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SUMMARY

Checkpointing is a basic mechanism for backward error-recovery in fault-tolerant systems. A checkpointed
process stops execution and saves its states to files periodically. To reduce the file sizes, only data modified
between two consecutive checkpoint times is saved. However, existing approaches do not consider operating
system paging activities; which, if ignored may double the number of disk accesses required to checkpoint
non-residentdirty pages. In this paper,we propose continuous checkpointing,which combines the checkpoint
facility with virtual memory paging operations. Thus, checkpointing is continuous during the lifetime of a
process without extra overhead. Checkpoint size is no longer proportional to application size, but rather
is bounded by resident dirty pages. Experimental results show that disk accesses can be reduced by about
80% when checkpointing large applications. 1997 by JohnWiley & Sons, Ltd.
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INTRODUCTION

When checkpointing, systems periodically save applications’ memory contents, machine states
and other information.1,2 If a failure occurs, the interrupted process can be restarted from the
last saved states, and only a few minutes worth of computation are lost. Although some
operating systems3,4 and packages5,6 already provide checkpoint/restart facilities, they still
lack efficient methods for checkpointing the memory contents of running processes. Many
scientific applications often process large amounts of data. Checkpointing all the memory
contents of these applications not only wastes CPU time and I/O bandwidth, but also increases
elapsed times and system overheads.

Several studies6,7,8,9,10,11,12 have proposed ways in which to reduce checkpointing overheads.
A promising approach is incremental checkpointing.9,13 This method saves only the data
modified between two checkpoint times, but does not take the operating system’s paging ac-
tivities into account. In modern computing systems, physical memories are shared by running
processes. Operating systems must keep enough pages to satisfy the memory requirements
of each process. Applications with large working sets unavoidably require memory paging.
Ignoring memory paging may increase the number of disk accesses required to checkpoint
� PhD student.
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non-resident pages – to bring the missing dirty pages to physical memory and then save them
to checkpoint files.

In this paper, we propose continuous checkpointing, an approach that combines incremental
checkpointing with virtual memory paging operations. Instead of reading dirty pages from
paging files and then writing to a checkpoint file, all the dirty pages are checkpointed to the
paging file. By taking advantage of ordinary memory paging operations, checkpointing is no
longer a task confined to particular times, but becomes a continuous activity during the course
of a process. Once a dirty page is paged out, it is tentatively saved to a paging file on disk.
When checkpointing time arrives, the operating system flushes the rest of the dirty pages from
physical memory to paging files and converts all tentatively saved pages to the permanently
checkpointed pages. These checkpointed pages are then marked ‘read-only’. If the operating
system overwrites new data to a checkpointed page, the original checkpointed page is not
modified; instead, a new disk slot is allocated for the newly arrived data. Because operating
systems only save resident dirty pages at checkpointing time, the number of disk accesses
required is smaller than with conventional incremental checkpoint methods. In commercial
operating systems, the checkpoint mechanism in the KeyKOS14,15 has been integrated with
memory paging and achieves extremely high disk I/O performance.

Although tasks are continuously being performed before next checkpoint time arrives, it
does not mean a checkpointed process can be restarted to any time point. An interrupted
process can be only restarted to the time that commits checkpoint.

We used OSF/1 version 1.3 as our development environment, and tested two computation-
intensive applications. OSF/1 is a UNIX operating system released by the Open Software
Foundation. Version 1.3 of OSF/1 is a microkernel product based on the Mach 3.0 ker-
nel developed by Carnegie Mellon University. Besides having 4.3BSD compatibility, OSF/1
also facilitates dynamic linking of execution programs with shared libraries. The microker-
nel approach also makes the system modular, flexible and portable. Although we used a
microkernel-based operating system as our development environment, the continuous check-
pointing technique can also be applied to conventional monolithic operating systems.

Our experimental results show that for applications with large amounts of processing data
disk accesses can be reduced by about 80 per cent when solving the All-Pair Shortest Paths
problem. When checkpointing applications multiply small matrices, all dirty pages reside in
physical memory. Although the operating system must then flush the same number of dirty
pages as conventional incremental checkpointing, our approach avoids page-fault handling
costs in finding these pages.

MEMORY PAGING CONCEPT

In virtual memory systems, a process can use more memory space than is physically available
by taking advantage of memory paging. In this mechanism, operating systems keep active
memory pages and send pages that are currently not in use to the pager. The pager stores
pageout memory pages in paging files, records their locations in a mapping table and gives
every pageout page a unique identity number that the operating system can later read back.
Depending on implementation, the pager can be part of the operating system or be another
process running outside of the operating system. Figure 1 illustrates how the operating system
handles memory paging.

Upon initialization, the operating system creates a free-page pool consisting of all available
page memory. No physical pages are allocated to new processes initially, and all page table
validation bits are cleared. When a process begins execution, the validation bit in its page
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Figure 1. Memory paging

table initiates a page fault trap to the operating system. If the process has the right to access
the faulting address, the operating system maps a free page from the free-page pool to the
process’s page table, loads the data, and places the allocated page into the active-page pool.
If the process has no right to access the address, an error signal is returned to the faulting
process. In order to keep free memory above a pre-determined threshold, operating systems
choose pages to replace. If the page is clean and can be read back from the original execution
file or backing storage, it is removed from the process’s page table and flushed. If the page
has been modified, it is sent to the pager for inclusion in the paging file first, then flushed
from physical memory. This procedure is repeated until the number of free pages exceeds the
pre-determined threshold.

Clearly, some processes’ pages will be stored in the paging file before the system generates a
checkpoint. Thus, including these pages in a checkpoint file requires additional disk accesses.
If, for example, a process has 16 MB of modified data and only 8 MB of physical memory
is available, then 8 MB of data will be stored in the paging file. Theoretically, this means
that checkpointing the memory contents of this process will require I/O accessing of 24 MB
of data: reading the 8 MB of paging file data, and writing a total of 16 MB of data to the
checkpoint file, i.e. the dirty pages in the paging file must be passed along the I/O bus twice.
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CONTINUOUS CHECKPOINTING

Continuous checkpointing extends the virtual memory system to checkpoint every dirty page
when the page is paged out. Instead of reading the dirty pages from the paging file and
then saving to a checkpoint file, continuous checkpointing uses the paging file to store the
checkpointed memory contents. Figure 2 shows the architecture of continuous checkpointing.
A user-level checkpoint server provides multiple checkpointing policies and timing triggers.
A checkpoint consists of two parts; one is the checkpointed memory contents in the paging
file, the other is a checkpoint file containing machine states, process-related information and
a mapping table that records the locations of checkpointed memory pages in the paging file.

Checkpoint phases

Dirty pages generated during a checkpoint interval are saved in the continuous phase and
the frozen phase. In the continuous phase, every dirty page is saved when the page leaves
physical memory. This phase is built on the pageout operation in the virtual memory system.
The pageout daemon selects pages for eviction from the physical memory without regard to
whether they belong to checkpointed processes. However, since normal pageout operations
are used, the checkpoint facilities do not perform additional disk accesses during this phase.

In the frozen phase, when checkpointing time arrives, the operating system flushes dirty
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pages and marks them all ‘read-only’. After all dirty pages have been checkpointed, the
checkpoint server generates a checkpoint file that stores the last process states, contents of
machine registers and a mapping table that records the locations of all checkpointed dirty
pages in the paging file.

To incrementally save modified process data, the checkpoint facility needs a way to identify
the process’s dirty pages. Existing algorithms6,10,11 use the virtual memory protection mech-
anism to find such dirty pages. A checkpointed process first has the WRITE permission to
its memory space disabled. When the process wants to write to protected memory, it must
generate a page fault. The operating system or checkpoint server then records this page as a
dirty page. When checkpoint time arrives, any faulted pages are saved to a checkpoint file.
Because each page fault induces overhead, conventional incremental checkpointing methods
pay higher costs to find dirty pages.

In continuous checkpointing, the operating system scans the dirty bit in the page table entry
to find checkpoint data. If a dirty bit is set, it indicates that this page needs to be flushed
before checkpointing. Dirty bits in the page table provide enough information to identify
which memory pages must be saved. Thus, the operating system does not need to set an
extra protection bit on any memory page and pays no extra cost in fault handling. Therefore,
continuous checkpointing incurs lower costs in finding dirty pages.

Paging space management

The conventional paging file is a temporary backing store for non-checkpointed processes.
In checkpoint facilities, this paging file acts as permanent storage for checkpointed processes.
The pager uses the shadow-paging technique16 to manage the backing store. For each check-
pointed process, the pager creates two mapping tables. One is the working set that records
the non-checkpointed dirty pages on the disk, the other is the shadow set that records the
dirty pages last checkpointed. Checkpointing simply marks all the disk slots pointed to by the
working set as ‘read-only’, and then saves this mapping table to the checkpoint file.

The shadow-paging algorithm uses the copy-on-write algorithm for disk space allocation.
Checkpointed pages indexed by theworking set are marked ‘read-only’ first. If a new write
request occurs, the pager pushes its entry from the working set to the shadow set and
allocates a new disk slot for the request.

Figure 3 shows what happens when the operating system wants to overwrite a checkpointed
page. A read-only bit in theworking setmap entry was set at the preceding checkpoint time.
The operating system can read these read-only pages back when the checkpointed process
accesses them again. If these pages are not modified after checkpointing, the disk space
occupied by these pages can be used for paging and belongs to part of a checkpoint. However,
if a physical memory page is modified and selected as the next pageout page, the pager first
checks its read-only bit in the working set. If this bit is not set, the pager saves the pageout
data to the disk space pointed to by the working set map entry. If this bit is set, the pager
then pushes the map entry in the working set to the shadow set and then allocates a disk
slot for the new data. If the shadow set already has a read-only entry, the disk space pointed
to by the shadow set is released. The shadow set acts as a buffer for previous read-only
entries. The pager uses the shadow set to keep the last unreleased checkpointed pages and
minimize disk space utilization. A checkpointed process uses at most twice its image size in
the paging file.

We maintain a single virtual-to-physical memory translation and provide two sets of disk
slots in the paging file. This approach can easily be applied to other operating systems, and
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Figure 3. Pager allocates a new disk slot when new data is written to a checkpointed page. The map entry in the
working set is pushed to the shadow set. The disk slot pointed to by the shadow set is released
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most functions in virtual memory systems need not be changed. Our approach is different
from Bowen and Pradhan’s,7,8 in which two mapping sets in the virtual-to-physical memory
translation are used for every process. Details of their approach are described in the ‘Related
work’ section.

Recovery from a failure

When a process is restarted after a failure, the checkpointed dirty pages in the paging file
are reserved before the recovery has been completed. However, in most operating system, the
paging file is temporary storage; its data is cleaned when the system is rebooted. Retaining
checkpointed data is thus an important issue. A simple solution is to copy useful data to
another file before the system cleans the paging file. Because the dirty-page mapping table is
stored in the checkpoint file, the pager does not keep information on how to identify which
disk slots are free for use, and it is difficult to reconstruct failed processes without identifying
which disk slots are free. The recovery procedures must first check file system consistency,
and then locate useful data from the mapping table in the checkpoint file.

To solve this problem, we propose a two-stage boot procedure at system startup. Each stage
uses a different paging file, but only the paging file in the second stage, the normal paging
file, contains checkpointed data. The paging file in the first stage, the temporary paging file, is
only used to check file system consistency and copy checkpointed data. After all dirty pages
have been copied, the system uses the normal paging file as the backing store for all processes,
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and then restarts the checkpointed processes.
To restart a process, the operating system first maps the process memory space into its

initial state and then re-maps the memory contents with the checkpointed dirty pages. After
all memories have been mapped, the operating system re-creates the process data structures
and restores them to their checkpointed states. Finally, the operating system sets the machine
registers to their last checkpoint states and restarts the failed process.

An important issue is how to migrate a continuously checkpointed process to another
machine when the original machine cannot be restarted. This is dependent on implementations.
In this paper, we present a command that reads the checkpointed data from the paging file
and generates a restart file. The system can transfer restart files to another machine during
an idle cycle. If the original system cannot be rebooted, another machine can take over the
checkpointed processes. If users want to get restart files after processes have been killed, they
can also use this command to get them. In our experiments, we used this command to verify
checkpoint correctness.

IMPLEMENTATION

We implemented continuous checkpointing in OSF/1 version 1.3, which is a Mach-based
microkernel operating system. We give an overview of the Mach kernel in the first subsec-
tion, and then describe implementation of the continuous checkpoint facility in the second
subsection.

Mach kernel

OSF/1 1.3 is a Mach-based,17 microkernel operating system. The Microkernel provides the
basic mechanism and resource management. Other services are provided by user-level servers.
At least two servers must be present in the system, a UNIX server that provides conventional
UNIX services, such as file systems, tty and network communication, and a default pager that
manages the virtual memory backing store.

There are five abstractions in Mach: task, thread, port, message and memory object. A task
is an execution environment that contains a virtual address space, ports and threads. A thread
is a system scheduling unit. A task may contain multiple threads for parallel execution. A
conventional UNIX process is equivalent to a task with a single thread.

A port is a unidirectional communication channel. A task that holds send rights to a port
can send messages to this port. The task control port is a special port that can suspend/resume
tasks and obtain the execution states of these tasks.

Mach allows user applications to provide the semantics associated with portions of virtual
address space. A memory object abstraction represents the non-resident state of a memory
region. The task that responds to serve request messages and manages the backing store is
called an external pager. A particular external pager called the default pager is the final arbiter
for memory object requests that cannot be served by the user-provided external pager. Some
memory regions, such as task stacks, created by the microkernel are also managed by the
default pager. Complete descriptions of Mach and OSF/1 can be found elsewhere.17,18,19,20,21,22

Implementation issues

Our implementation consists of a modified microkernel, UNIX server, default pager and a
separate checkpoint server (checkpointer), which makes it easier to debug the checkpointer.
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Since the checkpointer must periodically stop processes, it is necessary to have the process-
control capability of the UNIX server. To provide this capability, the UNIX server sends
task-control rights to the checkpointer before spawning new processes.

The checkpointer is a multi-threaded server. When a process wants checkpoint service,
the checkpointer creates a thread to checkpoint it and orders the microkernel to handle the
continuous checkpointing. Because the checkpointer holds task-port rights to the checkpointed
process, it is not necessary to create a service thread within the checkpointed process to
suspend/resume the checkpointed process and obtain information from the microkernel.

After the checkpointer gets task-port rights to the process, the process is set to run. Users
can specify use of either incremental or snapshot policies to checkpoint their processes
periodically. When checkpoint time arrives, the checkpointer first stops the checkpointed
process and issues a system call to synchronize memory contents.

When the microkernel receives the memory-synchronization request and the process being
synchronized is a continuously checkpointed process, the microkernel flushes the resident dirty
pages to the default pager and obtains a page map containing the locations of checkpointed
pages. Resident memory pages are not unmapped; their dirty bits in the hardware page table are
just cleared. The checkpointed application will not cause any page faults due to checkpointing
procedures.

Application process

OSF/1 Server

Checkpoint
Server

7. Get process’s states

3. vm_msync()

8. Get task’s states

Mach microkernel

2. Suspend

1. Send task-port right

4. Flush dirty pages

Default pager

9. Write checkpoint file

5. Mark "read-only"

6. Return page map

Figure 4. The steps of continuous checkpointing in OSF/1
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The default pager applies the shadow-paging technique to every checkpointed process,
however, only the checkpointed processes contain shadow maps. The default pager scans the
page map and sets the ‘read-only’ bit of each valid entry when it receives a request from the
microkernel. After all map entries have been set to ‘read-only’, the map is returned to the
microkernel for use in recovery procedures. Figure 4 shows the detailed checkpointing steps
for OSF/1.

The Mach kernel interface, vm msync(), has been expanded, and two new options added
to checkpoint dirty pages. The vm msync() is designed to synchronize the memory region
with its backing stores. When the new VM SYNC FREEZE option is set, the microkernel sends
a freeze request to the default pager after all dirty pages have been flushed out.

The VM SYNC PRECIOUS OFF option is used to turn the PRECIOUS option in the default
pager off. The default pager uses the PRECIOUS option to reduce paging file utilization.
Memory pages are either stored in the paging file or located in physical memory. When a
memory page is read by the microkernel, it is deleted from the paging file. Although the
PRECIOUS option reduces paging file utilization, it causes a great many disk accesses when
applications generate large amounts of data that will not later be modified. The microkernel
cannot determine whether these pages have been checkpointed or not. It must flush them and
mark them ‘read-only’ again. Turning the PRECIOUS option off bypasses these pages.

When the microkernel sends a memory-object-freeze message, the default pager sets the
‘read-only’ bit in the pageout page map and returns the page map to the microkernel. The
microkernel collects all the maps and then sends them to the checkpoint server.

OSF/1 also dynamically links user programs with shared libraries. The execution file con-
tains unresolved external references prior to being loaded. Conventional restart mechanisms
that use original execution files to reconstruct process images may not work in this envi-
ronment. If shared libraries are upgraded by the system administrator or linkage paths are
changed by the user, a restarted process will differ from the original execution image. To solve
this problem, we take a complete snapshot of process images at the first checkpointing of
any process. This approach separates the relationship between the applications and the shared
libraries. The restart procedure only needs the incremental checkpoint file and the snapshot
file to reconstruct the original process, even if the shared libraries have been changed.

PERFORMANCE EVALUATION

We ran our experiments on an Intel Pentium 90 MHz processor with 16 MB of RAM and a
one GB SCSI disk. After the system was booted, the available physical memories consisted
of 12.32 MB (3154 pages). The paging file used for applications was 256 MB. All the test
applications made complete snapshots at the first checkpoint to generate basic recovery points.
The checkpoint file size and disk accesses required for the first snapshot were not counted in
the evaluations.

We first wanted to explore the extent of disk access when the application’s working set
was larger than the available physical memory. The first application tested solves the All-
Pairs Shortest Paths problem with 1408 nodes. The memory requirement for writable data,
including stacks and bss for the shared libraries, was 35.18 MB (9008 pages). Total running
time was 830 minutes. We used 10 minutes as our checkpoint interval. This interval is
reasonable for a long-running application. Figure 5 shows the number of disk accesses in
terms of pages accessed for different checkpoint policies. Because of the program’s total run
time, a complete graph could not exhibit the detailed variations. We arbitrarily selected the
results from 12,000 seconds to 19,000 seconds for inclusion in Figure 5. Although Figure 5



1112 S.-T. HSU AND R.-C. CHANG

1

10

100

1000

10000

12000 13000 14000 15000 16000 17000 18000 19000

D
is

k 
ac

ce
ss

es
 (

pa
ge

)

Execution Time (second)

Snapshot size
Traditional incremental checkpoint size

Total dirty pages
Continuous checkpoint size

Figure 5. The total dirty pages and actual disk accesses for different checkpoint policies when solving All-pair
Shortest Paths with run-times from 12,000 second to 19,000 second. The average number of disk accesses for

conventional incremental checkpointing was 677 pages. When using continuous checkpointing, only 75 pages, on
average, were accessed

shows only partial results, the data reported in the next paragraph were calculated for the
whole program.

Dirty pages between checkpoints averaged 1.46 MB (376 pages). Because user-level in-
cremental checkpointing must read dirty pages from the paging file and then save them to
checkpoint files, the average number of disk accesses for conventional incremental check-
pointing was 2.6 MB (677 pages). When the continuous checkpointing policy was used, only
300 Kbytes (75 pages) on average were actually written to disk. At least 80 percent of the
dirty pages had already been saved to disk before the checkpoint times arrived.

The second test application we used was matrix multiplication of two 1600�1600 matrices.
The total memory requirement was 29 MB (7424 pages), but only 10 MB (2560 pages) were
actually necessary when calculating each row of results. Because other daemon processes
coexisted during this test, the test program’s working set was slightly larger than the available
memory. The execution time was 135 minutes. The checkpoint interval was also set at 10
minutes. Figure 6 shows the total number of dirty pages and actual disk accesses at every
checkpointing time (snapshots not included). Disk-access reductions ranged from 15 percent
to 51.67 percent, with an average improvement in disk accessing of 35 percent.

Figure 7 presents the average number of disk accesses for multiplication of matrices of
different sizes. When the matrix size was small, the entire working set could reside in physical
memory, so, using continuous checkpointing was the same as user-level implementation of
incremental checkpointing. However, continuous checkpointing did avoid the cost of page-
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Figure 6. Total dirty pages and actual disk accesses in 1600� 1600 matrix multiplication

fault handling. As the matrix size was increased, the total number of dirty pages decreased
because some CPU time was spent in memory management. When the memory requirement
was larger than the available physical memory, some of the dirty pages had been paged out
before checkpointing times arrived. The actual number of disk accesses required for check-
pointing was smaller than that required for incremental checkpointing. When the matrices
were larger than 1792� 1792, continuous checkpointing saved only two dirty pages to disk,
and the process of checkpointing worked like a system pageout operation.

To compare the impact of continuous checkpointing with that of conventional checkpointing
methods, we ported the libckpt library in Plank et al6 to our platform. The libckpt library
contains many conventional user-level checkpointing methods. We changed some system
calls for memory allocation/protection and process creation to Mach system calls. When the
incremental mechanism was active, the library applied the mprotect system call to detect
which memory pages were dirty. When the incremental option was not set, then the checkpoint
procedure took sequential snapshots of memory. When combined with the fork system call,
the checkpoint operations could be performed in parallel with the process being checkpointed.
Copy-on-write optimization is a built-in mechanism in Mach. When the parent process writes
a page being checkpointed, Mach first copies this page to another place, and then gives write
permission to the parent process.

The test program was aB = A�Amatrix multiplication included in the libckpt library. The
test program took checkpoints after every 40 rows of the product matrix had been calculated.
Table I lists the results. The times reported in Table I are in minutes:seconds.

The average cost of handling single page fault was 1650 �s in our system. The ‘No
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Figure 7. The average dirty pages and actual disk accesses at different size of matrix multiplication

checkpoint’ column represents the elapsed time without checkpointing. When the matrix
size was 1024 � 1024, all pages being checkpointed resided in physical memory. Thus, the
I/O accesses required for incremental checkpointing and continuous checkpointing were the
same. The only differences between these two methods were in page-fault handling and
context-switching times. The performance of both incremental and continuous checkpointing
improved when combined with copy-on-write optimization. When incremental checkpointing
was combined with copy-on-write, the elapsed time was almost the same as that of continuous
checkpointing without copy-on-write, but continuous checkpointing with copy-on-write was
still better than incremental checkpointing with copy-on-write.

When the matrix size was 1664� 1664, the total memory requirement was larger than the
available physical memory. Both incremental and continuous checkpointing did not perform
well when combined with copy-on-write optimization because the system was in heavy-load
state. A fork or copy-on-write operation will bring more memory to swap out. Thus the disk

Table I. Elapsed time (minutes:seconds) for matrix multiplication using different checkpointing policies

Matrix size No Sequential Incremental Continuous Sequential Incremental Continuous
checkpoint checkpoint checkpoint checkpoint + Fork + Fork + Fork

1024� 1024 23:04 48:30 27:01 25:23 29:05 25:54 23:40
1664� 1664 136:43 316:49 178:39 143:08 235:47 254:34 149:28
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access figure is worse than the checkpoint without copy-on-write optimization.
The sequential checkpoint size in the row ‘1024�1024’ was 2560 pages (matrix A, B and 2

MB stack). The cost to write a page was roughly 22.9 ms ( (48�60+30)�(23�60+4) = 1526
seconds for 26 checkpoints; 1526

26 �2560 � 0:0229). Combining continuous checkpointing with
the fork system call, the copy-on-write optimization adds 1.65 ms to the cost of processing
a protected page. This is 7 percent extra overhead per page fault, which is nontrivial, but not
nearly as significant as the extra cost of disk I/O saved with continuous checkpointing when
pages are already in the backing store.

OPTIMAL CHECKPOINTING INTERVAL ANALYSIS

Many studies have been published on selecting an optimal checkpointing interval. We used the
simple model in Young23 to analyze the impact of continuous checkpointing on the optimal
checkpointing interval. We omit the detailed derivation of the equation, and apply only the
final result here. This analysis does not include the impact of the copy-on-write technique.
If a fork system call is used, the figures change, but the analysis is more difficult since
the overhead realized when copy-on-write is performed cannot be stated analytically. More
complicated models and assumptions can be found in Jalote2.

Let F be the expected time to establish a checkpoint, and � be the failure rate of the system.
The Mean Time Between Failures (MTBF) of the system is 1

�
. The first-order approximation

of the optimal checkpoint interval is Topt =
q

2F
�

.
We assume the expected checkpoint cost is the time required to save the memory pages

and system states to file. Thus the data that need to be saved is Mresident + Mswap + S,
where Mresident is the average number of resident memory pages, Mswap is the average
number of swapped memory pages and S is the number of pages that contain system states.
Because conventional checkpoint methods need to read the swapped pages back and then
save them to files, the expected time to establish a checkpoint using conventional methods is
F = (Mresident+2Mswap+S)C, whereC is the average cost of storing a single page to disk.

The optimal checkpointing interval can be expressed as Topt =
q

2(Mresident+2Mswap+S)C
�

. In
continuous checkpointing, Mswap is zero. Thus, the optimal checkpoint interval is reduced

to Topt =
q

2(Mresident+S)C
�

. The system avoids 2Mswap page’s worth of disk operations. If
all the pages to be checkpointed reside in physical memory, Mswap is zero. In this case, F is
determined by the resident pages. Continuous checkpointing is thus reduced to conventional
incremental checkpoint. Practically, how much benefit continuous checkpointing provides
depends on the ratio of Mswap and Mresident.

Suppose the MTBF for our platform is 29.39 days (from Long et al24), the cost of storing a
single page is 22.9 ms and the checkpoint size is 75 pages (from our first test program). The
optimal checkpoint interval can be calculated as follows:

Topt =
p
(29:39� 24� 60� 60)� 2� 75� 0:0229 � 2953 seconds.

RELATED WORK

In this section we review research related to checkpointing the memory contents of running
processes. Some of these techniques have been used in commercial products with good results.
We first introduce the process-pair approach often used in distributed systems, then discuss
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methods that can be used for checkpointing on local disks, and techniques that can be used to
decrease processing times.

Process-pair

The process-pair technique is often implemented in distributed operating systems, for
example, NonStop OS,25 Ausos26 and TARGON/32.27 For each fault-tolerant application, the
operating system creates two processes at a time, the primary process running on the local
machine, and a backup process located in the remote machine. The backup process can be
executed in parallel with the primary process or be kept in a suspended state. Operating systems
guarantee the input/output messages of primary and backup processes are sent atomically. The
memory contents of backup process can be synchronized with those of the primary process
page-by-page. A page server manages the virtual memory backing store to ensure that the
backup process has the same images as the primary process. Applications need not be re-
compiled or re-linked with special libraries in these systems. A fault-tolerant system that uses
the process-pair approach often has high availability characteristics. A fault-tolerant service
can be easily accomplished using this method.

Because microkernel technology is becoming the trend in next-generation’s operating sys-
tems, some research has been conducted on applying process-pair techniques to microkernel-
based platforms. Babaoğlu,28 and Chen and Ng29 proposed fault-tolerant computing environ-
ments based on Mach.17 They designed an external pager that finds checkpointed dirty
pages and sends them to another machine. The external pager applies the virtual memory
protection mechanism proposed by Li et al.10 to asynchronously checkpoint dirty pages.

Since every primary process keeps a hot backup in another machine, recovery processing is
accomplished almost immediately after system crashes. However, systems using process-pair
techniques pay a higher cost in equipment than other methods. At least one backup machine
is necessary whenever the primary process is running. The operating system also needs to
modify most of its codes to satisfy the atomic message requirement.

Taking a snapshot

To checkpoint a process in a local machine, a brute force method is to take a snapshot
of its memory. Because this method sequentially saves the memory contents to disk, Li10

classified it as sequential checkpointing. Since this approach is simple, most user-level pack-
ages or libraries use it. For example, the Condor5 library adopted this method to utilize idle
workstations. Programs using the Condor library need not modify their source codes. How-
ever, relinking with the Condor Checkpointing Library is required. When checkpointing, the
‘checkpoint’ signal handler in the Condor checkpoint library first stops the original execution
sequence and then saves the data area and stack area to file. At restart time, the restarting
process (using code from the Condor library) reads the file containing the saved data and
stack information into appropriate areas in its own address space. The latest release of Con-
dor has been ported to Solaris, Irix, Linux and supports dynamically linked libraries as part
of the checkpoint. Further information about Condor can be found on Condor’s homepage,
http://www.cs.wisc.edu/condor/product.html.

Incremental checkpointing

Another approach, incremental checkpointing, which saves only the pages modified be-
tween two checkpoint times, was first used in program debugging13. By means of the system
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call, pagemod(), user processes could checkpoint dirty pages without using page-fault han-
dlers. Elnozahy et al.9 used incremental checkpointing technique to implement their consistent
checkpointing in Manetho. They showed that incremental checkpointing can efficiently reduce
the checkpoint size. Plank et al.6 used an mprotect system call to implement incremental
checkpointing. However, providing incremental checkpointing at user-level entails a higher
cost in page-fault handling.

Russinovich and Segall12 designed an application-transparent checkpointing algorithm using
the Mach operating system. We classify their algorithm as incremental checkpointing because
they designed an external pager to checkpoint the memory contents. Using the external pager
approach in Mach enables easy retrieval of information about modified data.

All the Mach-based approaches12,28,29 involved designing a new external pager to checkpoint
memory contents, which differs from our approach. We modify the microkernel’s default
external pager to support incremental checkpointing because:

(i) The default pager is a privileged task with the ability to obtain additional memory
resources when the system in heavy-load states.

(ii) The default pager is the last resolver of paging. It also handles the memory pages created
by the microkernel. Other external pagers cannot get these dirty pages.

(iii) The default pager directly uses the device interface provided by Mach. It does not rely
on file system service from the UNIX server.

Virtual checkpointing

Bowen and Pradhan7,8 proposed a technique for checkpointing memory contents in nonvol-
atile-memory supported environments. In their scheme, each virtual page has two mappings
both in the physical memory and disk storage. One is the checkpoint data set and the other
is the active data set. A global checkpoint counter (V) is used as the logical timestamp for
the current checkpoint. Every virtual page has a local checkpoint counter (v) to indicate
the last checkpoint timestamp. The operation at checkpoint time only increments the global
checkpoint counter V. The actual checkpoint action is deferred until the first reference to a
checkpointed page. In every memory reference, the local checkpoint counter v is compared
with global checkpoint counter V. If the local checkpoint counter v is not equal to the global
checkpoint counter V, an actual checkpoint procedure will be invoked — the active data set
and checkpoint data set are switched and the global checkpoint counter V is copied to the
local checkpoint counter v.

The virtual checkpoint approach needs nonvolatile-memory support. Most functions in
virtual memory systems must be modified to implement the deferred checkpoint procedure.
Rapidly comparing the local checkpoint counter v with the global checkpoint counter V at
every memory reference, requires definition of additional bits in the Translation Lookaside
Buffer (TLB) and page table entry. The continuous checkpointing we propose on the other
hand, only needs two disk mapping per checkpointed process. The physical memory mapping
is the same as usual and does not require nonvolatile-memory support. This simplifies the
design of checkpointing facilities in most systems.

KeyKOS

KeyKOS14,15 is an object-oriented microkernel operating system from Key Logic Inc. The
checkpoint mechanism in KeyKOS is system-wide. This means that the system checkpoints
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all the processes’ states at one time. The checkpoint facility in KeyKOS is integrated into the
paging system. Every memory page is assigned a home location on disk. There are two swap
areas on disk. One is the checkpoint area and the other is the working area. A small area on
disk called the checkpoint header designates which swap area is the current checkpoint area.

When checkpointing, all the processes in the system are stopped. After the system writes
all the changed pages to the working area, the roles of the swap areas are reversed, and the
checkpoint header is updated to designate the new checkpoint area. When all the stopped
processes are resumed, a background process performs a migration phase that copies the
pages in the checkpoint area to their home locations.

Because the checkpoint header needs to differentiate between the checkpoint area and the
working area, KeyKOS needs the additional migration phase to re-use the swap area. This is
the major difference between the checkpointing mechanism in KeyKOS and our approach. If
the last checkpointed pages are the same as the current in-use pages, they will be copied to
their home location during the migration phase. A memory page in the backing store has at
most three copies. The migration phase is a built-in low-priority user-level process that does
not influence the execution of other applications.

Other approaches

Overlapping checkpointing and process execution may be accomplished by using thefork
system call. After the original process forks a child, the parent process resumes the original
execution flow and the child process saves its own memory space to the checkpoint file.
This technique has been used by several authors6,30,31. Liu et al.32 used a similar method to
checkpoint multi-threaded applications. They created checkpoint threads in applications to
obtain access rights to memory space.

Li et al.10,11 proposed real-time and concurrent algorithms that overlap application execution
and checkpointing. They used copy-on-write and buffering techniques to parallelize the mem-
ory saving and program execution. These techniques can improve the checkpoint snapshot
time.

Plank et al.6 implemented a user library libckpt.a that provides multiple checkpointing
policies. They also proposed a user-directed checkpointing method that allows users to specify
which memory can be excluded from checkpointing, and which the server should checkpoint.
This method is not user-transparent. However, compiler-based techniques33,34,35 can ease the
task of user-directed checkpointing.

In the commercial sector, both UNICOS,4 Cray Research’s operating system, and ConvexOS,3

CONVEX Computer Corporation’s operating system, provide the system calls chkpnt and
restart to automatically checkpoint and recover user processes. These facilities are trans-
parent to the checkpointed processes. No modification is necessary for user application.

CONCLUSION

Fault tolerance will be more and more important in future computing systems. Improving
system reliability while not decreasing throughput is an important design issue. Although
there are many user-level checkpoint packages, kernel-level checkpointing mechanisms are
still superior.

Kernel-level and user-level implementations of checkpointing mechanisms both have their
pros and cons. When implemented in the kernel-level, the checkpointing mechanism can
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obtain more system resources and information making checkpointing more efficient. Since
most users cannot modify or install new operating systems to checkpoint their jobs, a user-level
checkpoint package or library becomes a feasible solution for them. Portability is the greatest
advantage of these packages. Their main disadvantage is that they cannot rebuild the state of
the operating system directly. In particular, user-level checkpointers cannot identify pages that
have been swapped to disk, and therefore must copy these pages to their checkpoint files. As
a kernel-based technique, continuous checkpointing can merge checkpointing with swapping
pages to disk, and gain significant performance advantages over user-level checkpointers. Thus
we emphasize that checkpointing of memory contents should be a kernel-level mechanism
and can be integrated into memory paging.

Our results have shown that the proposed continuous checkpointing can efficiently check-
point process memory contents. For a checkpointed process, especially one requiring extensive
memory resources, most disk accesses are eliminated. Even if all dirty pages are resident in
physical memory, our approach pays a lower cost to find checkpointed pages than conventional
checkpointing methods.
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