, one propagates the hologram data 
measured on $h outward to a point ofinterest in the far field 
Vf. A fundamental difference between a typical boundary 
element problem and a holography transformation problem 
is readily observed from the problem statement. The field on 
the source surface can be solved by typical boundary element 
methods 12'13 for boundary value problems of sound radi- 
ation when sound data are prescribed on the source surface 
$s. On the other hand, for the acoustic holography problem 
discussed in this paper, one seeks to determine the sound 
field in a three-dimensional space, based on either the sound 
pressure or the pressure gradient measured on a hologram 
(since the sound data on the source surface are assumed to 
be difficult to access). It is then highly desirable to develop 
spatial transformation algorithms that are capable of the 
backward reconstruction of the sound pressure and pressure 
gradient on the source surface, and also of the forward prop- 
agation of the reconstructed source field to the field points of 
interest in a three-dimensional space. The boundary element 
method is adopted in this study as a building block for imple- 
mentation off our kinds of holography transformation algor- 
ithms for sound fields radiated by irregularly shaped 
sources. A brief review of the boundary element method, in 
conjunction with the development of the holography trans- 
formation technique, is given in the following discussion. 

A. Discretization of boundary integral equations 

The numerical method employed for solving the acous- 
tic holography problem in this study is the boundary element 
method which has been widely used in the area of acoustic 
radiation and scattering. 14-18 There are numerous advan- 
tages to using the boundary element method for solving exte- 
rior acoustic radiation problems. The boundary element 
method, in comparison with the finite difference method and 
the finite element method, requires less memory space since 
the dimensionality of a problem is reduced by one. The 
boundary condition at infinity, i.e., the Sommerfeld radi- 
ation condition, is already incorporated into the boundary 
integral formulation, while the condition at infinity always 
poses difficulties for the other two numerical methods. The 
boundary element method, in contrast to the FFT method 
used in conventional planar or cylindrical holography, pro- 
vides more flexibility in choosing the spacing between mea- 
surement points and the shape of the conformal hologram. 

The boundary elements used for approximating the sur- 
face integral are schematically shown in Fig. 2. Triangular 
elements and quadrilateral elements are used in this study 
for construction of meshes. The global coordinate system 
and local coordinate system are related by isoparametric 
transformation. Quadratic shape functions are used for in- 
terpolating the global coordinates, the sound pressure, and 
the pressure gradient on the source boundary as 

L 

Xi(•) = • N•(•)xi•, i= 1,2,3; L=6 or 8, (10) 
l=1 

FIG. 2. Boundary elements used in isoparametric transformation. (a) Qua- 
dratic quadrilateral element; (b) quadratic triangular element. 

L 

Pm (•')= • NI(•')Pml, m = 1,2,...,M; L = 6 or 8, 
(11) 

L 8Pml 

m = !,2,...,M; L = 6 or 8, (12) 

where xit is the/th coordinate component of the l th node; 
Nt(•) are the quadratic shape functions; •2 •= (•,•2) are 
the local coordinates; Prat and 8Pm•/8% are the sound pres- 
sure and pressure gradient of the l th node on the ruth ele- 
ment; and M is the total number of elements. The interpola- 
tion scheme is required only for the source surface, but not 
for the hologram. Substituting Eqs. ( 10)-(12) into Eqs. (2) 
and (5) gives the following discretized boundary integral 
equations: 

M (f a 8G (xp,Xq(•))j(•)N(•)dSq)pm ap(xp ) = • E•Flq m= 1 S m 

and 

-- (J•,x G{xp'Xq(•)}J(•)N(•)dSq)(Pn )m ] ' Sm 

(13) 

• (Xp,Xq (•')) 

XJ(•')N(•')dSq Pm -- (Xp,Xq (•')) 
Sm 8n•, 

X J(•') N (•') dSq) (Pn) m ] , (14) 

where ASm is the area ofthe mth element; J(•) is the Jacobi- 
an of the coordinate transformation; N (•) is an 1 X œ row 
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vector with Ni(•') as its components; Pm and (Pn)m are 
L X 1 column vectors corresponding to Pml and c•Pml/C•l'lq in 
the integral equations. If there are Mboundary elements and 
N nodes on the source surface, Eqs. ( 13 ) and (14) can even- 
tually be assembled into the following matrix forms: 

ap(%,) = OG JN dSq ps 
S m C•q 

Sm 

•JNdSq e s 

P; . 

(15) 

a •p (xv) = (; a •G •n• Sm •n• •n • 

--(fa 0G (16) S m C•l'lp 
Or, in ope3ator notations, 

ctp(x• ) = lY'•P s -- S•P;, (17) 

a 0p (xp) = I)•n•P s -- KP•P•, (18) 
On e 

where ps and P• are N X 1 row vectors corresponding, re- 
spectively, to the sound pressurep(x s) and the pressure gra- 
dient 3p(xS)/3nq of the Nnodes xS; S •s, IY 's, K es, and I•nn s are 
1 X N row vectors corresponding to the integrals in the 
square brackets of Eqs. (15) and (16). Superscript ps de- 
notes the spatial transformation from the field point xv to the 
source points x s. 

Apparently, from Eqs. (17) and (18), the backward 
reconstruction of the sound pressure p(x s) and the pressure 
gradient 3p(xS)/3nq on the source surface [based on p(x n) 
or 3p(x n)/3n measured on hologram Sn ] is necessary before 
p(xv ) and 3p(xp )/3he at any field point xv can be deter- 
mined. 

B. The BEM-based acoustic holography algorithms 

Four BEM-based acoustic holography algorithms are 
presented in this section on the basis of the discretized 
boundary integral equations (17) and (18). These algor- 
ithms are developed for backward reconstruction and for- 
ward propagation of the sound fields radiated by irregularly 
shaped sources. 

Assume that the sound pressure data p(x •) are mea- 
sured on N locations of the hologram S•. The integral equa- 
tion relating the source surface and the hologram is discre- 
tized and assembled into the matrix form as in Eq. (17) with 

pn Dt:sps t: s = --S SPn, (19) 

where Pt:, P•, and P• are N X 1 column vectors correspond- 
ing to the given sound pressure œ(xt:) and the unknown 
sound pressureœ (x •) and its gradient Oœ(x •)/Onq; the super- 
script h and s denote, respectively, the hologram St: and the 
source surface S•; the subscript n denotes the directional 
derivative; D t:• and S t:• are both N X Nsquare matrices corre- 
sponding to the integrals in Eq. (13) that relate the N mea- 
suring points xt: and the N surface nodes x•; the superscript 

hs denotes a spatial transformation between the hologram Sh 
and the source surface Ss. 

Boundary integral equation (17) with a = 1/2 or ll/4rr 
(depending on whether the source surface is smooth or not) 
takes the following matrix form if the field point is taken to 
the source surface $s' 

a P s = Dssp s -- Ss 'p ,S, (20) 

or 

Dssp s = SSq:',S,, (21 ) 

where D ss and S ss are both N X N square matrices corre- 
sponding to the integrals in Eq. (13) that relate the N field 
points and the N nodes x s on source surface $s; the super- 
script ss denotes both the field points and source points 
which are located on the source surface Ss, D ss= (D ss -- aI), 
with ! being an identity matrix. 

Equations (19) and (21 ), respectively, constitute the 
main equation and the constraint equation with which one 
performs backward reconstruction of the sound field for ir- 
regularly shaped sources. This technique is termed pressure- 
based conformal holography with a hologram and a source 
surface coupling (PCHHS), since its formulation is based 
on the sound pressure measured on the hologram. 

Two different ways of solving the unknowns ps and P•, 
in Eqs. (19) and (21 ) exist. First, one may combine these 
two sets of equations into a single linear system with 2N 
equations and 2Nunknowns. Second, one may substitute the 
constraint Eq. (21 ) into the main Eq. (19) to yield a single 
linear system with Nequations and Nunknowns. The second 
approach is adopted here because it requires less memory 
space and produces better-conditioned matrices than the 
first approach. That is, 

[Dt:S(•SS) -,SSS_ St:s]p• = pt:, (22) 
with ps eliminated. ps can then be recovered from Eq. (21 ) 
after P} is solved in Eq. (22). One may alternatively elimi- 
nate P} from Eqs. (19) and (21 ) to obtain 

[Dt:S _ St:s(sss) -•ss]ps= pt:. (23) 

P• can then be recovered from Eq. (21 ) after ps is solved in 
Eq. (23). 

In some cases, it is more desirable to measure the sound 
pressure gradient, or equivalently, the particle velocity, by 
using an intensity probe. This situation arises when, for ex- 
ample, one seeks to avoid the influences from disturbing 
sources from the background in carrying out an acoustic 
measurement. This application motivates the development 
of the following velocity-based conformal holography with a 
hologram and a source surface coupling (VCHHS). 

Suppose that the sound pressure gradient Op(xt:)A9n, or 
the particle velocity v, (xt:), is measured at N locations on 
the hologram. The integral equation relating the source sur- 
face and the hologram then takes the matrix form as in Eq. 
(18) with a = l- 

pn n n s = D nSP -- Kt:•PS,, (24) 

where Pn n is an N X 1 column vector corresponding to the 
known quantity Op(xt:)/On; Dn ns and K t:s are both N X N 
square matrices corresponding to the integrals in Eq. (14) 
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that relate the Nmeasuring points x n and the Nsurface nodes 
x s. As with the pressure-based conformal holography, Eq. 
(21 ) can be used again as a constraint equation for eliminat- 
ing the unknowns Ps from the main equation (24) to arrive 
at a linear system with N equations and N unknowns: 

Dn ( -- ]Pn = Pn. (25) [ as •ss)-lSss KnS s n 
Here, ps can then be recovered from Eq. (21 ) after P• is 
solved in Eq. (25). One may alternatively eliminate P• from 
Eq. (24) to obtain 

[On•S__ Kns(sss) -,•ss]ps= pa. (26) 

Then P• can then be recovered from Eq. (21 ) after ps is 
so 1 ved in Eq. ( 26 ). 

In addition to the previously mentioned algorithms that 
utilize the source surface integral as a constraint, an arbitrar- 
ily chosen surface located in the interior of the source may be 
used for setting up a constraint equation (see Fig. 1 ). This 
interior surface is only a fictitious one which is not required 
to be physically accessible in field measurement. One advan- 
tage of choosing an interior surface instead of a source sur- 
face as a constraint is: the integration kernels can never be- 
come singular when using the interior surface since the 
distances between the source points and field points are al- 
ways greater than zero. Slow convergence in carrying out 
Gaussian quadrature integration for singular elements is 
then avoided to some degree. The choice of interior points is 
arbitrary, except for those points coinciding with the nodal 
points of the eigenmodes of the corresponding interior prob- 
lems. Interior points with N pressure data measured on the 
hologram are chosen here to be located at equal distances 
along the inward normal directions to the source surface 
points. N interior points are thus located on a surface that 
almost conforms to the source surface. The following pres- 

sure-based matrix equation is obtained here in accordance 
with the Helmholtz integral equation (18) with a = 0: 

Disps i s = S•Pn, (27) 

where ps and P• are defined in Eq. (19); D is and S is are both 
N X N square matrices corresponding to the integrals in Eq. 
(13) that relate the N field points and the N nodes x s on the 
source surface Ss; the superscript is denotes the spatial trans- 
formation between the interior surface Si and the source sur- 
face Ss. 

Parallel to the development of the aforementioned two 
algorithms, the matrix Eq. (27) can be used as a constraint 
equation for eliminating either the unknown surface pres- 
sure ps, or the surface pressure gradient P•, from the main 
Eq. (19) to solve for the remaining unknown quantity. This 
approach is then termed pressure-based conformal hologra- 
phy with a hologram and a source interior coupling 
(PCHHI). 

Similar reasoning can finally be applied to obtain a ho- 
lography transformation algorithm based on the sound par- 
ticle velocity Pn • measured on the hologram, by using the 
source interior equation (27) as a constraint. One may 
choose to eliminate either the surface pressure PS or the sur- 
face pressure gradient P• to recover the other variable. This 
approach leads to velocity-based conformal holography 
with a hologram and a source interior coupling (VCHHI). 

The resulting matrix equations of these four acoustic 
holography algorithms (with the different types of con- 
straints presented in this section) are summarized in Table I. 
Backward reconstruction and forward propagation of the 
sound pressure, the particle velocity, and the sound intensity 
at any field point of interest can be performed by applying 
either the pressure-based approach or the velocity-based ap- 
proach. 

TABLE I. Summary of the BEM-based acoustic holography algorithms. 

Model Known Unknown 
Fundamental 

matrix equations 
Variable 

eliminated Resultant system equations 

PCHHS ph 

VCHHS p• 

PCHHI O h 

VCHHI p•h 

and 

main equation: 
ph __ DhSps__ ShSpS. 
constraint equation: 
DS¾S= SS•. 
main equation: 
p .h = D h. SpS __ K hSps. 
constraint equation: 

DS•ps = S-p•. 

main equation: 
ph __ DhSps__ ShSps. 
constraint equation: 
o/•= Si•n 
main equation: 
p.h = D h. SpS __ K hSp•. 
constraint equation: 

O s 

O s 

[Dhs(Dss) -lSSS -- shs]p• __ ph 

[Dhs__ shs(sss) --•.]pS = ph 

[Dh.s(•=) -lSss -- Khs] p•. = p.h 

[ Dh.s __ Khs(sss) - •ss] pS = ph. 

[DhS(DiS ) -iSiS -- shs]pS n __ ph 

[Dhs__ shs(sis) -- •DiS]pS = ph 

[Dh.S(DiS) -iSiS -- KhS]p•. = ph. 

[Dh.s__ Khs(sis ) -1DiS]pS__ ph. 
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Some noteworthy numerical aspects arise in the imple- 
mentation phase of the acoustic holography algorithms. The 
first aspect is associated with evaluation of the singular inte- 
grals. The assembled coefficient matrices in the aforemen- 
tioned integral formulation, i.e., D ss and S ss, involve evalua- 
tion of singular integrals. Element integrals can be 
conveniently evaluated by using the Gaussian quadrature 
algorithm when the field point x•, and the source point Xq are 
apart from each other. Integrands become singular when the 
field point xv coincides with the source point xq. Singularity 
of the integrand can be reduced by means of polar transfor- 
mation in order to improve convergence in carrying out the 
Gaussian quadrature integration. This is a typical procedure 
detailed in BEM literature. 12'13 

The second numerical aspect is associated with the 
treatment of nonsmooth source surfaces. Recall that the pa- 
rameter a in Eq. (2) equals 1/2 for smooth source surfaces 
and fl/4½r for nonsmooth surfaces. Direct calculation of the 

solid angle fl usually poses difficulties. This can easily be 
circumvented by applying uniform potential to the interior 
domain: 18 

•p 

(28) 

The third numerical aspect is associated with how to 
handle the ill-posed nature resulting from the matrix inver- 
sion in backward reconstruction of source fields. Because 

wave propagation per se is a blurting process, the rapidly 
varying wave contents (termed evanescent waves) decay as 
sound waves propagate to the far field. Two distinct source 
fields are likely to be mapped into nearly identical hologram 
images and cause numerical nonuniqueness. To reconstruct 
the details of a source field (based on a blurred hologram 
field) is in general very difficult in cases of large distance of 
transformation. This ill-posed nature leads to nearly singu- 
lar matrices in the calculation of holography transforma- 
tion. Direct inversion of linear equations of this kind will 
inevitably amplify numerical errors, as well as measurement 
errors contained in the hologram data, and will eventually 
produce disastrous results. 

In order to alleviate the ill-posed nature, SVD 19'20 is 
incorporated into the holography transformation algor- 
ithms. Suppose that the discretized integral equations of the 
holography algorithms take the following matrix form: 

Ax = y, (29) 

where A is an N X Ncoefficient matrix, x is an N X 1 column 
vector containing the unknown quantities on the source sur- 
face, and y is an N X 1 column vector containing the mea- 
sured sound data on the hologram. It can be shown that a 
least-squares •,,1,,ti,, ... be obtained from voeu..o-in.er- 
sion of the linear system in Eq. (29) by virtue of the SVD 
algorithm: •9'2ø 

k 

x• ----A*y---- (VStUh)ym E a•v•, (30) 
i=1 

where h is the Hermitian conjugate operator, U and V are 
unitary matrices, S* is a diagonal matrix with {S,*.•) = 1/a• 
(i = 1,2, .... r; r is the rank of A; cr• are singular values) and 

{S}.} = 0(i = r + 1,...,N), and ai = 1/rri (u•hy) (Ui are the 
column vectors of U, and k is the cutoff number). The cutoff 
number k, in practice, is set to be smaller than the rank r of 
the matrix A in order to trade numerical stability for image 
resolution. This is essentially analogous to the filtering pro- 
cess used in the FFT planar holography. 1'2 

III. VERIFICATION OF THE HOLOGRAPHY 
TRANSFORMATION METHODS 

An extensive numerical simulation has been conducted 

to investigate the numerical performance of each BEM- 
based acoustic holography algorithm. The hologram is cho- 
sen in such a way that its surface nearly conforms to the 
source surface which is in turn approximated by M bound- 
ary elements with N colocation nodes x s. The scanned points 
on the hologram are selected by propagating away from the 
N source surface nodes x s at equal distances along outward 
normal directions of the source surface. Assume that the 

sound pressure Pn and the pressure gradient P•n can be either 
experimentally measured or synthetically generated for lo- 
cations specified on the hologram. The choice of nodes on a 
hologram and a source surface in this conformal manner is 
merely for numerical convenience and not a strict require- 
ment. Depending on the type of hologram data, either the 
pressure-based algorithms or the velocity-based algorithms, 
with either a source surface constraint or an interior con- 

straint, may be utilized to form a linear system of equations 
Ax = y. LU decomposition is then applied to determine the 
condition number of the matrix A. The condition number 

1 X 10 8, as a rule of thumb, is selected as a demarcation of 
whether Gauss elimination or SVD is to be used. The SVD 

algorithm, in conjunction with appropriate filtering, is re- 
quired for backward reconstruction of the source field if the 
condition number of the coefficient matrix is greater than 
1 X 10 8. Determining an appropriate cutoff number k before 
satisfactory results can be reached may take several times of 
trial and error. Forward propagation of the source field to 
any point of interest in a three-dimensional space can then be 
proceeded with if the sound data reconstructed on the source 
surface are acceptable. 

A. The pulsating sphere 

A pulsating sphere is selected as the first test sound 
source in the simulation, without taking advantage of the 
symmetry of its spherical sound field, for validating the ho- 
lography transformation algorithms. 

Consider a pulsating sphere of radius a whose surface 
vibrates radially with the velocity U, exp(--cot). The 
sound pressure and particle velocity at the field point xv at a 
distance r from the center of the sphere are expressed as 7 

p(x•,) =(3)pcU• ( ika )exp[ik(r-a)], (31) ika- 1 

and 

(3) 2 (ikr-1)exp[ik(r-a)]. (32) /)r(Xp) = Ua ika- 1' 
The mesh of the sphere consists of 12 triangular elements 
and 6 quadrilateral elements with 44 colocation nodes (see 
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Fig. 3). Input parameters used in this simulation are a = 0.3 
m, U,=I m/s,p=l.19 kg/m3, c=343.5 m/s, k=10 
m-•, A = 0.623 m, and ka = 3. Another concentric sphere 
of radius 0.4 m is chosen as the hologram. The distance of 
transformation (DOT), defined as the normal distance be- 
tween the hologram and the source surface, is accordingly 
0.1 m (0.16 A ). Four holography transformation algorithms 
are then applied to calculate the sound pressure, the particle 
velocity, the active intensity, and the reactive intensity at the 
nodes on the dashed line of the mesh shown in Fig. 3. The 
holography results and the analytical solutions are com- 
pared in Fig. 4 and Table II. Good agreement (with an error 
less than 4%) is achieved with an 18-element and 44-node 
mesh. Each holography algorithm takes approximately 2 
min CPU time on the VAX 8800 in carrying out the compu- 
tations. 

B. The pulsating cylinder with two spherical endcaps 

A pulsating cylinder with spherical endcaps is selected 
as the second test sound source (see Fig. 5 ). The sound field 
on the source surface is synthetically generated as if there is a 
pulsating line source of finite length inside the cylinder. The 
reason for choosing this particular type of source field is that 
the analytical solution of the sound field radiated by a line 
source is numerically easy to obtain. In addition, the field 
pattern and directivity are also at one's disposal by varying 
the Helmholtz number kL (with L being the length of the 
embedded line source). Sound fields tend to be more direc- 
tive and rapidly varying with large kL values than with small 
kL values. A simulation is conducted for verification of the 

holography transformation algorithms. This is done without 
taking advantage of the axial symmetry of the cylindrical 
source. 

Consider a cylinder with spherical endcaps, containing 
in its interior a line source of finite length L and radius a, and 
with surface velocity Uo (see Fig. 5). The length of the cylin- 

8 

/ 
/ 
26 

FIG. 3. Boundary mesh of a pulsating sphere (with 18 elements and 44 
nodes). 

drical part of the source is also L. The spherical endcaps are 
both of radius Rs. The sound pressurep (xp) and the particle 
velocity On (Xp), along the direction %, can be calculated 
by 2• 

p(x•) =i pcUøka fL/2 1 eikrdz (33) 2 -œ/2 r 

and 

tl n (Xp) = UO afL/2 1 eikr •r dz, (34) 2 - •/2 •-• (ikr -- 1 ) •ne 
with r being the distance between the field point xe and the 
source point xq. The input parameters are chosen in this 
simulation as L=0.5 m, a=0.01 m, Uo = 100 m/s, 
Rs = 0.3 m, p = 1.19 kg/m 2, and c = 343.5 m/s. Nine simu- 
lation cases (see Table III) are designed for investigation of 
the numerical aspects of the acoustic holography algor- 
ithms, for example, the mesh spacing, the kL values, and the 
distance of transformation in reconstruction of the sound 

field radiated by the cylindrical source. Two types of meshes, 
with different sampling spacings, are used in the simulation 
(see Fig. 6). In the forward propagation cases, the field 
points xp are located on a semicircle of radius 1 m on the XZ 
plane (see Fig. 7). 

The results of the holography transformation algor- 
ithms are presented only for the nodes along the dashed lines 
of Fig. 6 because the sound field of the cylindrical source is 
axially symmetrical. Relative errors between the holography 
transformation results and the exact solutions computed by 
Eqs. ( 33 ) and (34) are summarized in Tables IV and V. 

Figure 8 shows the results of the acoustic holography 
algorithms with DOT = 0.16 A and a mesh containing 20 
elements and 54 nodes (case 1 in Table III) for the sound 
pressure, the particle velocity, the active intensity, and the 
reactive intensity of the cylindrical source (kL = 5 ). Errors 
in the results are within approximately 5% and 6% for the 
pressure and the particle velocity, respectively (see case 1 in 
Table IV and V). Only slowly varying propagating waves 
are captured in the reconstruction process since the mesh 
used in this case is relatively coarse. Well-conditioned coeffi- 
cient matrices, at the expense of poor resolution, can then be 
obtained so that the Gauss elimination algorithm can be di- 
rectly applied. 

The effect of different mesh spacings on the holography 
transformation algorithms is investigated in cases 1 and 2. 
Only the results of the pressure magnitude (due to limited 
space) are shown in Fig. 9. The transformation using a finer 
mesh yields more accurate results as expected (approxi- 
mately 1% vs 5 % error in Table IV for cases 1 and 2, respec- 
tively). 

The results of the holography algorithms with a source 
interior constraint, i.e., algorithms PCHHI and VCHHI, are 
significantly better than those obtained from the other two 
algorithms employing a source surface constraint. An expla- 
nation for this is that the holography algorithms with a 
source interior constraint do not require evaluation of singu- 
lar elements since the distances between the field points and 
the source points can never become zero. 

The holographically transformed results of the back- 
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FIG. 4. Acoustic holography results versus exact solutions for the sound 
field radiated by a pulsating sphere (ka = 3 ). The holography calculation is 
based on an 18-element and 44-node mesh. The distance of transformation 

is 0.16 I. The sound field is backward reconstructed on the source surface. 

(a) Pressure magnitude; (b) pressure phase; (c) particle velocity magni- 
tude; (d) particle velocity phase; (e) active intensity; (f) reactive intensity. 

TABLE II. The mean relative errors (%) of the sound-pressure magnitude 
and the particle velocity magnitude results reconstructed on the surface of 
the pulsating sphere shown in Fig. 3. 

Model PCHHS VCHHS PCHHI VCHHI 

Pressure 

magnitude 3.70 3.64 0.74 0.67 
Velocity 
magnitude 1.00 1.10 0.76 0.48 

ward reconstruction of a low-frequency field (kL = 5, case 2 
in Table III) and a high-frequency field (kL = 10, case 6 in 
Table III), based on a 42-element and 116-node mesh, are 
compared in Fig. 10. The errors for the low-frequency field 
are smaller than those for the high-frequency field (approxi- 
mately 1.3% vs 1.6% in Table IV for cases 2 and 6, respec- 
tively), because the smooth and divergent fields radiated by 
low-frequency sources can be reasonably represented by us- 
ing coarse meshes. 
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Y 

FIG. 5. Configuration of a cylinder with spherical endcaps embedded with a 
synthetic pulsating line source of finite length L and radius a. 

TABLE III. Holography transformation parameters used in the simulation 
cases of the sound field radiated by a cylinder with spherical endcaps shown 
in Fig. 5. [ Note: (20,54) denotes a mesh with 20 elements and 54 nodes. GE 
denotes the Gauss elimination algorithm. SVD denotes the singular value 
decomposition algorithm. ] 

Solution 

method Direction of 

Case Mesh kL DOT/A of Ax = v transformation 

1 (20,54) 5 0.16 GE backward 
2 (42,116) 5 0.16 GE backward 
3 (42,116) 5 0.16 GE forward 
4 (42,116) 5 4.77 SVD backward 
5 (42,116) 5 4.77 SVD forward 
6 (42,116) 10 0.32 GE backward 
7 (42,116) 10 0.32 GE forward 
8 (42,116) 10 9.55 SVD backward 
9 (42,116) 10 9.55 SVD forward 
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FIG. 7. Field points used in the forward propagation cases of the sound field 
radiated by a cylinder with spherical endcaps. Every field point is equally 
spaced on a semicircle of radius 1 m. 

TABLE IV. The mean relative errors (%) of the sound-pressure magnitude 
results reconstructed on the surface of the cylinder with spherical endcaps 
shown in Fig. 5. 

Holography transformation algorithms 
Case PCHHS VCHHS PCHHI VCHHI 

1 4.68 4.45 1.03 1.14 
2 1.33 1.29 0.61 0.56 
3 0.01 0.01 0.01 0.01 
4 2.55 2.56 2.28 2.15 
5 0.04 0.04 0.04 0.04 
6 1.63 1.59 2.18 2.09 
7 0.12 0.15 0.12 0.17 
8 4.70 4.56 5.69 4.62 
9 1.42 1.44 1.40 1.42 

FIG. 6. Boundary mesh of a cylinder with spherical endcaps. (a) Coarse 
mesh (20 elements and 54 nodes); (b) fine mesh (42 element and 116 
nodes). 

TABLE V. The mean relative errors (%) of the sound particle velocity 
magnitude results reconstructed on the surface of the cylinder with spheri- 
cal endcaps shown in Fig. 5. 

Holography transformation algorithms 
Case PCHHS VCHHS PCHHI VCHHI 

1 5.78 5.62 3.28 3.63 
2 1.44 1.35 0.81 0.89 
3 0.01 0.01 0.01 0.01 
4 46.45 46.45 45.67 44.96 
5 0.03 0.03 0.03 0.03 
6 2.09 2.15 1.60 1.67 
7 0.11 0.13 0.11 0.15 
8 36.89 36.98 32.29 32.36 
9 1.21 1.23 1.20 1.22 
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FIG. 8. Acoustic holography results versus exact solutions for the sound 
field radiated by a cylinder with spherical endcaps (kL - 5). The hologra- 
phy calculation is based on a 20-element and 54-node mesh. The distance of 
transformation is 0.16 2, (case 1 in Table III). The sound field is backward 
reconstructed on the source surface. (a) Pressure magnitude; (b) pressure 
phase; (c) particle velocity magnitude; (d) particle velocity phase; (e) ac- 
tive intensity; (f) reactive intensity. 

The forward propagation results obtained under the 
same conditions in cases 3 and 7 (kL -- 5 and 10, respective- 
ly) are shown in Fig. 11. The sound fields of these two kL 
values are backward reconstructed on the cylindrical source 
surface. They are then forward propagated to the semicircle 
of Fig. 7. The error of the low-frequency case is smaller than 
that of the high-frequency case (approximately 0.01% vs 

0.1% error in Table IV for cases 3 and 7, respectively). The 
forward propagation errors are significantly smaller than 
the backward reconstruction errors. Forward propagation is 
in general less difficult than backward reconstruction in con- 
ducting a holographical imaging because the former trans- 
formation is inherently a smoothing process that is insensi- 
tive to the reconstruction errors of the near field. 
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FIG. 9. Effect of mesh spacing on the acoustic holography. The pressure 
magnitude is backward reconstructed on the surface of a cylinder with 
spherical endcaps. (a) Holography transform result based on a 20-element 
and 54-node mesh (case 1 in Table III); (b) holography transform result 
based on a 42-element and 116-node mesh (case 2 in Table III). 

FIG. 10. Effect of the sound field frequency on the acoustic holography. 
The pressure magnitude is backward reconstructed on the surface of a cylin- 
der with spherical endcaps. The holography calculation is based on a 42- 
element and 116-node mesh. (a) Reconstructed result of a low-frequency 
field (kL = 5, case 2 in Table III); (b) reconstructed result of a high-fre- 
quency field (kL = 10, Case 6 in Table III). 

The coefficient matrices resulting from the backward 
reconstruction process arc well-conditioned because the dis- 
tances of transformation are moderate in these cases (with 
the maximum 0.32 )t in case 7 of Table III). Satisfactory 
results in such cases can be obtained by direct application of 
the Gauss elimination algorithm to solve for the sound pres- 
sure or the particle velocity on the source surface. However, 
ill-pose d nature is frequently encountered in backward re- 
construction of source fields of large distance of transforma- 
tion. The SVD algorithm is utilized to carry out pseudo- 
inversion of the holegram data in order to overcome this 
numerical difIiculty. In addition, the filtering procedure is 
employed to ensure numerical stability, at the expense of the 
information contained in the high-order components of the 
decomposed field. Two backward reconstruction cases of 
large distance of transformation (DOT = 4.77 )t for case 4 
and 9.55 )t for case 8 in Table III) are shown in Fig. 12. The 

errors in the reconstructed sound pressure on the source sur- 
face, in spite of the incredibly large distances of transforma- 
tion, are approximately 3% for the low-frequency field in 
case 4 (kL -- 5 ) and 5% for the high-frequency field in case 
8 (kL -- 10), as shown in Table IV. The singular values ob- 
tained from the holography algorithms are plotted in Fig. 13. 
These singular values appear to be more uniformly distribut- 
ed for high-frequency fields, which require more orthonor- 
mal modes of the decomposed field, than for low-frequency 

ß fields. As far as the filtering procedure is concerned, 75 and 
100 out of 116 singular values are preserved for the low- 
frequency case 4 and the high-frequency case 8, respectively. 
The reconstruction errors for the particle velocity are signifi- 
cantly larger than the sound-pressure errors (approximately 
46% for case 4 and 37% for case 8 in Tables IV and V). This 
is not entirely unexpected because, from the Euler's equa- 
tion, differentiation from the sound pressure in obtaining the 
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FIG. 11. Acoustic holography results versus exact solutions for the sound 
field radiated by a cylinder with spherical endcaps. The pressure magnitude 
is forward propagated to the image points of Fig. 7. The holography calcula- 
tion is based on a 42-element and 116-node mesh. (a) Propagated result of a 
low-frequency field (kL -- 5, Case 3 in Table III); (b) propagated result of 
a high-frequency field (kL -- 10, case 7 in Table III). 
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FIG. 12. Effect of distance of transformation on acoustic holography. The 
pressure magnitude is backward reconstructed on the surface of a cylinder 
with spherical endcaps. The holography calculation is based on a 42-ele- 
ment and 116-node mesh. Singular value decomposition is used. (a) Dis- 
tance of transformation -- 4.77 2, kL -- 5, case 4 in Table III; (b) distance 
of transformation -- 9.55 t, kL -- 10, case 8 in Table III. 

particle velocity generally amplifies the errors contained in 
the former quantity. 

In Fig. 14, the forward propagation results 
(DOT - 4.77,t for case 5 and 9.55,t forcase9) are calculat- 
ed by the holography algorithms based on the reconstructed 
fields obtained in cases 4 and 8. The results ofholographical- 
ly transformed sound pressure show satisfactory accuracy 
(approximately 0.1% for case 5 and 1% for case 9 in Table 
IV), despite the less accurate particle velocity field recon- 
structed on the source surface. 

C. The vibrating piston set in a rigid sphere 

In addition to the pulsating sphere and the cylinder with 
spherical endcaps, a more sophisticated source is adopted in 
the numerical simulation for verifying the BEM-based 
acoustic holography algorithms. A vibrating piston set in the 

side of a rigid sphere of radius a is selected as the third test 
sound source (see Fig. 15). The spherical piston surface 
spans an angle 0o with respect to the z axis. The distribution 
of surface velocity is 

Uo, 0<0<0o U(a,O) = O, 0o <O<rr. 

The field pattern and directivity can be adjusted at will by 
varying the Helmholtz number ka and the spanning angle 
0o. Such a sound source provides a more rigorous test of the 
holography technique than the previous cases, because the 
field from the active part of the source must diffract around 
the object, with a significant decrease in information due to 
evanescent waves. 

The following analytical solution of a vibrating piston 
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FIG. 13. The singular values obtained for a low-frequency field (kL = 5, case 4 in Table III) and a high-frequency field (kL -- 10, case 8 in Table III) when 
the sound field is backward reconstructed on the surface of a cylinder with spherical endcaps by using the following acoustic holography algorithms: (a) 
algorithm PCHHS; (b) algorithm VCHHS; (c) algorithm PCHHI; (d) algorithm VCHHI. 

set in a rigid sphere is used to synthetically generate the 
sound-pressure field at a point (r,O):6 

p(r,O) = • ipCUm Pro(cos O)hm (kr), (35) 
m=O h • (ka) 

where 

Um= « Uo [Pm - • (cos 0o ) -- Pm + • (cos 0o ) ], ( 36) 
with Pm being the Legendre polynomial of degree rn 
[Po (x) -- 1 and P• (x) = x ] and h m being the spherical Bes- 
sel function of the first kind of order rn. The first derivative 

of the spherical Bessel function in Eq. (35) is computed by 
the following recursive formula to keep truncation errors as 
small as possible: 

h•,(x) = [mhm_,(x)-(m+ 1)hm+,(x)]/(2m+ 1), 
(37) 

with ho (x) = - iexp(ix)/x 
X (x + i)/x 2. 

and h, (x) = -- exp (ix) 

The input parameters used in the simulation of the pis- 
ton set in a sphere are chosen as a = 0.2 m, Uo = 1 m/s, 
p = 1.19 kg/m 3, and c = 343.5 m/s. Five simulation cases 
(see Table VI) are designed to investigate the numerical 
aspects of the acoustic holography algorithms, including the 
spanning angle 0o, the distance of transformation, and the 
Helmholtz number ka. Without taking advantage of the axi- 
al symmetry of the piston, the holography transformation 
algorithms are applied to backward reconstruct the source 
field. A mesh with 18 elements and 44 nodes used for ap- 
proximating the source is identical to the one shown in Fig. 
3. Quadratic shape functions are again used for interpolating 
field variables. 

The holographically transformed results are presented 
only for the nodes along the dashed line of Fig. 15, because 
the vibrating piston field is symmetrical about the z axis. 
Numerical results obtained from the holography transfor- 
mation algorithms are compared to the analytical solutions 
in terms of polar plots from Figs. 16 to 20. The relative errors 
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FIG. 14. Effect of distance of transformation on acoustic holography. The 
pressure magnitude is forward propagated to the far field of a pulsating 
cylinder with spherical endcaps after backward reconstruction on the 
source surface. The holography calculation is based on a 42-element and 
116-node mesh. Singular value decomposition is used. (a) Distance of 
transformation -- 4.77 A, kL -- 5, case 5 in Table III; (b) distance of trans- 
formation ---- 9.55 A, kL -- 10, case 9 in Table III. 

Y 

FIG. 15. Configuration of a vibrating piston spanned with an angle 0o, set in 
a rigid sphere of radius a. 

TABLE VI. Holography transformation parameters used in the simulation 
cases of the sound field radiated by a vibrating piston set in a rigid sphere 
shown in Fig. 15. (Note: Here, a ---- 0.2 m for all cases. DOT denotes the 
distance of backward reconstruction. SVD terms denotes the number of 

terms preserved in performing singular value decomposition.) 

Case ka 0o DOT/A SVD terms 

1 2 60 ø 0.16 44 
2 2 30 ø 0.16 44 

3 2 30 ø 0.16 44 

4 2 30 ø 1.00 32 
5 4 30 ø 0.16 44 

between the transformed results and the exact solutions are 
summarized in Table VII. It can be observed from the recon- 

struction errors that this piston field is evidently more diffi- 
cult to reconstruct than the previous cases. 

In case 1, the holography transformation algorithms are 
applied to the vibrating piston set in a sphere, with a span- 
ning angle 0o = 60 ø at a frequency 546.748 Hz (ka- 2). 
The source pressure field is backward reconstructed at a dis- 
tance 1/6 A away from the source. The holographically 
transformed results and the exact solutions are compared in 
Fig. 16. The numerical results exhibit satisfactory accuracy, 
with relative errors less than 2.5% (see Table VII). The 
errors for the active part of the source are exaggerated be- 
cause the graph is expressed in terms of the linear scale. The 
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FIG. 16. Polar graph of the acoustic holography results versus exact solu- 
tions for the sound pressure radiated by a piston spanned by 60 ø, set in a 
sphere of radius 0.2 m (ka = 2). The holography calculation is based on an 
18-element and 44-node mesh. The distance of transformation is 0.16 A 
(case 1 in Table VI). The sound field is backward reconstructed on the 
source surface. 
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FIG. 17. Polar graph of acoustic holography results versus exact solutions 
for the sound pressure radiated by a piston spanned by 30 ø, set in a sphere of 
radius 0.2 m (ka = 2). The holography calculation is based on an 18-ele- 
ment and 44-node mesh. The distance of transformation is 0.16 A (case 2 in 
Table VI). The sound field is backward reconstructed on the source surface. 
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FIG. 19. Polar graph of acoustic holography results versus exact solutions 
for the sound pressure radiated by a piston spanned by 30 ø, set in a sphere of 
radius 0.2 m (ka = 2). The holography calculation is based on an 18-ele- 
ment and 44-node mesh. The distance of transformation is 1 A (case'4 in 
Table VI). The sound field is backward reconstructed on the source surface. 
The SVD algorithm is invoked in the backward reconstruction process. 
Only 32 out of 44 singular values are preserved. 
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FIG. 18. Polar graph of acoustic holography results versus exact solutions 
for the sound pressure radiated by a piston spanned by 30 ø, set in a sphere of 
radius 0.2 m (ka = 2). The holography calculation is based on an 18-ele- 
ment and 44-node mesh. The distance of transformation is 1 A (case 3 in 
Table VI). The sound field is backward reconstructed on the source surface. 
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FIG. 20. Polar graph of acoustic holography results versus exact solutions 
for the sound pressure radiated by a piston spanned by 30 ø, set in a sphere of 
radius 0.2 m (ka = 4). The holography calculation is based on an 18-ele- 
ment and 44-node mesh. The distance of transformation is 0.16 A (case 5 in 
Table VI). The sound field is backward reconstructed on the source surface. 
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TABLE VII. The mean relative errors (%) of the sound-pressure magni- 
tude results reconstructed on the surface of the vibrating piston set in a 
sphere shown in Fig. 15. 

Holography transformation algorithms 
Case PCHHS VCHHS PCHHI VCHHI 

1 2.16 2.50 1.08 0.66 

2 14.69 12.20 18.90 15.83 

3 17.45 17.43 22.26 22.24 

4 10.01 9.98 10.65 10.61 
5 20.01 10.95 31.86 20.48 

algorithm VCHHS achieves the best performance among 
the methods utilized because its integration process for ob- 
taining the sound pressure on the image surface (based on 
the particle velocity on the hologram) tends to smooth out 
numerical errors. 

In case 2, the holography transformation algorithms are 
tested under a more difficult condition, with a smaller span- 
ning angle 0o = 30 ø. The field from the active part of the 
source must diffract around the sphere, with a significant 
decrease in information due to evanescent waves. The source 

pressure field is backward reconstructed at a distance 1/6 A 
away from the source. The transformed results and the exact 
solutions are compared in Fig. 17. There is, as expected, a 
significant increase in reconstruction errors (with a maxi- 
mum of 18.9% in Table VII). Nevertheless, the backward 
reconstruction results (except for the active part of the 
source) appear acceptable for this more directive field. 

In case 3, the distance of transformation is further in- 
creased to 1 A, which is significantly larger than the previous 
1/6 A in cases 1 and 2. The transformed results and the exact 

solutions are compared in Fig. 18. Sizable errors (with a 
maximum of 22.26% ) arise due to ill-posed nature involved 
in the backward reconstruction process. This indicates that 
Gauss elimination is no longer recommended for this case. 
Therefore, in case 4, the SVD algorithm (in conjunction 
with appropriate filtering) is utilized to alleviate the numeri- 
cal difficulty under the same test conditions as in case 3. 
Only 32 out of 44 singular values are preserved in this case 
for applying pseudo-inversion of the hologram data. Signifi- 
cant improvement can be observed in Fig. 19 and Table VII, 
with a maximum error of 10.65%. The velocity-based meth- 
ods achieve a slightly better performance than the pressure- 
based methods. 

An example of poor reconstruction is investigated in 
case 5 where the source frequency is increased to 1093.496 
Hz (ka = 4). The source pressure field is reconstructed at a 
distance 1/6 A away from the source surface. The hologra- 
phically transformed results and the exact solutions are 
compared in Fig. 20. The errors are summarized in Table 
VII, with a maximum error of 31.86% obtained from the 
algorithm PCHHI. In view of the poor quality of the recon- 
structed field, one may conclude that the mesh spacing ( 1/3 
A) used in this case is too coarse to describe the details of the 
near field. This indicates that the 1/2-A rule commonly used 
in optical holography is obviously too broad a criterion for 

choosing mesh spacings in applications of near-field acoustic 
holography. 1 

IV. CONCLUSION 

Acoustic holography algorithms have been developed 
for spatial transformation of sound fields radiated by irregu- 
larly shaped sources which limit the use of conventional 
planar holography. The boundary element method, in con- 
junction with singular value decomposition, has been uti- 
lized to improve numerical efficiency as well as accuracy in 
performing spatial transformation. Satisfactory agreement 
between the holography results and the exact solutions ex- 
hibits the effectiveness of the BEM-based acoustic hologra- 
phy techniques. 

Depending on field directivity, coarse meshes are suffi- 
cient for spatial transformation of the smooth and divergent 
fields radiated by low-frequency sources, while fine meshes 
are usually required to accurately represent the rapidly vary- 
ing and convergent fields radiated by high-frequency 
sources. 

The Gauss elimination algorithm suffices to solve the 
linear system of equations resulting from backward recon- 
struction of source fields in cases of moderate distances of 

transformation. However, singular value decomposition, in 
conjunction with appropriate filtering, is required for cases 
of large distances of transformation, in order to obtain ac- 
ceptable reconstruction of source fields, at the expense of 
information contained in the high-order components of the 
decomposed field. 

Future work will be focused on seeking optimal criteria 
for selecting the holography transformation parameters, for 
example, the mesh configuration, the distance of transfor- 
mation, the cutoff number for singular values, the locations 
of the interior points. The BEM-based holography algo- 
rithms will also be extended to more realistic situations 
where interfering sources, background noise, or ground re- 
flection are present in the measurement environment. This 
holography technique will be verified experimentally, espe- 
cially for industrial applications associated with sound field 
characterization and noise source identification. 
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