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The modi®ed coupled averaged propagation equations describing the orthogonally
polarized soliton propagation in a random birefringent ®bre are derived. These include
the third-order dispersion and Raman shift terms. Using these equations, the effects of
the third-order dispersion and Raman shift terms are found to reduce the soliton in-
teractions in a polarization-division multiplexing transmission system.

1. Introduction
Recently polarization-division multiplexing (PDM) has been used to increase the capacity
of the soliton-based transmission system [1±6]. It has been demonstrated that the inter-
action of orthogonally polarized solitons is weaker than that of parallely polarized solitons
[1]. A good analytic description of PDM soliton interaction was made by the perturbation
method [2±4]. The PDM system was considered by assuming the correlation length to be
much shorter than the soliton period, so that the ¯uctuating local birefringence vector may
be averaged over all polarization states. The soliton propagation of the PDM system can
be described by the coupled averaged propagation equations (CAPE) [1, 7, 8], where the
third-order dispersion and Raman shift terms are neglected. Using CAPE, De Angelis and
Wabnitz [3] have numerically shown the interaction of the two orthogonal pulses. Initially,
the two pulses attract each other. As the collision distance is approached, a complete
polarization rotation by 90� for each pulse occurs in its own time slot. It has been shown
that the collision distance of the PDM system is much larger than that of the parallely
polarized system. However, the e�ects of third-order dispersion and Raman shift are not
reported in a random birefringent PDM transmission system.
In this paper, we will derive the modi®ed coupled averaged propagation equations

(MCAPE) which describe the soliton propagation in a PDM transmission system in-
cluding the e�ects of the third-order dispersion and Raman shift. Using these equations,
we will show that the interactions of solitons are reduced by the third-order dispersion and
Raman shift terms.
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2. The modi®ed propagation equations
The soliton propagation in a linearly birefringent ®bre can be described by the modi®ed
coupled non-linear SchroÈ dinger equations (MCNSE) [9]:
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where U and V are two polarization components of the electric ®eld envelope normalized
by the electric ®eld scale Q. Z and T are normalized by dispersion length LD, and time scale
T0, respectively. Q, LD and T0 are related by

Q � kjb2jAeff

2pn2T 2
0

� �1=2
; LD � T 2

0

jb2j
where k is the wavelength, b2 is the second-order dispersion, Aeff is the e�ective ®bre cross-
section area, and n2 is the Kerr coe�cient. T0 � TW=1:763 and TW is the initial full
pulsewidth at the half magnitude. The coe�cients in Equations 1 are

d � DbLD
2T0

; C3 � b3LD
T 3
0

; sR � TR
T0
; c � aLD

where Db represents the inverse group velocity di�erence of two polarization components,
b3 is the third-order dispersion, a is the ®bre loss, TR is the slope of the Raman gain pro®le
at the carrier frequency. R � 8pcT0=k is the normalized wave number and c is the velocity
of light in a vacuum. However, in a real communication ®bre, the orientation of ®bre
birefringence randomly varies with a correlation length which is typically of length 100 m
or so [10]. When the soliton wavelength, k, is at 1:55 lm, the index of refraction, Dn,
between the two polarizations varies in the range 5� 10ÿ9 to 8� 10ÿ4, Db is found in the
range 1:7� 10ÿ2 to 2:7� 103 ps kmÿ1. If we take TW � 3 ps and b2 � ÿ0:255 ps2 kmÿ1
�LD � 11:4 km�, we can ®nd that Rd � �4pDn=k� � LD � Dn� 1011 is much greater than
unity over the entire range of Dn. Hence, the terms with the factor e�iRdZ are rapidly
varying and can be neglected.
To derive modi®ed coupled averaged propagation equations �MCAPE� for a PDM

soliton system, we rewrite Equations 1 into a single-vector equation:
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where W � �U ; V �t is the polarization state envelope vector, W� � �W��t, r1 � 1 0
0 ÿ1
� �

and r2 � 0 1
1 0

� �
. The last two terms on the left-hand side of Equation 2 are transformed

from Raman shift terms.

We assume that the polarization axes of the ®bre periodically undergo a sudden rotation
h, which can take any value from 0 to 2p, and can be represented by an arbitrary rotation
on the PoincareÂ sphere [7, 8]. When the rotation h occurs, we also assume that a random
phase / is added to the phase di�erence between the polarization state envelopes U and V .
The total transformation is given by

U 0

V 0

� �
� cos h sin h ei/

ÿ sin h eÿi/ cos h

� �
U
V

� �
�3�

where the angles h and / are assumed to be uniformly distributed random variables on the
PoincareÂ sphere. We have
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where

R � cos h sin h ei/

ÿ sin h eÿi/ cos h

� �
and

r � Rÿ1r1R � cos 2h ÿ sin 2h eÿi/
ÿ sin 2h eÿi/ ÿ cos 2h
� �

The second term on the left-hand side of Equation 4 can be ignored because d varies
randomly between positive and negative. Averaging Equation 4 over h and / on the
PoincareÂ sphere, we obtain the modi®ed coupled averaged propagation equations
(MCAPE) for a PDM soliton system:
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where u � ��������
9=8

p
U , v � ��������

9=8
p

V . The last three terms on the left-hand side of Equations 5
describe the averaged Raman e�ect, in which the ®rst term is the self-frequency shift (SFS)
term, and the other two are the cross-frequency shift (XFS) terms.
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3. Numerical results
The typical ®bre parameters used to solve Equations 5 numerically are: soliton wavelength
k � 1:55 lm, b2 � ÿ0:255 ps2 kmÿ1 �D � 0:2 ps kmÿ1 nmÿ1�, b3 � 0:14 ps3 kmÿ1, a �
0:22 dB kmÿ1, n2 � 3:2� 10ÿ20 m2 Wÿ1, and TR � 5 fs. The e�ective ®bre cross-section is
35 lm2. The ®bre loss is periodically compensated by the lumped ampli®ers and the am-
pli®cation period is assumed to be 0:25LD. To show the e�ects of the third-order dis-
persion and Raman shift terms, we consider the soliton pulsewidth TW � 3 ps. Equations 5
are solved by the split-step Fourier method with the initial condition u�Z � 0; T � �
sech�T � D0=2T0� and v�Z � 0; T � � sech�T ÿ D0=2T0� with D0 � 3:5TW. In the absence
of the third-order dispersion and Raman shift terms, Figs. 1a and 1b show the envelopes
of juj and jvj in the PDM soliton transmission system, respectively. The two pulses
attract each other in the beginning and then repel to their own time slot after the collision
distance Zc � 112LD. At the collision point the interaction leads to a complete polarization
rotation by 90� for each pulse. The polarization-state each of the two pulses can exactly
recover its own orientation at a distance which is a multiple of 2Zc. In Figs. 2a and 2b, we
show the envelopes of juj and jvj, respectively, in the presence of the third-order dispersion
and Raman shift terms. It is seen that the interaction leads to some polarization rotation
which is much smaller than 90� at the collision distance. The polarization rotation at the
second collision point is larger than that at the ®rst collision point. Moreover, the degree
of polarization rotation of the u polarization component is smaller than that of the v
polarization component. In Fig. 2, the ®rst collision distance Zc is found at about 93LD
and the second collision distance is found at about 325LD. Its period is no longer 2Zc. In
addition, we can see the obvious time delay of the two pulses, which is mainly due to the
Raman shift terms. Figure 3 shows the variation of separation of two solitons as a
function of normalized distance, curve (a) is obtained in the absence of the third-order
dispersion and Raman shift terms and curve (b) is obtained in the presence of the third-
order dispersion and Raman shift terms. For curve (a), the separation gradually reduces
until the collision distance where the separation is minimum at about 7.2 ps. The oscil-
lation period is 224LD. For curve (b), the ®rst minimum separation is at about 8.9 ps at a

Figure 1 The interaction of two solitons in a PDM transmission system without the third-order dispersion and

Raman shift terms: (a) the envelope of juj, and (b) the envelope of jvj.
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distance 93LD, the next minimum separation is at about 8.8 ps at a distance 325LD and the
maximum separation is at about 11.4 ps at a distance 215LD where the polarization
rotation is almost equal to zero. Comparing curves (a) and (b), it can be seen that the
third-order dispersion and Raman shift terms reduce the variation of pulse separation at
the collision distance. The ®rst collision distance will be shorter when the third-order
dispersion and Raman shift terms are present. According to the degree of polarization
rotation and the variation of pulse separation, we know that the third-order dispersion
and Raman shift terms reduce soliton interaction.

4. Conclusion
In conclusion, we have derived the modi®ed coupled averaged propagation equations of
solitons with third-order dispersion and Raman shift terms in a random birefringent PDM
soliton transmission system. It is found that the polarization rotation and the variation of
pulse separation will be reduced when the third-order dispersion and Raman shift terms
are present; i.e., the soliton transmission is reduced in the PDM transmission system.

Figure 2 The interaction of two solitons in a PDM transmission system with the third-order dispersion and

Raman shift terms: (a) the envelope of juj, and (b) the envelope of jvj.

Figure 3 The variation of separation of two solitons as

a function of normalized distance: curve (a) without the

third-order dispersion and Raman shift terms, and curve

(b) with the third-order dispersion and Raman shift

terms.
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