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Abstract: An efficient real time VLSI-CAD tool, 
the complementary design rule checker (CDRC), 
composed of one interactive phase and one batch 
phase is presented. It is a general geometrical 
design rule model which checks some of the layout 
constraints in the interative phase and the other 
constraints in the batch phase. Those classified 
constraints are disjointed, and each one of them 
should be checked only once either during the 
interactive or batch phase. This system and the 
embedded layout editor are designed on the basis 
of the binary balanced quad list quad tree 
(BBQLQT) and its region query functions. The 
BBQLQT is more efficient than the most recently 
published spatial data structure, the Weyten’s 
quad list quad tree. One day, provided that the 
BBQLQT has being further improved, the per- 
formance of our system will be promoted without 
giving more additional design effort. This system 
is therefore proven to be fully modularised and 
independent of any of the other spatial data struc- 
tures. 

1 Introduction 

For VLSI circuit design automation, it is important to 
guarantee the correctness of the efficient design of the 
specified layout. From the viewpoint of layout correct- 
ness, the designer must avoid having constraint errors in 
the layout, however, the constraints of a VLSI layout are 
always so complex that human error cannot be avoided. 
As a result, the designer should use layout checking tools 
to guarantee the correctness of the current layout design. 
In considering the design of the checking tools, the key 
factor is to check automatically all the constraints of the 
layout, including many unavoidable constraints (such as 
all the physical constraints of the electrical components) 
and extra constraints (such as the constraints of the 
product requirement and the user specified requirements 
in the manufacturing process) between any pair of com- 
ponents. Those constraints of the VLSI layout are 
usually defined as the design rules [9] for the design of 
the attendant layout, and the checking process of those 
constraints is called design rule checking (DRC) [ll-16, 
20, 213 process. Since every component in the layout 
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must be subjected to a design rule checking operation to 
verify whether the layout is correct, it is necessary to 
develop an efficient design rule checker for VLSI layout 
design automation. 

As we know, the efficiency of a design rule checker 
depends heavily on the use of an efficient spatial data 
structure for the storage of graphical information of the 
layout. Some operations of region query and neighbour- 
ing search based on the efficient spatial data structure are 
considered as key functions used by the design rule 
checker. Therefore, many different storage methods 
ranging from the simple linear lists to the more sophistic- 
ated data structures, such as corner-stitching [23] and 
quad trees [l-61, have been presented to enhance the 
applications of VLSI-CAD tools design [ll-16,211. 

A quad tree, as indicated by its name, means that it 
repeatedly divides space into quadrants. This subdivision 
generally will go ahead until the quadrants are so small 
that each contains only a few objects. Recently, besides 
Brown’s multiple storage quad tree (MSQT) [3] pre- 
sented in 1986 and Weyten’s quad list quad tree (QLQT) 
[4], which is an improved MSQT, presented in 1989, a 
further improved quad tree called the binary balanced 
quad tree (BBQT) [6, 251 has been proposed in 1992. 
Both the MSQT and QLQT data structures are con- 
structed by regularly dividing a quadrant recursively into 
four subquadrants with equal size. This kind of division 
method will be fair for a uniformly distributed layout. 
Unfortunately, the layout objects usually are not distrib- 
uted in a completely uniform matter. Moreover, in the 
worst case, these two data structures, MSQT and QLQT, 
will lead to a linear time complexity but not an expected 
time order of O(log N) for the tree search operation. The 
BBQT data structure maintains a balance property of the 
tree construction and ensures that the tree search oper- 
ation is in a time complexity of O(log N) for any random- 
ly generated layout. From the balance property, we can 
develop many region query operations whose time com- 
plexity is in O(log N) for VLSI-CAD tools design. 

Generally, a design rule checker (DRC) is one of the 
VLSI-CAD layout tools. Two of the most often used 
design rule checking methods are incremental design rule 
checking (IDRC) [S, 101 and global design rule checking 
(GDRC) [17, 181, respectively. IDRC is a dynamic and 
interactive approach. In this approach, whenever one 
component is added to the layout, all the related design 
rules between this component and the other neighbour- 
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ing components should be checked over. If all the rela- 
tional design rules are error-free, then the component is 
allowed to be added into the layout. Otherwise, the com- 
ponent should be discarded from the layout. The check- 
ing time needed in this approach is hidden in the layout 
editing time, so that the total design time can be reduced. 
However, as the number of the components in the layout 
grows, the checking time for each added component 
increases rapidly. Hence, the checking time greatly delays 
the layout editing time so that the incremental checking 
becomes inefficient for a large layout. 

In addition, the GDRC is an overall approach. It 
usually uses a plane-sweep method to enumerate all the 
components in the layout one by one to check every 
related design rule for each component and to exhaus- 
tively pick out all the errors occurring in the complete 
layout. However, whenever the layout is lightly modified 
after GDRC, the entire layout must be checked once 
more. As a result, the checking process may waste much 
time to do rechecking more than once while dynamically 
editing the layout. 

This paper presents a complementary design rule 
checker, CDRC, which is a combination of the modified 
incremental design rule checker and the modified global 
design rule checker. The CDRC first processes a comple- 
mentary incremental design rule checking (CIDRC) in 
order to check part of the simple related design rules 
(type C , ,  C , ,  and C,)  and to hide the check time during 
editing of the physical layout, and secondly, performs a 
complementary global design rule checking (CGDRC) to 
check those design rules (type C 4 ,  C , ,  and C,)  which 
were not checked by CIDRC. In the following Section, 
we shall discuss all of the six types of constraint used by 
CDRC and also will give an effective classification for 
those constraints (type C , ,  C , ,  and C,)  checked by 
CIDRC in the first interactive phase and the other con- 
straints (type C 4 ,  C 5 ,  and C,) checked by CGDRC in the 
second batch phase. 

2 Constraints analysis 

2.1 
The interactive phrase of our CDRC is a complementary 
IDRC (CIDRC), which is considered as a dynamic verifi- 
cation process for design rule checking. In our system, 
whenever one new component is added to the layout, one 
must check whether the position of the component is 
correct by using the CIDRC, concerning part of the 
related design rules and other requirements. These design 
rules and requirements are grouped into three types, 
namely width constraints ( C J ,  overlap constraints (C2),  
and clearance constraints (C3).  

Type I ,  width constraints ( C l ) :  For each rectangle, it is 
necessary to set up some distance constraints including 
the max/min constraints (< or 3 )  or the fixed con- 
straints (=) between the left- and right-hand edges of the 
attentive rectangle. The distance constraints, shown in 
Fig. 1, are called the width constraints for the rectangles 
of a given layout. 

Type 2, overlap constraints (C,): For the overlap relation 
existing in each pair of rectangles which are partially 
overlapped, the width of the overlapped area is formed 
from the distance between the right-hand edge of the left- 
hand rectangle and the left-hand edge of the right-hand 
rectangle. These distance constraints also named as left- 
right constraints are dependent on the combination of 

Constraints for interactive phase of CDRC 
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rectangles in different layers. These constraints, illus- 
trated in Fig. 2, are called overlap constraints. 

U 
Fig. 1 Width constraints (C,) 

Fig. 2 Ouerlap constraints (C,) 

Type 3, Clearance constraints (C3): For the clearance 
relation existing in each pair of rectangles which are par- 
tially or completely overlapped, the distance constraints 
between both of the left- (right-) hand edges of these two 
rectangles are called left-left (right-right) constraints. 
Those constraints, illustrated in Fig. 3, are also called the 
clearance constraints. 

Fig. 3 Clearance constraints (C,) 

In order to explain the geometrical relations between 
rectangles for the checking algorithms of CIDRC pre- 
sented in the following Section, some topological defini- 
tions are given as follows: 

Definition I (see Fig. 4):  n2--1 is a geometrical relation 
which presents one kind of the overlap relationship 
between two different rectangles, R,  and R j ,  so that 
Rin2-1 R j :  Lx(Ri) < Lx(Rj) and Rx(R,) < Rx(Rj) and 
Ri n Rj  # { }, where both Lx(.) and Rx( . )  are functions 
for evaluating the x-coordinates of the left-hand right- 
hand edges of respectively, of the specified rectangle. 

Definition 2 (see Fig. 5 ) :  Similarly to n2-, 
metrical relation denoting the other k 
relationship between two different rectang 
that R,  L ~ - ~  R j :  BAR[) < BAR,) and Ty(R 
Ri n R j  # { }, where both By(.) and Ty( 

n2-2 is a geo- 
id of overlap 
:s Ri and R j  so 
< Ty(Rj) and 
are functions 
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for evaluating y-coordinates of the bottom and top 
edges respectively, of the specified rectangle. 

n 

Fig. 5 R,n,_ ,Rj  

Definition 3 (see Fig. 6 ) :  n3-l is 2 geometrical relation 
which presents one kind of clearance relationship 
between two different rectangles Ri and R j  so that 
Rin3_,Rj:  Lx(Ri) < Lx(Rj) and Rx(Rj) < Rx(Ri) and 
BARj) < BARi) and TAR,) < TARj) and R ,  n R j  # { 1. 

Definition 4 (see Fig. 7): Similarly to n3--lr n3-2 is a geo- 
metrical relation denoting the other kind of clearance 
relationship between two different rectangles, Ri and R j  
so that Rin3-* RI: Lx(R,) < Lx(Rj) and Rx(Rj) 6 Rx(Ri) 
and BARi) < BARj)  and TARj)  < TARi) and R,  n R j  # 
{ 1. 

Fig. 7 R,n,_,R,  

2.2 Constraints for batch phase of CDRC 
The batch phase of our CDRC is a complementary 
GDRC (CGDRC) which is considered as a final static 
verification process. It generally takes place at the end of 
the layout design and verifies the correctness of all of the 
constraints which were not checked over during the 
CIDRC process. In our system, those design rules which, 
in conjunction with the user specified requirements and 
the implicit electrical connectivities embedded in the 
layout and checked by CGDRC, should be the comple- 
mentary constraints of those that have already been 
checked by the CIDRC. In other words, the set of con- 
straints checked by the CGDRC and that checked by the 
CIDRC must be disjointed. Moreover, the union of these 
two sets of constraints must include all the layout con- 
straints that need to be checked. Those constraints for 
the CGDRC can be grouped into three types, namely 
visible separation constraints (C4), invisible separation 
constraints (C,) and convex-vertex separation constraints 
(GI.  
Type 4, visible separation constraints (C4): In this paper, 
‘separated rectangles’ means that the pair of rectangles 
under consideration are never overlapped nor do their 
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edges partially touch each other. For each pair of rec- 
tangles having a visible separation constraint, there must 
be no such a third rectangle blocking the concerned pair 
of rectangles. The visible relation implies that there are 
some distance constraints between the right-hand edge of 
the left-hand rectangle and the left-hand edge of the 
tight-hand rectangle. Examples of those constraints are 
illustrated in Fig. 8. 

n 

U 
Fig. 8 Visible separation constraints 

Type 5, invisible separation coiistraints (C,); The invisible 
separation constraints, as shown in Fig. 9, are similar to 
the visible separation constraints, except that there must 
be at least one rectangle blocking the concerned pair of 
rectangles. 

rec tangie 
Fig. 9 Invisible separation constraints (C,) 

Type 6, convex-vertex separation constraints (C,):For a 
pair of separated rectangles, as shown in Fig. 10, the dis- 
tance constraints between the south-east corner of the 
left-hand rectangle and the north-west corner of the 
right-hand rectangle or between the north-east corner of 
the left-hand rectangle and the south-west corner of the 
right-hand rectangle are considered as the convex-vertex 
separation constraints. 

97-p 
U U 
Fig. 10 Convex-vertex separation constraints (C,) 

In order to explain the CGDRC algorithm which will 
be presented in this paper, some extra topological defini- 
tions for the geometrical relation of the separated rec- 
tangles are given as follows: 

Definition 5, parallel-edge separation relation (see Fig. 11); 
n4, , is a geometrical relation which presents one kind of 
the separation relationships between two different rec- 
tangles, RI and R j ,  so that R,n4, , R j :  Lx(Ri) < Lx(Ri) 
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Fig. 11 Parallel-Edge seporation relation Rtn,, R j  

Definition 6, convex-vertex separation relation (see Fig. 
12): Similarly, n, is a geometrical relation denoting the 
other kind of the separation relationships between two 
different rectangles, Ri and R j ,  so that R i s S  R j :  Lx(Ri) < 
Lx(Rj) and R i n  R j =  { }  and [Ty(R,) < By(Rj) or 
BAR3 > TARjIl. 

Fig. 12 Convex-Vertex separation relation R , n , R j  

DeJinition 7, dynamic projection set (DPS): The dynamic 
projection set of rectangles, as shown in Fig. 13, is 
defined as a union interval of the vertical projection 
intervals of those rectangles. 

2.3 Basis for constraint classification 
According to the above classification, type C , ,  C 2  and C 3  
constraints should be checked in CIDRC. As CIDRC is 
an interactive phase, all the constraints should be 
checked in real time during this phase. The general 
feature for type C , ,  C, and C ,  constraints is that they are 
close together and near the current checking rectangle 
R i .  Hence it is quick and easy to apply simple region 
query operations to verify all of the type C,, C 2  and C ,  
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constraints in an online real-time mode during the inter- 
active phase of CDRC. 

On the other hand, type C,, C ,  and C, constraints 
apply between the current checking rectangle, Ri and the 
other concerned rectangle R j ,  which may be located very 
far away form R i .  Therefore the search time for checking 
type C,, C ,  and C ,  constraints is usually longer than 
that for checking type C, ,  C ,  and C, constraints. In 
general, CGDRC requires the application of a global 
view to the whole layout to verify type C,, C, and C, 
constraints. From the above discussion, the basis for the 
classification of C, ,  C,, C, and C,, C5, C, is easy to 
understand. It cannot be done in any other way without 
further reasonable consideration. 

3 

3.1 Painted quad tree 
A VLSI quad tree is constructed by repeatedly dividing 
each of those quadrants satisfying some criteria into four 
equal subquadrants by associating a tree node with each 
quadrant and drawing four links from each tree node to 
its four children tree nodes [l-31. A painted quad tree as 
shown in Fig. 14 was proposed by Nandy, Patnaik, and 
Ramakrishnan [19, 241 in 1986 and is one kind of VLSI 
quad tree, of which the dividing process does not stop 
until every leaf quadrant is completely painted or deliber- 
ately left blank. 

Region queries and BBQL quad tree 

a b 

C 

Fig. 14 
o Unit blocks covered by layout rectangles are shaded 
b Block decomposition for the source layout shown in a 
c Corresponding painted quad tree representation of layout shown in 4 

Example layout and its corresponding painted quad tree 

3.2 Multiple storage quad tree (MSOT) 
In 1986, Brown [SI developed a new VLSI quad tree 
data structure as shown in Fig. 15 to give a solution for 
those objects intersecting more than one quadrant. The 
improvement is to multiply store such an object inter- 
sected with several leaf quadrants by one referenced 
pointer for each leaf quadrant. That means some objects 
will be stored in more than one leaf quadrant. This 
approach wastes a portion of space to store multiple 
pointers. Since some objects are located in more than one 
leaf quadrant, to avoid reporting some objects more than 
once, the further improvement [4-51 has been presented 
of first marking the object the first time it is reported, and 
then never reporting an object which has already been 
marked. This data structure requires the marking and 
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unmarking operations to maintain their validity when- 
ever the objects are searched. 

Fig. 15 
a The layout plane is divided into quadrants repeatedly until each 01 the leaf 
quadrants containing two or less than two rectangles 
b Corresponding MSQT with a threshold value oitwo 

Example layout and its corresponding MSQT representation 

3.3 Quad list quad tree (OLQT) 
In considering the problem of enumerating the multiple 
objects in Brown’s MSQT, the QLQT data structure was 
presented in 1989 [4] to split the single long linked list of 
object reference nodes into four distinct shorter lists. For 
any object intersecting the leaf quadrants, a reference to 
this object will be included in one of the four lists of the 
leaf quadrant according to the relative position of this 
object with respect to the presented region of the leaf 
quadrant. The assigning procedure is illustrated in 
Weyten and Pauw’s paper [4]. While searching or 
finding objects in the QLQT, each object will be accessed 
only once from the four distinct lists instead of from the 
longer list in the MSQT, by using some critical and effi- 
cient rules proposed by Weyten and Pauw. 

However, in the worst case, if the objects are unevenly 
distributed in the 2D plane, both the MSQT and the 
QLQT will become skewed and heavily unbalanced and 
will require a linear time complexity to do search oper- 
ations. 

3.4 Binary balanced OLOT (B6OLOr) 
In considering Brown’s MSQT and Weyten’s QLQT, the 
division method in constructing the entire quad tree data 
structure is to recursively split the quadrant containing 
more than TN objects into four subquadrants with equal 
size as shown in Fig. 15a, where TN is a threshold number 
chosen by the designer. Each father quadrant represented 
by a tree node has four children subquadrants. 

This kind of division method will be fair for a uni- 
formly distributed layout. Unfortunately, the layout 
objects are usually not distributed in a completely 
uniform manner. In the worst case, these two data struc- 

tures will lead to a linear time complexity but not in the 
expected time order of O(log N) for the tree search oper- 
ations. 

In order always to maintain the expected time order of 
O(log N) for the tree search operations, Hsiao and Jang 
[6, 251 have presented two binary balanced quad tree 
data structures to improve both the MSQT and the 
QLQT, respectively. This kind of balanced quad tree 
improves the division method as shown in Fig. 16 by 

~ 
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Fig. 16 Diuiding lines used for the MSQT and QLQT,  ala, a n d a , a ,  
may split the quadrant into four equal-size subquadrants 
Note that the dividing lines of the binary balanced quad tree, and b,b,, will 
split the quadrant into four distinct subquadrants, each 01 which intesects with 
almost the same number of objects 

taking the distribution of layout objects into consider- 
ation to make the split four subquads contain almost the 
same amount of objects. From the experimental results 
shown by Hsiao and Jang [6, 251, the QLQT has an 
average improvement of 15-20% to the MSQT, and its 
BBQLQT also has a further average improvement of 
15-20% to the QLQT. The time involved in the creation 
of the BBQLQT is given in Fig. 17. The source code 
associated with a low-cost layout editor, PC-UNION 
[26], is written in C based on an IBM compatible PC/AT 
486 under MS DOS. 

I CT513// 
c ia1  

!53 I I I 

1000 2000 3000 
number of objects 

Fig. 17 Illustration for the time involved in the creation of BBQLQT 
from QLQT and the time needed for building the QLQTfrom source data 

There are five tested circuits lor which the number 01 objects ranges from 81 to 
2451 

file 

3.5 Region queries 
Region queries always play an essential role in applica- 
tions to VLSI layout design [12, 211. The operation of 
region query means a search of all objects that intersect 
with a specified region, which is sometimes called a query 
window. As the speed of the query operation may depend 



heavily on the number of objects in the layout plane, it is 
important to develop a highly efficient spatial data struc- 
ture to manipulate those objects. 

The most important advantage of the BBQLQT is 
that it offers several highly efficient operations for region 
queries. The following elementary operations, RQ1( )- 
RQ5(), are outlined in term of their functions and time 
complexities, where N stands for the total number of 
rectangles in the source layout. 

Moreover, it is assumed that m stands for the number 
of rectangles partially or entirely included in the query 
window, ml denotes the number of new rectangles which 

I 
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are compared to the rectangles encountered in the last 
query operation, m, denotes the number of rectangles 
entirely included in the query window, and m3 represents 
the number of rectangles partially intersected by the 
query window. Finally, w x l r  wy,, w x 2  and wy, represent 
the bottom-left and top-right co-ordinates of the query 
window and Tm( . )  is a function of time complexity for 
various region queries. Some examples for the operations 
of region queries are shown in Fig. 18. The formal 
descriptions for the region queries are illustrated as 
follows: 

(i) RQl(BBQLQT, wxl, wyl, wx2, wy2) 
: This operation will find out all of the rectangles 
entirely or partially included in the query 
window. 

Tm(RQ1) = O(mlogN) 

RQXBBQLQT, wxl, wyl, wx2, wy2) 
: Similar to RQ10, this operation will reply YES 
or NO to show whether there are new rectangles 
which did not apear in the output of the last 
RQ 10 Operation. 

Tm(RQ2) = O(logN) 

: Similar to RQ2(), this operation will return the 
new rectangles which did not appear in the 
output of the last RQl0 operation. 

(ii) 

(iii) RQYBBQLQT, wxl, wyl, wx2, wy2) 

Tm(RQ3) = O(m,logN) 

: This operation will search output all rectangles 
entirely involved inside the query window. 

Tm(RQ4) = O(m,logN) 

: This operation will search output all rectangles 

Tm(RQ5) = O(m,logN) 

(iv) RQqBBQLQT, wxl,  wyl, wx2, wy2) 

(v) RQYBBQLQT, wxl,  wyl, wx2, wy2) 

partially intersected with the query window. 

4 

4.1 
In this Section, the presented CIDRC algorithm is a dynamic verification process and is regarded as an interactive 
phase of CDRC. Whenever a new component is added into the current layout, those neighboring components must be 
gradually checked according to the constraints of type C , ,  C , ,  and C 3  . The CIDRC algorithm is shown as follows: 

CIDRC-Algorithm(BBQLQT, Ri) 
/* This CIDRC-Algorithm() completes a complementary incremental design rules checking for the added component, 
Ri,  in the current layout.*/ 

Complementary incremental design rule checking (CIDRC) 

Complementary incremental design rule checking algorithm 

f 
Buffer OR-SET; 
/* This buffer will be used for storing those components which overlapped Ri .*/ 
justify the layer type of Ri ; 
check C, for Ri by table look-up; 
/* Compare the width of Ri with the width constraint in the design rule table.*/ 
if (any violation in the width constraint) 

discard Ri and exit (C, rule-error); 
Find-Overlap (BBQLQT, Ri , OR-SET); 
/* Find the overlapped components which overlap the added component and store them into the buffer OR- 
SET.*/ 
if (OR-SET is not empty) 

Overlap-Checking (BBQLQT, Ri , OR-SET); 
/*Check the overlap constraints (Type C,) and the clearance constraints (Type C,) between Ri and the 
components of OR-SET.*/ 

add Ri into BBQLQT; 
return (Ri error-free); 

)/* end of CIDRC-Algorithm( )*/ 
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Find-OverladABBQLQT, R, , OR-SET) 

OR-SET = { 1; 
obtain the left-bottom and right-top coordinates of R,: rxl, ryl, rx2 and ry2. 
OR-SET = RQl(BBQLQT, rxl, ryl, rx2, ry2); 
/* Run the region query operation, RQl(), and store the returned rectangles into OR-SET.*/ 

{ 

1 

{ 
Overlap-Checking(BBQLQT, Ri , OR-SET); 

for (Rj, j = 1, 2, ..., where Rj belongs to OR-SET and satisfies that RinZp1 Rj or Rjn2-, Ri or Rinz-zRj or 
Rj l ~ ~ - ~  RJ /* see Figs. 4 and 5*/ 

check C, between R, and Rj by table look-up; 
/*Compare the distance of the overlapped area between R, and Rj with the constraints from the design rule 
table.*/ 
if (any violation in the overlap constraint) 

check C, between R, and R, by table look-up; 
/*Compare the distance of the clearance relation between R, and R, with the constraints from the design rule 
table.*/ 
if (any violation in the clearance constraint) 

}/* end of for */ 

{ 

discard R, and exit (C, rule-error); 

discard R, and exit (C, rule-error) 

for (R,, j = 1, 2, . . . , where Rj belongs to OR-SET and satisfies that R, R,- ,  Rj or Rj n3-, Ri or Ri n3-2 Rj or 
Rj n,-, R,) /* see Fig. 6-7 */ 

check C, between Ri and Rj by table look-up; 
if (any violation in the clearance constraint) 

{ 

discard R, and exit (C, rule-error) 
]/* end of for */ 

}/* end of OverlapChecking()*/ 

4.2 Complexity analysis 
According to the aforementioned algorithms of CIDRC-Algorithm( ), Find-Overlap( ) and Overlap-Checking( ), the 
computing time for the CIDRC algorithm is limited by Find-Overlap0 and the number of components in OR-SET. 
The time complexity for Find-Overlap(), O(m log N), is the same for that required for applying a region query to the 
BBQLQT, RQl(). For a normal VLSI layout, the number of the rectangles intersected with the query window m is 
much less than the total number N of layout rectangles. Moreover, from the FOR loops in Overlap-Checking(), the 
time complexity of Overlap-Checking() should be within O(m). As a result, the overall time complexity for the 
CIDRC-Algorithm() will be maintained in O(m + m log N) z O(1og N), for a normal VLSI layout. 

5 Complementary global design rule checking (CGDRC) 

5.1 Complementary global design rule checking algorithm 
As the batch phase of CDRC, the complementary global design rule checking algorithm contains two basic steps. The 
first step is to  support a vertical sweeping line horizontally jumping from the left to the right boundary of the layout to 
check all the horizontal type C , ,  C5, and C6 constraints. Similarly, in the second step, all the vertical type C,, C5, and 
C6 constraints will be checked over by maintaining a horizontal sweeping line jumping from bottom to top. 

Considering a great number of overlapped rectangles in a two dimensional plane, the sweeping line algorithm will 
keep up a vertical (horizontal) sweeping line to sweep from the left (bottom) boundary to the right (top) boundary of 
the layout plane by visiting the left (bottom) and right (top) edges of all of the rectangles in x(y)-directional order. This 
approach is quite useful in global design rule checking. Therefore, to create an efficient sweeping line algorithm based 
on BBQLQT will very effectively promote the performance of our CGDRC algorithm. Fortunately, in 1990, Hsiao & 
Tsai [7] presented a generalised sweeping line algorithm based on common region query operations provided by such 
as the MSQT, QLQT, and BBQLQT. It can successfully be used in the following CGDRC algorithm: 

CGDRC-Algorithm(BBQLQT) 
/* This CGDRC-Algorithm completes a complementary global design rule checking for the entire layout. It uses the 
sweeping line algorithm to check the layout from left to right, and then from bottom to top by the similar checking 
method.*/ 

Horizontal-Checking(BBQLQT); 
/* Complete a horizontal checking for the given layout.*/ 
Vertical-Checking(BBQLQT); 
/* Similar to Horizontal-Checking( .)*/ 

return(The given layout is error-free); 

{ 

if (no violation) 

}/* end of CGDRC-Algorithm() */ 
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Horizontal-Checking(BBQLQT) 

Buffer E-SET; 
{ 

while (the sweeping line algorithm [7] does not finish yet) 
{ 
run the sweeDine line aleorithm to eet the x-coordinate of the next eventlEl: 
E-SET = RQ@BQLQT, E, Lyi, E: ~ y 2 ) ;  
/* Base on event E to do region query operation, RQ1( ), and to produce E-SET = {R, I i = 1, 2, . . . , m, 
LxrR.) = E or Rx(R.) = E}, where Lx(R,) and Rx(R,) are the x-coordinates of the left and right edge of R, 
respectively.*/ 
for (Ri, i = 1, 2, .., m) 

if (Lx(Ri) = = E) 
Separation-Checking(Ri); 
/* Apply Separation-Checking() to check the constraints of type C,, C,, and C6 associated with 

Ri .*/ 

}/* end of HorizontaLChecking( )*/ 
}/* end of while */ 

Separation-Checking(Ri). 
/* This algorithm completes the separation design rule checking in respect of the left edge of Ri */ 

Buffer V-SET, C-SET, I-SET, Obuf; 
{ 

V-SET = C-SET = I-SET = {} ; 
Obuf = RQl(BBQLQT, Lx(Ri), By(Ri), Rx(Ri), Ty(Ri)); 
/* The buffer Obuf stores the rectangles that overlapped with Ri. */ 
determine the horizontal width of the whole layout, W(1ayout); 
get the maximum visible/invisible constraint values of Ri, Vi/Ii, from the design rule table; 
/* Vi, Ii + W(layout)*/ 
get the x-coordinate of the left boundary of the whole layout, Lxl; 
W = MIN{Lx(Ri) - Lxl, MAX{Vi, I,}}; 
/* Determine the checking length of the maximum parallel-edge separation constraint window */ 
P = Lx(Ri) - W; 
/* Define the x-coordinate of the left boundary of the processing window*/ 
Find-Visible-Invisible(Ri, W, P, I-SET, V-SET, Obuf); 
/* Apply Find-Visible-Invisible() to search the layout and then obtain the visible separation rectangle set, 
V-SET, and the invisible separation rectangle set, I-SET, for Ri . */ 
obtain the maximum convex-vertex separation constraint value of Ri , Ci ; 
Add RQl(BBQLQT, Lx(R,)-C,, Ty(Ri), Lx(Ri), Ty(R,) + Ci) into C-SET; 
Add RQl(BBQLQT, Lx(Ri)-C,, By(R,)-C,, Lx(Ri), By(Ri)) into C-SET; 
/* See Fig. 19*/ 

r - - - i  
I I T  
I WI I C i  

I I I  
I w2 I c, 
I Fig. 19 Example illustrating the maximum convex-vertex separation 
L - - - J  ‘1 window W,, W, 

for (Rj, j = 1,2,. . . , such that R j  in V-SET) 

check C, between Ri and Rj  ; 
/* Compare the distance of the visible separation relation between Ri and Rj with the constraint from the 
design rule table.*/ 
if (any violation in the visible separation constraint) 

{ 

print(C, rule-error between Ri and Rj) 
}/* end of for */ 

for (Rj, j = 1,2, .  .., such that Rj in I-SET) 

check C, between Ri and Rj ; 
/* Compare the distance of the invisible separation relation between Ri and Rj with the constraint from the 
design rule table.*/ 

{ 
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if (any violation in the invisible separation constraint) 

}/* end of for */ 
print(C, rule-error between Ri and R,) 

for (R,, j = 1,2,. . . , such that Rj in C-SET and Ri x6 Rj) 
{ 
check C6 between Ri and R,; 
/* Compare the distance of the convex-vertex separation relation between Ri and Rj with the constraint from 
the design rule table. */ 
if (any violation in the convex-vertex separation constraint) 

}/* end of for */ 
print(C6 rule-error between Ri and Rj) 

}/* end of Separation-Checking()*/ 

Find-Visible-Iovisible(Ri, W, P, I-SET, V-SET, Obuf) 

Buffer Obuf, LSET, V-SET, Bufl, Buf2, Buf3, TempBuf; 
DPS 11, I2,13; /* Dynamic Projection Set, refer to Definition 7*/ 
float W, P, LP; 

get the minimum width of the rectangles of the whole layout, Wmin; 
Bufl = RQl(BBQLQT, P, By(Ri), Rx(R,), Ty(Ri)); 
/* The buffer Buf 1 stores the rectangles (R,) that satisfy the relation Ri x.,, Rj .*/ 

I1 = Create-DPS(Buf1); 
if (11 = = { }) return(); 
w = w/2; 
P = P + W ;  
Buf2 = RQl(BBQLQT, P, By(Ri), Rx(RJ, Ty(Ri)); 
/* The buffer Buf2 stores the rectangles that are intersected with the right half part of the processing window.*/ 
/* See Fig. 20 */ 

I2 = Create-DPS(Buf2); 
if (I1 = =I2)/* See Fig. 21 */ 

{ 

Bufl = Bufl-Obuf; 

Buf2 = Buf2 - Obuf; 

{ Add Bufl-Buf2 into I-SET; 

}/* end of if */ 
else /* See Fig. 22 */ 

while (I1 > 12) 

Find-Visible-Invisible (Ri, W, P, I-SET, V-SET, Obuf); 

{ 

{ L P = P ;  
Buf3 = Buf2; 

Fig. 20 T w o  windows for the buffers BuJ, and Buf, 
I U  

Fig. 21 
ndded inlo I-SET 

Example for case I ,  = I , :  the rectangles R , ,  R ,  and R ,  are 

Fig. 22 
added into I-SET, and the rectangle R, is added into V-SET 

Examplefor case I ,  > I , ,  the rectangles R , ,  R ,  and R ,  are 
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w = w/2; P = P - w; 
B ~ f 2  = RQl(BBQLQT, P, By(Ri), Rx(Ri), Ty(Ri)); 
Buf2 = Buf2 - Obuf; 
I2 = Create-DPS(Buf2); 

}/* end of while */ 
/* Search for the rectangles of the invisible separation area in case I1 > 12. */ 
while (W 2 Wmin) 

{ w = w/2; 
TempBuf = RQl(BBQLQT, (P + LP)/2, By(Ri), Rx(R3, Ty(Ri)); 
TempBuf = TempBuf - Obuf; 
I2 = CreateDPS(TempBuf); 
if (I1 = = 12) 

{ P = (P + LP)/2; 
Buf2 = TempBuf; 

}/* end of if */ 
else /*I1 > I2 */ 

{ P = (P + LP)/2; 
Buf 3 = TempBuf; 

}/* end of else */ 

Add (Buf 1-Buf2) into I-SET; 

I3 = Create-DPS(Buf3); 
for (Rj, j = 1,2,. . . , such that Rj in (Buf2-Buf3)) 

}/* end of while */ 

/* Use binary search method to search for the rectangles of the visible separation area */ 

if([B~(Rj), Ty(Rj)l 4 13) 
Add Rj into V-SET; 

Add Rj into I-SET; 
else 

P = LP; 

Find-Visible-Invisible (Ri, W, P, I-SET, V-SET, Obuf); 

W = Lx(Ri)-LP; 
I1 = 13; 

}/* end of else */ 
}/* end of Find-Visible-Invisible( )*/ 

5.2 Complexity analysis 
According to CGDRC-Algorithm( ), the computing time 
for the final batch phase of the presented CDRC will be 
limited by the function of Horizontal-Checking( ) or simi- 
larly by the function of Vertical-Checking(). In consider- 
ing the function of Horizontal-Checking( ), its while-loop 
takes at most 2N events to scan all the source layout 
over by the horizontal sweeping line algorithm presented 
in Reference 7. Moreover, the function of 
Separation-Checking0 should be repeatedly involked 
once for each while-loop. The time complexity of 
Separation-Checking( ) depends on the region query 
operations of the BBLQT and the function of 
Find-Visible_Invisible(). The time complexity for the 
region query operations of the BBQLQT will be in 
O(log N) provided that, for a large layout, the number of 
rectangles found from the query window m is assumed to 
be much less than the total number N of layout rect- 
angles. For the same reason, the amount of calling to 
region query operation in the function of 
Find-Visible-Invisible() is also much less than N. Hence, 
the time complexity of Find-Visible-Invisibl~ ) still is 
limited in O(logN), and the number of rectangles in 
V-SET, I-SET, and C-SET which will be checked in 
the function of Separation-Checking0 is much less 
than N. Consequently, the time complexity of 
SeparatioxCheckingO is in O(log N), and the overall 
time complexity for the CGDRC-Algorithm( ) has been 
proven to be in O(N log N). 
6 Illustrative example and experimental results 

To understand the details of the presented CDRC, Fig. 
23 shows that the CIDRC processes the width checking, 
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the overlap checking and the clearance checking for any 
rectangle currently being added into the source layout in 
the first interactive checking phase, After finishing the 
editing process of the given layout, CGDRC then checks 
the visible separation constraints, the invisible separation 
constraints and the convex-vertex separation constraints 
between each pair of rectangles in the batch checking 
phase by the sweeping line approach [7], as shown in 
Fig. 24. Therefore, CDRC completss the checking imple- 
mentation for all the layout constraints by the above two 
disjointed checking phases. 

~ 

Fig. 23 Interactrue phase ofCDRC 
Aftcr the rectangle R, IS added mto the current layout, the CIDRC wdl immed- 
iately check the mdth mnstmnt for R, and the overlap and clearana wnstrmnts 
ktween R, and the mtesected rectangles R, ,  R, and R, 

Besides the illustrative example shown in Figs. 23 and 
24 for the checking process of CIDRC and CGDRC, the 
time complexity of the algorithm has to be demonstrated 
through implementation. Table 1 and Fig. 25 show the 
experimental results that demonstrate the time complex- 
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ity of CIDRC and CGDRC. Five circuit layouts are used 
as test examples for which the number of objects range 
from 81 to 2451. From Fig. 25, the time complexity of 

maximum consiramt window 
I I 

I 

Fig. 24 Batch phase ofCDRC 
While the sweepmg line J u m p  from len to nghl and the rectande R, IS bnng 
enumerated. the CGDRC will chcck lhose constrant$ type C,, C,,  and C,, that 
are associated with R. 

C T U 5 1  
CGDRC 

1000 2000 3000 
n u m b e r  of o b j e c t s  

Fig. 25 
CIDRC and CGDRC 

Experimental results demonstrating the time complexity of 

CIDRC is in O(log N) for each interactively added object 
or in O(N log N) for the sum of all of the added layout 
objects, and the time complexity of CGDRC is in 
O(N log N). All the experimental time complexities match 
with the theoretical results. The program associated with 

a low-cost layout editor, PC-UNION [26], is written in 
C based on an IBM compatible PC/AT 486 under MS 
DOS. 

7 Conclusions 

As we know, for a large layout, IDRC may be too slow 
to become as a real time checking tool, and GDRC is 
usually inefficient for rechecking the whole layout more 
than once. If the given layout is interactively and gradu- 
ally modified step by step, neither conventional IDRC 
nor GDRC can achieve a bettter performance. In this 
paper, therefore, we have established a general geometri- 
cal design rule checking model, complementary DRC, to 
consider some of the layout constraints by the comple- 
mentary incremental design rule checker (CIDRC) and 
the other constraints by the complementary global design 
rule checker (CGDRC). Every layout constraint should 
be checked only once, either by the function of 
CIDRC-Algorithm() or of CGDRC-Algorithm( ). The 
time complexity of the presented CDRC, O(N log N), 
causes from the combination of the time complexity of 
the CIDRC, q l o g  N) for each object, and the time com- 
plexity of the CGDRC, O(N log N). 

This system and the embedded layout editor [26], 
PC-UNION, are designed on the basis of BBQLQT and 
its region query functions. The BBQLQT [6, 253 is more 
eficient both in memory usage and query speed than the 
most recently published QLQT [4]. One day, if the 
BBQLQT is further improved, the performance of our 
system will be promoted without the need for additional 
design effort. Hence, our system is fully moduiarised and 
sufficiently independent of any of the other spatial data 
structures. Those constraints checked by the interactive 
phase (CIDRC) and the batch phase (CGDRC) are 
separated, independent, and disjointed, so that this 
system is perceived as an excellent real time CAD tool. 
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