
Designing a complementary design rule checker
based on a binary balanced quad list quad tree

P.-Y. Hsiao
J.-T. Yan

Indexing terms: Computer-aided design, Design rule checker, VLSI layout, Balanced quad tree

Abstract: An efficient real time VLSI-CAD tool,
the complementary design rule checker (CDRC),
composed of one interactive phase and one batch
phase is presented. It is a general geometrical
design rule model which checks some of the layout
constraints in the interative phase and the other
constraints in the batch phase. Those classified
constraints are disjointed, and each one of them
should be checked only once either during the
interactive or batch phase. This system and the
embedded layout editor are designed on the basis
of the binary balanced quad list quad tree
(BBQLQT) and its region query functions. The
BBQLQT is more efficient than the most recently
published spatial data structure, the Weyten’s
quad list quad tree. One day, provided that the
BBQLQT has being further improved, the per-
formance of our system will be promoted without
giving more additional design effort. This system
is therefore proven to be fully modularised and
independent of any of the other spatial data struc-
tures.

1 Introduction

For VLSI circuit design automation, it is important to
guarantee the correctness of the efficient design of the
specified layout. From the viewpoint of layout correct-
ness, the designer must avoid having constraint errors in
the layout, however, the constraints of a VLSI layout are
always so complex that human error cannot be avoided.
As a result, the designer should use layout checking tools
to guarantee the correctness of the current layout design.
In considering the design of the checking tools, the key
factor is to check automatically all the constraints of the
layout, including many unavoidable constraints (such as
all the physical constraints of the electrical components)
and extra constraints (such as the constraints of the
product requirement and the user specified requirements
in the manufacturing process) between any pair of com-
ponents. Those constraints of the VLSI layout are
usually defined as the design rules [9] for the design of
the attendant layout, and the checking process of those
constraints is called design rule checking (DRC) [ll-16,
20, 213 process. Since every component in the layout

Paper 88508 (C3), first received 30th January 1991 and in revised form
6th January 1992
The authors are with the Department of Computer and Information
Science, National Chiao Tung University, Hsinchu, Taiwan, R O C

IEE PROCEEDINGS-E, Vol. 139, N o . 4 , JULY 1992

must be subjected to a design rule checking operation to
verify whether the layout is correct, it is necessary to
develop an efficient design rule checker for VLSI layout
design automation.

As we know, the efficiency of a design rule checker
depends heavily on the use of an efficient spatial data
structure for the storage of graphical information of the
layout. Some operations of region query and neighbour-
ing search based on the efficient spatial data structure are
considered as key functions used by the design rule
checker. Therefore, many different storage methods
ranging from the simple linear lists to the more sophistic-
ated data structures, such as corner-stitching [23] and
quad trees [l-61, have been presented to enhance the
applications of VLSI-CAD tools design [ll-16,211.

A quad tree, as indicated by its name, means that it
repeatedly divides space into quadrants. This subdivision
generally will go ahead until the quadrants are so small
that each contains only a few objects. Recently, besides
Brown’s multiple storage quad tree (MSQT) [3] pre-
sented in 1986 and Weyten’s quad list quad tree (QLQT)
[4], which is an improved MSQT, presented in 1989, a
further improved quad tree called the binary balanced
quad tree (BBQT) [6, 251 has been proposed in 1992.
Both the MSQT and QLQT data structures are con-
structed by regularly dividing a quadrant recursively into
four subquadrants with equal size. This kind of division
method will be fair for a uniformly distributed layout.
Unfortunately, the layout objects usually are not distrib-
uted in a completely uniform matter. Moreover, in the
worst case, these two data structures, MSQT and QLQT,
will lead to a linear time complexity but not an expected
time order of O(log N) for the tree search operation. The
BBQT data structure maintains a balance property of the
tree construction and ensures that the tree search oper-
ation is in a time complexity of O(log N) for any random-
ly generated layout. From the balance property, we can
develop many region query operations whose time com-
plexity is in O(log N) for VLSI-CAD tools design.

Generally, a design rule checker (DRC) is one of the
VLSI-CAD layout tools. Two of the most often used
design rule checking methods are incremental design rule
checking (IDRC) [S, 101 and global design rule checking
(GDRC) [17, 181, respectively. IDRC is a dynamic and
interactive approach. In this approach, whenever one
component is added to the layout, all the related design
rules between this component and the other neighbour-

This work was supported in part by the National
Science Council of the Republic of China under
contract NSC 81-0404-E-009-107.

311

ing components should be checked over. If all the rela-
tional design rules are error-free, then the component is
allowed to be added into the layout. Otherwise, the com-
ponent should be discarded from the layout. The check-
ing time needed in this approach is hidden in the layout
editing time, so that the total design time can be reduced.
However, as the number of the components in the layout
grows, the checking time for each added component
increases rapidly. Hence, the checking time greatly delays
the layout editing time so that the incremental checking
becomes inefficient for a large layout.

In addition, the GDRC is an overall approach. It
usually uses a plane-sweep method to enumerate all the
components in the layout one by one to check every
related design rule for each component and to exhaus-
tively pick out all the errors occurring in the complete
layout. However, whenever the layout is lightly modified
after GDRC, the entire layout must be checked once
more. As a result, the checking process may waste much
time to do rechecking more than once while dynamically
editing the layout.

This paper presents a complementary design rule
checker, CDRC, which is a combination of the modified
incremental design rule checker and the modified global
design rule checker. The CDRC first processes a comple-
mentary incremental design rule checking (CIDRC) in
order to check part of the simple related design rules
(type C , , C , , and C,) and to hide the check time during
editing of the physical layout, and secondly, performs a
complementary global design rule checking (CGDRC) to
check those design rules (type C 4 , C , , and C,) which
were not checked by CIDRC. In the following Section,
we shall discuss all of the six types of constraint used by
CDRC and also will give an effective classification for
those constraints (type C , , C , , and C,) checked by
CIDRC in the first interactive phase and the other con-
straints (type C 4 , C 5 , and C,) checked by CGDRC in the
second batch phase.

2 Constraints analysis

2.1
The interactive phrase of our CDRC is a complementary
IDRC (CIDRC), which is considered as a dynamic verifi-
cation process for design rule checking. In our system,
whenever one new component is added to the layout, one
must check whether the position of the component is
correct by using the CIDRC, concerning part of the
related design rules and other requirements. These design
rules and requirements are grouped into three types,
namely width constraints (C J , overlap constraints (C2),
and clearance constraints (C3).

Type I , width constraints (C l) : For each rectangle, it is
necessary to set up some distance constraints including
the max/min constraints (< or 3) or the fixed con-
straints (=) between the left- and right-hand edges of the
attentive rectangle. The distance constraints, shown in
Fig. 1, are called the width constraints for the rectangles
of a given layout.

Type 2, overlap constraints (C,): For the overlap relation
existing in each pair of rectangles which are partially
overlapped, the width of the overlapped area is formed
from the distance between the right-hand edge of the left-
hand rectangle and the left-hand edge of the right-hand
rectangle. These distance constraints also named as left-
right constraints are dependent on the combination of

Constraints for interactive phase of CDRC

312

rectangles in different layers. These constraints, illus-
trated in Fig. 2, are called overlap constraints.

U
Fig. 1 Width constraints (C,)

Fig. 2 Ouerlap constraints (C,)

Type 3, Clearance constraints (C3): For the clearance
relation existing in each pair of rectangles which are par-
tially or completely overlapped, the distance constraints
between both of the left- (right-) hand edges of these two
rectangles are called left-left (right-right) constraints.
Those constraints, illustrated in Fig. 3, are also called the
clearance constraints.

Fig. 3 Clearance constraints (C,)

In order to explain the geometrical relations between
rectangles for the checking algorithms of CIDRC pre-
sented in the following Section, some topological defini-
tions are given as follows:

Definition I (see Fig. 4): n2--1 is a geometrical relation
which presents one kind of the overlap relationship
between two different rectangles, R, and R j , so that
Rin2-1 R j : Lx(Ri) < Lx(Rj) and Rx(R,) < Rx(Rj) and
Ri n Rj # { }, where both Lx(.) and Rx(.) are functions
for evaluating the x-coordinates of the left-hand right-
hand edges of respectively, of the specified rectangle.

Definition 2 (see Fig. 5) : Similarly to n2-,
metrical relation denoting the other k
relationship between two different rectang
that R, L ~ - ~ R j : BAR[) < BAR,) and Ty(R
Ri n R j # { }, where both By(.) and Ty(

n2-2 is a geo-
id of overlap
:s Ri and R j so
< Ty(Rj) and
are functions

IEE PROCEEDINGS-E, Vol. 139, No . 4 , JULY 1992

for evaluating y-coordinates of the bottom and top
edges respectively, of the specified rectangle.

n

Fig. 5 R,n,_ ,Rj

Definition 3 (see Fig. 6) : n3-l is 2 geometrical relation
which presents one kind of clearance relationship
between two different rectangles Ri and R j so that
Rin3_,Rj: Lx(Ri) < Lx(Rj) and Rx(Rj) < Rx(Ri) and
BARj) < BARi) and TAR,) < TARj) and R , n R j # { 1.

Definition 4 (see Fig. 7): Similarly to n3--lr n3-2 is a geo-
metrical relation denoting the other kind of clearance
relationship between two different rectangles, Ri and R j
so that Rin3-* RI: Lx(R,) < Lx(Rj) and Rx(Rj) 6 Rx(Ri)
and BARi) < BARj) and TARj) < TARi) and R, n R j #
{ 1.

Fig. 7 R,n,_,R,

2.2 Constraints for batch phase of CDRC
The batch phase of our CDRC is a complementary
GDRC (CGDRC) which is considered as a final static
verification process. It generally takes place at the end of
the layout design and verifies the correctness of all of the
constraints which were not checked over during the
CIDRC process. In our system, those design rules which,
in conjunction with the user specified requirements and
the implicit electrical connectivities embedded in the
layout and checked by CGDRC, should be the comple-
mentary constraints of those that have already been
checked by the CIDRC. In other words, the set of con-
straints checked by the CGDRC and that checked by the
CIDRC must be disjointed. Moreover, the union of these
two sets of constraints must include all the layout con-
straints that need to be checked. Those constraints for
the CGDRC can be grouped into three types, namely
visible separation constraints (C4), invisible separation
constraints (C,) and convex-vertex separation constraints
(GI.
Type 4, visible separation constraints (C4): In this paper,
‘separated rectangles’ means that the pair of rectangles
under consideration are never overlapped nor do their

IEE PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992

edges partially touch each other. For each pair of rec-
tangles having a visible separation constraint, there must
be no such a third rectangle blocking the concerned pair
of rectangles. The visible relation implies that there are
some distance constraints between the right-hand edge of
the left-hand rectangle and the left-hand edge of the
tight-hand rectangle. Examples of those constraints are
illustrated in Fig. 8.

n

U
Fig. 8 Visible separation constraints

Type 5, invisible separation coiistraints (C,); The invisible
separation constraints, as shown in Fig. 9, are similar to
the visible separation constraints, except that there must
be at least one rectangle blocking the concerned pair of
rectangles.

rec tangie
Fig. 9 Invisible separation constraints (C,)

Type 6, convex-vertex separation constraints (C,):For a
pair of separated rectangles, as shown in Fig. 10, the dis-
tance constraints between the south-east corner of the
left-hand rectangle and the north-west corner of the
right-hand rectangle or between the north-east corner of
the left-hand rectangle and the south-west corner of the
right-hand rectangle are considered as the convex-vertex
separation constraints.

97-p
U U
Fig. 10 Convex-vertex separation constraints (C,)

In order to explain the CGDRC algorithm which will
be presented in this paper, some extra topological defini-
tions for the geometrical relation of the separated rec-
tangles are given as follows:

Definition 5, parallel-edge separation relation (see Fig. 11);
n4, , is a geometrical relation which presents one kind of
the separation relationships between two different rec-
tangles, RI and R j , so that R,n4, , R j : Lx(Ri) < Lx(Ri)

313

.

Fig. 11 Parallel-Edge seporation relation Rtn,, R j

Definition 6, convex-vertex separation relation (see Fig.
12): Similarly, n, is a geometrical relation denoting the
other kind of the separation relationships between two
different rectangles, Ri and R j , so that R i s S R j : Lx(Ri) <
Lx(Rj) and R i n R j = { } and [Ty(R,) < By(Rj) or
BAR3 > TARjIl.

Fig. 12 Convex-Vertex separation relation R , n , R j

DeJinition 7, dynamic projection set (DPS): The dynamic
projection set of rectangles, as shown in Fig. 13, is
defined as a union interval of the vertical projection
intervals of those rectangles.

2.3 Basis for constraint classification
According to the above classification, type C , , C 2 and C 3
constraints should be checked in CIDRC. As CIDRC is
an interactive phase, all the constraints should be
checked in real time during this phase. The general
feature for type C , , C, and C , constraints is that they are
close together and near the current checking rectangle
R i . Hence it is quick and easy to apply simple region
query operations to verify all of the type C,, C 2 and C ,

314

constraints in an online real-time mode during the inter-
active phase of CDRC.

On the other hand, type C,, C , and C, constraints
apply between the current checking rectangle, Ri and the
other concerned rectangle R j , which may be located very
far away form R i . Therefore the search time for checking
type C,, C , and C , constraints is usually longer than
that for checking type C, , C , and C, constraints. In
general, CGDRC requires the application of a global
view to the whole layout to verify type C,, C, and C,
constraints. From the above discussion, the basis for the
classification of C, , C,, C, and C,, C5, C, is easy to
understand. It cannot be done in any other way without
further reasonable consideration.

3

3.1 Painted quad tree
A VLSI quad tree is constructed by repeatedly dividing
each of those quadrants satisfying some criteria into four
equal subquadrants by associating a tree node with each
quadrant and drawing four links from each tree node to
its four children tree nodes [l-31. A painted quad tree as
shown in Fig. 14 was proposed by Nandy, Patnaik, and
Ramakrishnan [19, 241 in 1986 and is one kind of VLSI
quad tree, of which the dividing process does not stop
until every leaf quadrant is completely painted or deliber-
ately left blank.

Region queries and BBQL quad tree

a b

C

Fig. 14
o Unit blocks covered by layout rectangles are shaded
b Block decomposition for the source layout shown in a
c Corresponding painted quad tree representation of layout shown in 4

Example layout and its corresponding painted quad tree

3.2 Multiple storage quad tree (MSOT)
In 1986, Brown [SI developed a new VLSI quad tree
data structure as shown in Fig. 15 to give a solution for
those objects intersecting more than one quadrant. The
improvement is to multiply store such an object inter-
sected with several leaf quadrants by one referenced
pointer for each leaf quadrant. That means some objects
will be stored in more than one leaf quadrant. This
approach wastes a portion of space to store multiple
pointers. Since some objects are located in more than one
leaf quadrant, to avoid reporting some objects more than
once, the further improvement [4-51 has been presented
of first marking the object the first time it is reported, and
then never reporting an object which has already been
marked. This data structure requires the marking and

IEE PROCEEDINGS-E, Vol. 139, No . 4, JULY 1992

unmarking operations to maintain their validity when-
ever the objects are searched.

Fig. 15
a The layout plane is divided into quadrants repeatedly until each 01 the leaf
quadrants containing two or less than two rectangles
b Corresponding MSQT with a threshold value oitwo

Example layout and its corresponding MSQT representation

3.3 Quad list quad tree (OLQT)
In considering the problem of enumerating the multiple
objects in Brown’s MSQT, the QLQT data structure was
presented in 1989 [4] to split the single long linked list of
object reference nodes into four distinct shorter lists. For
any object intersecting the leaf quadrants, a reference to
this object will be included in one of the four lists of the
leaf quadrant according to the relative position of this
object with respect to the presented region of the leaf
quadrant. The assigning procedure is illustrated in
Weyten and Pauw’s paper [4]. While searching or
finding objects in the QLQT, each object will be accessed
only once from the four distinct lists instead of from the
longer list in the MSQT, by using some critical and effi-
cient rules proposed by Weyten and Pauw.

However, in the worst case, if the objects are unevenly
distributed in the 2D plane, both the MSQT and the
QLQT will become skewed and heavily unbalanced and
will require a linear time complexity to do search oper-
ations.

3.4 Binary balanced OLOT (B6OLOr)
In considering Brown’s MSQT and Weyten’s QLQT, the
division method in constructing the entire quad tree data
structure is to recursively split the quadrant containing
more than TN objects into four subquadrants with equal
size as shown in Fig. 15a, where TN is a threshold number
chosen by the designer. Each father quadrant represented
by a tree node has four children subquadrants.

This kind of division method will be fair for a uni-
formly distributed layout. Unfortunately, the layout
objects are usually not distributed in a completely
uniform manner. In the worst case, these two data struc-

tures will lead to a linear time complexity but not in the
expected time order of O(log N) for the tree search oper-
ations.

In order always to maintain the expected time order of
O(log N) for the tree search operations, Hsiao and Jang
[6, 251 have presented two binary balanced quad tree
data structures to improve both the MSQT and the
QLQT, respectively. This kind of balanced quad tree
improves the division method as shown in Fig. 16 by

~

IEE PROCEEDINGS-E, Vol. 139, No . 4, JULY 1992 315

- - % bl.

Fig. 16 Diuiding lines used for the MSQT and QLQT, ala, a n d a , a ,
may split the quadrant into four equal-size subquadrants
Note that the dividing lines of the binary balanced quad tree, and b,b,, will
split the quadrant into four distinct subquadrants, each 01 which intesects with
almost the same number of objects

taking the distribution of layout objects into consider-
ation to make the split four subquads contain almost the
same amount of objects. From the experimental results
shown by Hsiao and Jang [6, 251, the QLQT has an
average improvement of 15-20% to the MSQT, and its
BBQLQT also has a further average improvement of
15-20% to the QLQT. The time involved in the creation
of the BBQLQT is given in Fig. 17. The source code
associated with a low-cost layout editor, PC-UNION
[26], is written in C based on an IBM compatible PC/AT
486 under MS DOS.

I CT513//
c ia1

!53 I I I

1000 2000 3000
number of objects

Fig. 17 Illustration for the time involved in the creation of BBQLQT
from QLQT and the time needed for building the QLQTfrom source data

There are five tested circuits lor which the number 01 objects ranges from 81 to
2451

file

3.5 Region queries
Region queries always play an essential role in applica-
tions to VLSI layout design [12, 211. The operation of
region query means a search of all objects that intersect
with a specified region, which is sometimes called a query
window. As the speed of the query operation may depend

heavily on the number of objects in the layout plane, it is
important to develop a highly efficient spatial data struc-
ture to manipulate those objects.

The most important advantage of the BBQLQT is
that it offers several highly efficient operations for region
queries. The following elementary operations, RQ1()-
RQ5(), are outlined in term of their functions and time
complexities, where N stands for the total number of
rectangles in the source layout.

Moreover, it is assumed that m stands for the number
of rectangles partially or entirely included in the query
window, ml denotes the number of new rectangles which

I

I
I
I

w2 I

L -

I ! K J i l ; I

U
("rl

are compared to the rectangles encountered in the last
query operation, m, denotes the number of rectangles
entirely included in the query window, and m3 represents
the number of rectangles partially intersected by the
query window. Finally, w x l r wy,, w x 2 and wy, represent
the bottom-left and top-right co-ordinates of the query
window and Tm(.) is a function of time complexity for
various region queries. Some examples for the operations
of region queries are shown in Fig. 18. The formal
descriptions for the region queries are illustrated as
follows:

(i) RQl(BBQLQT, wxl, wyl, wx2, wy2)
: This operation will find out all of the rectangles
entirely or partially included in the query
window.

Tm(RQ1) = O(mlogN)

RQXBBQLQT, wxl, wyl, wx2, wy2)
: Similar to RQ10, this operation will reply YES
or NO to show whether there are new rectangles
which did not apear in the output of the last
RQ 10 Operation.

Tm(RQ2) = O(logN)

: Similar to RQ2(), this operation will return the
new rectangles which did not appear in the
output of the last RQl0 operation.

(ii)

(iii) RQYBBQLQT, wxl, wyl, wx2, wy2)

Tm(RQ3) = O(m,logN)

: This operation will search output all rectangles
entirely involved inside the query window.

Tm(RQ4) = O(m,logN)

: This operation will search output all rectangles

Tm(RQ5) = O(m,logN)

(iv) RQqBBQLQT, wxl, wyl, wx2, wy2)

(v) RQYBBQLQT, wxl, wyl, wx2, wy2)

partially intersected with the query window.

4

4.1
In this Section, the presented CIDRC algorithm is a dynamic verification process and is regarded as an interactive
phase of CDRC. Whenever a new component is added into the current layout, those neighboring components must be
gradually checked according to the constraints of type C , , C , , and C 3 . The CIDRC algorithm is shown as follows:

CIDRC-Algorithm(BBQLQT, Ri)
/* This CIDRC-Algorithm() completes a complementary incremental design rules checking for the added component,
Ri, in the current layout.*/

Complementary incremental design rule checking (CIDRC)

Complementary incremental design rule checking algorithm

f
Buffer OR-SET;
/* This buffer will be used for storing those components which overlapped Ri .*/
justify the layer type of Ri ;
check C, for Ri by table look-up;
/* Compare the width of Ri with the width constraint in the design rule table.*/
if (any violation in the width constraint)

discard Ri and exit (C, rule-error);
Find-Overlap (BBQLQT, Ri , OR-SET);
/* Find the overlapped components which overlap the added component and store them into the buffer OR-
SET.*/
if (OR-SET is not empty)

Overlap-Checking (BBQLQT, Ri , OR-SET);
/*Check the overlap constraints (Type C,) and the clearance constraints (Type C,) between Ri and the
components of OR-SET.*/

add Ri into BBQLQT;
return (Ri error-free);

)/* end of CIDRC-Algorithm()*/

316 I E E PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992

Find-OverladABBQLQT, R, , OR-SET)

OR-SET = { 1;
obtain the left-bottom and right-top coordinates of R,: rxl, ryl, rx2 and ry2.
OR-SET = RQl(BBQLQT, rxl, ryl, rx2, ry2);
/* Run the region query operation, RQl(), and store the returned rectangles into OR-SET.*/

{

1

{
Overlap-Checking(BBQLQT, Ri , OR-SET);

for (Rj, j = 1, 2, ..., where Rj belongs to OR-SET and satisfies that RinZp1 Rj or Rjn2-, Ri or Rinz-zRj or
Rj l ~ ~ - ~ RJ /* see Figs. 4 and 5*/

check C, between R, and Rj by table look-up;
/*Compare the distance of the overlapped area between R, and Rj with the constraints from the design rule
table.*/
if (any violation in the overlap constraint)

check C, between R, and R, by table look-up;
/*Compare the distance of the clearance relation between R, and R, with the constraints from the design rule
table.*/
if (any violation in the clearance constraint)

}/* end of for */

{

discard R, and exit (C, rule-error);

discard R, and exit (C, rule-error)

for (R,, j = 1, 2, . . . , where Rj belongs to OR-SET and satisfies that R, R,- , Rj or Rj n3-, Ri or Ri n3-2 Rj or
Rj n,-, R,) /* see Fig. 6-7 */

check C, between Ri and Rj by table look-up;
if (any violation in the clearance constraint)

{

discard R, and exit (C, rule-error)
]/* end of for */

}/* end of OverlapChecking()*/

4.2 Complexity analysis
According to the aforementioned algorithms of CIDRC-Algorithm(), Find-Overlap() and Overlap-Checking(), the
computing time for the CIDRC algorithm is limited by Find-Overlap0 and the number of components in OR-SET.
The time complexity for Find-Overlap(), O(m log N), is the same for that required for applying a region query to the
BBQLQT, RQl(). For a normal VLSI layout, the number of the rectangles intersected with the query window m is
much less than the total number N of layout rectangles. Moreover, from the FOR loops in Overlap-Checking(), the
time complexity of Overlap-Checking() should be within O(m). As a result, the overall time complexity for the
CIDRC-Algorithm() will be maintained in O(m + m log N) z O(1og N), for a normal VLSI layout.

5 Complementary global design rule checking (CGDRC)

5.1 Complementary global design rule checking algorithm
As the batch phase of CDRC, the complementary global design rule checking algorithm contains two basic steps. The
first step is to support a vertical sweeping line horizontally jumping from the left to the right boundary of the layout to
check all the horizontal type C , , C5, and C6 constraints. Similarly, in the second step, all the vertical type C,, C5, and
C6 constraints will be checked over by maintaining a horizontal sweeping line jumping from bottom to top.

Considering a great number of overlapped rectangles in a two dimensional plane, the sweeping line algorithm will
keep up a vertical (horizontal) sweeping line to sweep from the left (bottom) boundary to the right (top) boundary of
the layout plane by visiting the left (bottom) and right (top) edges of all of the rectangles in x(y)-directional order. This
approach is quite useful in global design rule checking. Therefore, to create an efficient sweeping line algorithm based
on BBQLQT will very effectively promote the performance of our CGDRC algorithm. Fortunately, in 1990, Hsiao &
Tsai [7] presented a generalised sweeping line algorithm based on common region query operations provided by such
as the MSQT, QLQT, and BBQLQT. It can successfully be used in the following CGDRC algorithm:

CGDRC-Algorithm(BBQLQT)
/* This CGDRC-Algorithm completes a complementary global design rule checking for the entire layout. It uses the
sweeping line algorithm to check the layout from left to right, and then from bottom to top by the similar checking
method.*/

Horizontal-Checking(BBQLQT);
/* Complete a horizontal checking for the given layout.*/
Vertical-Checking(BBQLQT);
/* Similar to Horizontal-Checking(.)*/

return(The given layout is error-free);

{

if (no violation)

}/* end of CGDRC-Algorithm() */
I E E PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992 317

Horizontal-Checking(BBQLQT)

Buffer E-SET;
{

while (the sweeping line algorithm [7] does not finish yet)
{
run the sweeDine line aleorithm to eet the x-coordinate of the next eventlEl:
E-SET = RQ@BQLQT, E, Lyi, E: ~ y 2) ;
/* Base on event E to do region query operation, RQ1(), and to produce E-SET = {R, I i = 1, 2, . . . , m,
LxrR.) = E or Rx(R.) = E}, where Lx(R,) and Rx(R,) are the x-coordinates of the left and right edge of R,
respectively.*/
for (Ri, i = 1, 2, .., m)

if (Lx(Ri) = = E)
Separation-Checking(Ri);
/* Apply Separation-Checking() to check the constraints of type C,, C,, and C6 associated with

Ri .*/

}/* end of HorizontaLChecking()*/
}/* end of while */

Separation-Checking(Ri).
/* This algorithm completes the separation design rule checking in respect of the left edge of Ri */

Buffer V-SET, C-SET, I-SET, Obuf;
{

V-SET = C-SET = I-SET = {} ;
Obuf = RQl(BBQLQT, Lx(Ri), By(Ri), Rx(Ri), Ty(Ri));
/* The buffer Obuf stores the rectangles that overlapped with Ri. */
determine the horizontal width of the whole layout, W(1ayout);
get the maximum visible/invisible constraint values of Ri, Vi/Ii, from the design rule table;
/* Vi, Ii + W(layout)*/
get the x-coordinate of the left boundary of the whole layout, Lxl;
W = MIN{Lx(Ri) - Lxl, MAX{Vi, I,}};
/* Determine the checking length of the maximum parallel-edge separation constraint window */
P = Lx(Ri) - W;
/* Define the x-coordinate of the left boundary of the processing window*/
Find-Visible-Invisible(Ri, W, P, I-SET, V-SET, Obuf);
/* Apply Find-Visible-Invisible() to search the layout and then obtain the visible separation rectangle set,
V-SET, and the invisible separation rectangle set, I-SET, for Ri . */
obtain the maximum convex-vertex separation constraint value of Ri , Ci ;
Add RQl(BBQLQT, Lx(R,)-C,, Ty(Ri), Lx(Ri), Ty(R,) + Ci) into C-SET;
Add RQl(BBQLQT, Lx(Ri)-C,, By(R,)-C,, Lx(Ri), By(Ri)) into C-SET;
/* See Fig. 19*/

r - - - i
I I T
I WI I C i

I I I
I w2 I c,
I Fig. 19 Example illustrating the maximum convex-vertex separation
L - - - J ‘1 window W,, W,

for (Rj, j = 1,2,. . . , such that R j in V-SET)

check C, between Ri and Rj ;
/* Compare the distance of the visible separation relation between Ri and Rj with the constraint from the
design rule table.*/
if (any violation in the visible separation constraint)

{

print(C, rule-error between Ri and Rj)
}/* end of for */

for (Rj, j = 1,2, . .., such that Rj in I-SET)

check C, between Ri and Rj ;
/* Compare the distance of the invisible separation relation between Ri and Rj with the constraint from the
design rule table.*/

{

318 1EE PROCEEDINGS-E, Vol. 139, No . 4, JULY 1992

if (any violation in the invisible separation constraint)

}/* end of for */
print(C, rule-error between Ri and R,)

for (R,, j = 1,2,. . . , such that Rj in C-SET and Ri x6 Rj)
{
check C6 between Ri and R,;
/* Compare the distance of the convex-vertex separation relation between Ri and Rj with the constraint from
the design rule table. */
if (any violation in the convex-vertex separation constraint)

}/* end of for */
print(C6 rule-error between Ri and Rj)

}/* end of Separation-Checking()*/

Find-Visible-Iovisible(Ri, W, P, I-SET, V-SET, Obuf)

Buffer Obuf, LSET, V-SET, Bufl, Buf2, Buf3, TempBuf;
DPS 11, I2,13; /* Dynamic Projection Set, refer to Definition 7*/
float W, P, LP;

get the minimum width of the rectangles of the whole layout, Wmin;
Bufl = RQl(BBQLQT, P, By(Ri), Rx(R,), Ty(Ri));
/* The buffer Buf 1 stores the rectangles (R,) that satisfy the relation Ri x.,, Rj .*/

I1 = Create-DPS(Buf1);
if (11 = = { }) return();
w = w/2;
P = P + W ;
Buf2 = RQl(BBQLQT, P, By(Ri), Rx(RJ, Ty(Ri));
/* The buffer Buf2 stores the rectangles that are intersected with the right half part of the processing window.*/
/* See Fig. 20 */

I2 = Create-DPS(Buf2);
if (I1 = =I2)/* See Fig. 21 */

{

Bufl = Bufl-Obuf;

Buf2 = Buf2 - Obuf;

{ Add Bufl-Buf2 into I-SET;

}/* end of if */
else /* See Fig. 22 */

while (I1 > 12)

Find-Visible-Invisible (Ri, W, P, I-SET, V-SET, Obuf);

{

{ L P = P ;
Buf3 = Buf2;

Fig. 20 T w o windows for the buffers BuJ, and Buf,
I U

Fig. 21
ndded inlo I-SET

Example for case I , = I , : the rectangles R , , R , and R , are

Fig. 22
added into I-SET, and the rectangle R, is added into V-SET

Examplefor case I , > I , , the rectangles R , , R , and R , are

IEE PROCEEDINGS-E, Vol. 139, No . 4, JULY 1992 319

w = w/2; P = P - w;
B ~ f 2 = RQl(BBQLQT, P, By(Ri), Rx(Ri), Ty(Ri));
Buf2 = Buf2 - Obuf;
I2 = Create-DPS(Buf2);

}/* end of while */
/* Search for the rectangles of the invisible separation area in case I1 > 12. */
while (W 2 Wmin)

{ w = w/2;
TempBuf = RQl(BBQLQT, (P + LP)/2, By(Ri), Rx(R3, Ty(Ri));
TempBuf = TempBuf - Obuf;
I2 = CreateDPS(TempBuf);
if (I1 = = 12)

{ P = (P + LP)/2;
Buf2 = TempBuf;

}/* end of if */
else /*I1 > I2 */

{ P = (P + LP)/2;
Buf 3 = TempBuf;

}/* end of else */

Add (Buf 1-Buf2) into I-SET;

I3 = Create-DPS(Buf3);
for (Rj, j = 1,2,. . . , such that Rj in (Buf2-Buf3))

}/* end of while */

/* Use binary search method to search for the rectangles of the visible separation area */

if([B~(Rj), Ty(Rj)l 4 13)
Add Rj into V-SET;

Add Rj into I-SET;
else

P = LP;

Find-Visible-Invisible (Ri, W, P, I-SET, V-SET, Obuf);

W = Lx(Ri)-LP;
I1 = 13;

}/* end of else */
}/* end of Find-Visible-Invisible()*/

5.2 Complexity analysis
According to CGDRC-Algorithm(), the computing time
for the final batch phase of the presented CDRC will be
limited by the function of Horizontal-Checking() or simi-
larly by the function of Vertical-Checking(). In consider-
ing the function of Horizontal-Checking(), its while-loop
takes at most 2N events to scan all the source layout
over by the horizontal sweeping line algorithm presented
in Reference 7. Moreover, the function of
Separation-Checking0 should be repeatedly involked
once for each while-loop. The time complexity of
Separation-Checking() depends on the region query
operations of the BBLQT and the function of
Find-Visible_Invisible(). The time complexity for the
region query operations of the BBQLQT will be in
O(log N) provided that, for a large layout, the number of
rectangles found from the query window m is assumed to
be much less than the total number N of layout rect-
angles. For the same reason, the amount of calling to
region query operation in the function of
Find-Visible-Invisible() is also much less than N. Hence,
the time complexity of Find-Visible-Invisibl~) still is
limited in O(logN), and the number of rectangles in
V-SET, I-SET, and C-SET which will be checked in
the function of Separation-Checking0 is much less
than N. Consequently, the time complexity of
SeparatioxCheckingO is in O(log N), and the overall
time complexity for the CGDRC-Algorithm() has been
proven to be in O(N log N).
6 Illustrative example and experimental results

To understand the details of the presented CDRC, Fig.
23 shows that the CIDRC processes the width checking,

320

the overlap checking and the clearance checking for any
rectangle currently being added into the source layout in
the first interactive checking phase, After finishing the
editing process of the given layout, CGDRC then checks
the visible separation constraints, the invisible separation
constraints and the convex-vertex separation constraints
between each pair of rectangles in the batch checking
phase by the sweeping line approach [7], as shown in
Fig. 24. Therefore, CDRC completss the checking imple-
mentation for all the layout constraints by the above two
disjointed checking phases.

~

Fig. 23 Interactrue phase ofCDRC
Aftcr the rectangle R, IS added mto the current layout, the CIDRC wdl immed-
iately check the mdth mnstmnt for R, and the overlap and clearana wnstrmnts
ktween R, and the mtesected rectangles R, , R, and R,

Besides the illustrative example shown in Figs. 23 and
24 for the checking process of CIDRC and CGDRC, the
time complexity of the algorithm has to be demonstrated
through implementation. Table 1 and Fig. 25 show the
experimental results that demonstrate the time complex-

IEE PROCEEDINGS-E, Vol. I39, No. 4, JULY 1992

ity of CIDRC and CGDRC. Five circuit layouts are used
as test examples for which the number of objects range
from 81 to 2451. From Fig. 25, the time complexity of

maximum consiramt window
I I

I

Fig. 24 Batch phase ofCDRC
While the sweepmg line J u m p from len to nghl and the rectande R, IS bnng
enumerated. the CGDRC will chcck lhose constrant$ type C,, C,, and C,, that
are associated with R.

C T U 5 1
CGDRC

1000 2000 3000
n u m b e r of o b j e c t s

Fig. 25
CIDRC and CGDRC

Experimental results demonstrating the time complexity of

CIDRC is in O(log N) for each interactively added object
or in O(N log N) for the sum of all of the added layout
objects, and the time complexity of CGDRC is in
O(N log N). All the experimental time complexities match
with the theoretical results. The program associated with

a low-cost layout editor, PC-UNION [26], is written in
C based on an IBM compatible PC/AT 486 under MS
DOS.

7 Conclusions

As we know, for a large layout, IDRC may be too slow
to become as a real time checking tool, and GDRC is
usually inefficient for rechecking the whole layout more
than once. If the given layout is interactively and gradu-
ally modified step by step, neither conventional IDRC
nor GDRC can achieve a bettter performance. In this
paper, therefore, we have established a general geometri-
cal design rule checking model, complementary DRC, to
consider some of the layout constraints by the comple-
mentary incremental design rule checker (CIDRC) and
the other constraints by the complementary global design
rule checker (CGDRC). Every layout constraint should
be checked only once, either by the function of
CIDRC-Algorithm() or of CGDRC-Algorithm(). The
time complexity of the presented CDRC, O(N log N),
causes from the combination of the time complexity of
the CIDRC, q l o g N) for each object, and the time com-
plexity of the CGDRC, O(N log N).

This system and the embedded layout editor [26],
PC-UNION, are designed on the basis of BBQLQT and
its region query functions. The BBQLQT [6, 253 is more
eficient both in memory usage and query speed than the
most recently published QLQT [4]. One day, if the
BBQLQT is further improved, the performance of our
system will be promoted without the need for additional
design effort. Hence, our system is fully moduiarised and
sufficiently independent of any of the other spatial data
structures. Those constraints checked by the interactive
phase (CIDRC) and the batch phase (CGDRC) are
separated, independent, and disjointed, so that this
system is perceived as an excellent real time CAD tool.

8 References

1 SAMET, H.: ‘The quad tree and related hierarchical data structure’,
ACM Computing Surveys, 1984,16, June, pp. 187-260

2 FINKEL, R., and BENTLEY, J.: ‘Quad trees - A data structure
for retrievals on composite keys’, Acta Informtica, 1974,4, pp. 1-9

3 BROWN, R.L.: ‘Multiple storage quad tree: a simpler faster alterna-
tive to bisector list quad trees’, IEEE Trans., 1986, CAD-5, (3), pp.
413-419

Table 1 : Experimental results obtained from CDRC combined with a low-
cost layout editor, PC-UNION 1261
CDRC CIDRC CGDRC
Circuits

Number of checked Checking time Number of checked Checking time
constraints ms constraints ms

CT81 C, =81 33.1 2 C,=185 57.92
C,=182 c, = 37
C, = 607 C, = 324

c, = 553 C,=104
C,=1557 C, = 784

CT253 C, = 2 5 3 89.34 C,=617 185.86

166.1 8 C, = 1053 307.34 CT513 C, = 5 1 3
C,=1135 c, = 274

C, = 3006 c, = 757

C,=3146 C, = 1609
CT1094 C, = 1094 440.63 C, = 2639 837.34

C, = 3472
735.67 C, = 5746 1405.89 CT2451 C, = 2451 C,=1576

C, = 9528

C, = 9847

C, = 5352
C, = 15784

IEE PROCEEDINGS-E, Vol. 139, No. 4, JULY 1992 321

4 WEYTEN, L., and DE PAUW, W.: ‘Quad list quad trees: a geo-
metrical data structure with improved performance for large region
queries’, IEEE Trans., 1989, CAWS, (3), pp. 229-233

5 HSIAO, P.Y., and FENG, W.S.: ‘Using a multiple storage quad tree
on a hierarchical VLSI compaction scheme’, IEEE Trans., 1990,
CAD-9, (S), pp. 522-536

6 HSIAO, P.Y., and JANG, L.D.: ‘On VLSI layout systems spatial
data structure: the binary balanced quad list quad trees’, IEEE
Trans. C A D , 1992 (to be published)

7 HSIAO, P.Y., and TSAI, C.C.: ‘A new plane-sweep algorithm based
on spatial data structure for overlapped rectangles in 2-D plane’,
Proceedings of COMPSAC, IEEE, 1990, pp. 347-352

8 HSIAO, P.Y., and FENG, W.S.: ‘An incremental design rule check-
ing based on quad tree representations’. ISMM International Sym-
posium on Mini and microcomputers, Miami Beach, Florida, 1988.

9 OHTSUKI, T.: ‘Layout design and verification’ (North-Holland,
1985)

10 TAYLOR, G.S., and OUSTERHOUT, J.K.: ‘Magic’s incremental
design-rule checker’. Proceedings of 21st Design Automation Con-
ference, ACMPEEE, 1984, pp. 160-165

11 SATO, M., KIM, J.B., AWASHIMA, T., and OHTSUKI, T.: ‘A
theoretically optimal and practically fast algorithm for VLSI geo-
metrical desien rule verification’. Proceedines of ISCAS. IEEE. 1988. - . , ,
pp. 144-14&

12 JEONG, J.C., SHIN, S.Y., LEE, C.D., and YU, Y.U.: ‘An efficient
sequential range query model for minimum widthjspace verifica-
tion’. Proceedings of ISCAS, IEEE, 1988, pp. 330-333

13 BERGER, J., and MAZARE, G.: ‘A range searching sub-system
used to perform efficient VLSI design checks’. Proceedings of
ISCAS, IEEE, 1986, pp. 408-411

14 MODARRES, H., and LOMAX, R.J.: ‘A formal approach to
design-rule checking’, IEEE Trans., 1987, CAD-6, (4), pp. 561-573

15 BONAPACE, C.R., and LO, C.Y.: ‘LARC2: a spaceefiicient design
rule checker’. Proceedings of ISCAS, IEEE, 1987, pp. 298-301

16 BONAPACE, C.R., and LO, C.Y.: ‘An O(n1ogm) algorithm for
VLSI design rule checking’. Proceedings of 26th Design Automation
Conference, ACMPEEE, 1989, pp. 503-507

17 CHAPMAN, P.T., and CLARK, K. Jr.: ‘The scan line approach to
design rules checking: computational experiences’. Proceedings of
21st Design Automation Conference, ACMPEEE, 1984, pp. 235-
241

18 CARLSON, E.C., and RUTENBAR, R.A.: ‘A scanline data struc-
ture processor for VLSl geometry checking’, IEEE Trans., 1987,
CAD-6, (S), pp. 780-794

19 NANDY, S.K., and PATNAIK, L.M.: ‘Linear time geometrical
design rule checker based on quadtree representation of VLSI mask
layout’, Computer Aided Design, 1986.18, (7), pp. 380-388

20 HEDENSTIERNA, N., and JEPPSON, K.O.: ‘New algorithms for
increased efficiency in hierarchical design rule checking’, Integration,
the VLSI Journal, 1987,5, pp. 319-336

21 SATO, M., and OHTSUKI, T.: ‘Applications of computational
geometry to VLSI layout pattern design’, Integration, the VLSI
Journal, 1987,5, pp. 303-317

22 KEDEM, G.: ‘The Quad-CIF: a data structure for hierarchical
online algorithm’. Proceedings of 19th Design Automation Con-
ference, ACMPEEE, 1982, pp. 325-357

23 OUSTERHOUT, J.K.: ‘Corner stitching: a data-structuring tech-
nique for VLSl layout tools’, IEEE Trans., 1984, CAD-3, pp. 87-100

24 NANDY, S.K., and RAMARKRISHNAN, I.V.: ‘Dual quadtree rep-
resentation for VLSI designs’. Proceedings of 23rd Design Automa-
tion Conference, ACMIIEEE, 1986, pp. 663-666

25 HSIAO, P.Y., and JANG, L.D.: ‘Using a balanced quad tree to
speed up a hierarchical VLSI wmpaction scheme’. 5th International
Conference on VLSI design, Bangalore, India, January 1992, pp.
370-371

26 HSIAO, P.Y., and YAN, J.T.: ‘PC-UNION: a low cost layout tool
for consumer IC design’. International Symposium on IC design,
manufacture and applications, Singapore, 1991, pp. 452-457

322 IEE PROCEEDINGS-E, Vol. 139, No. 4, J U L Y 1992

