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This article presents an off-line identification method to estimate the minimal knowledge 
of the inertia parameters for determining the dynamic model of a manipulator. A new 
approach is proposed to find a set of the minimal knowledge of the inertia parameters. 
This set is recursively estimated by moving one joint at a time. The off-line identification 
procedure also provides a sufficient condition for a persistently exciting trajectory. A 
simulation example of Stanford arm illustrates the validity and simplicity of the identifi- 
cation procedure. 

1. INTRODUCTION 

The dynamic system of a manipulator is a nonlinear, coupled multivariable 
system. Conventionally, each joint of a manipulator is controlled by an inde- 
pendent PD algorithm.' Because of the nonlinearity and coupling, the propor- 
tional derivative (PD) algorithm is only justified for some nominal trajectories. 
On the other hand, the computed torque control uses the inverse dynamics to 
compensate for the nonlinearity so that the tracking error in the whole work- 
space can be reduced to zero.2 Recently, many advanced control for 
manipulators are all based on the computed torque method. However, good 
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performance of these control schemes can be ensured only if the inverse dy- 
namics of manipulators are known. 

Some algorithms based on the efficient recursive Newton-Euler formulation9 
satisfied the sampling rate criterion for computing the manipulator inverse 
dynamics on a multiprocessor systemlo or on a single processor.lI We are then 
asked if we can get the exact values of the inertia parameters (mass, center of 
mass, and inertia tensor) required for the recursive Newton-Euler formulation. 
Armstrong et a1.I2 used a mechanical method to measure the inertia parameters 
of PUMA 560. Their approach is tedious and requires to disassemble the ma- 
nipulator. Therefore, a lot of identification methods are proposed for the inertia 
parameters of manipulators. Atkeson et al.13 showed that the actuator forces of 
a manipulator are linear functions of the inertia parameters. All works dealing 
with the inertia parameter identification tried to or i m p l i ~ i t l y ~ ~ ~ ~ ~ ~ '  
formulate the linear equations. Some regrouping rules are also p r e ~ e n t e d ' ~ + ' ~ - ~ ~  
to make the number of inertia parameters appearing in the linear equations 
minimum since it is found that not all inertia parameters are required to deter- 
mine the actuator forces. On the other hand, Craig et al.23 developed an identifi- 
cation algorithm for a parameter-adaptive control scheme. 

Among these identification methods, Khosla and KanadeI8 exploited the 
property that the actuator force of joint i is dependent merely on the inertia 
parameters of link i to link n. They then proposed an off-line identification 
method by letting only one joint (from joint n to 1) move at a time such that the 
combinations of the inertia .parameters required in the symbolic dynamic equa- 
tions are estimated recursively from link n to link l. However, it is cumber- 
some to form the symbolic dynamic equations and difficult to regroup the terms 
in the symbolic equations, especially for a robot with six joints. 

In this article, we present a new off-line identification method to estimate the 
inertia parameters for determining the dynamic model of manipulators. A new 
approach to finding the minimal knowledge of the inertia parameters of a ma- 
nipulator is proposed, although the result is substantially equivalent to the 
earlier ones.22,24-28 An identification procedure is then to estimate the minimal 
knowledge of the inertia parameters. Although the off-line identification 
method is also to move one joint at a time, only the first rotational joint is 
required to move in the largest part of the identification procedure. An analytic 
method is presented to investigate the linear independence of the columns in 
the linear equations of the dynamic model while only one rotational joint or one 
translational joint of a manipulator moves. This analysis provides us with the 
persistently exciting trajectories for identifying the minimal knowledge of the 
inertia parameters. Another advantage of the present method is that it does not 
require the symbolic dynamic equations. 

The next section introduces the inertia constants of composite bodies, which 
are found to be able to constitute a set of the minimal knowledge of the inertia 
parameters for determining the dynamic model of manipulators. In Section 3, 
we let one rotational joint or one translational joint move alone and relate the 
actuator forces to the minimal knowledge of the inertia parameters. The analy- 
sis of these relations allows us to establish an off-line identification procedure. 
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The Stanford arm is taken as an example to illustrate the identification proce- 
dure in Section 4. The computer simulation verifies the theory. 

We first introduce the following definition: 

Definition. 
over R" if there exist constants ai, i = 1, . . . , n ,  not all zero such that 

A set of columns a i (0)  : R" + R" is said to be linearly dependent 

Zfai are all zero, the set is said to be linearly independent over R". 

2. BACKGROUND 

We consider a manipulator with n low-pair joints (i.e., connections with a 
single degree of freedom), which are labeled as joint 1 to n outward from the 
base. Assign a body-fixed frame on each joint (i.e., frame Ei is fixed on joint i )  
in accord with the normal driving-axis coordinate system."-29 The distance 
from the origin of Ei to that of Ej is designated as i s ,  and that to the center of 
mass of link i as c i .  

In the normal driving-axis coordinate system (see Fig. l),  the z-axis of a 
body-fixed frame is the driving axis of the corresponding link, i.e., the unit 
vector along joint i is 

E 

"j ')= [8] 
f 

Figure 1. Normal driving-axis coordinate system. 
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where superscript (i) denotes the representation of a vector with respect to 
frame E;.  The distance from the origin of frame E;-l to frame E; is shown to be 

where SO; = sin O ; ,  C8; = cos O i ,  and bi ,  di, pi ,  and 8; are the geometrical 
parameters of the coordinate system and shown in Figure 1. Note, d; = df + qi ,  
8; = Of ifjoint i is a translational joint; otherwise, d; = dl!, 8; = el! + q;,  where qi 
is the displacement of joint i .  That means df and 8,: are the null-position values 
of d; and 8;, respectively. The coordinate transformation matrix from Ej-l  to Ei 
is then 

CO; -SO; 

(4) 

O I  SpiSOi SpiCO; cpi 
CpjSO; CpjCOi -Sp; 

The composite body i is defined as the union of link i to link n. Let the mass 
of the composite body i and the first moment of the composite body about the 
origin of E; be denoted as m; and e; ,  respectively, which are 

m 

where mi is the mass of link j .  According to Huygeno-Steiner formula,30 the 
inertia tensor of the composite body i about the origin of frame Ei is 

where 1)') is the representation of the inertia tensor of link j ,  about the center of 
mass, with respect to frame E j ,  and [ax] denotes a skew-symmetric matrix 
representing the vector multiplication, i.e., [axlb = a x b. In the context, the 
overhead symbol A is used to denote the inertia parameters (mass, first moment, 
and inertia tensor) of composite bodies. 

We introduce the following notation 

1 for rotational joint i 

0 for translational joint i 
K* = (1  - Ki) = 
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Renaud's formulation relates the entries of the inertia matrix of a manipula- 
tor to the inertia parameters of composite bodies as31-34 

where hmi is the ( m ,  i)th entry of the inertia matrix, (.);j denotes the (i, j) th 
entry of a matrix, does the x-component of a vector, and 

is the acceleration of the origin of frame Ei due to a unit joint acceleration of 
joint m if joint m is a rotational joint. 

The gravitational force of the composite body i is k i g  acting at the center of 
mass of the composite body, where g is the gravitational acceleration. The 
gravity term of the actuator force (denoted by 78) applied on joint i is to resist 
the gravitational forces exerted on joint i by link i along the direction of joint i, 
i.e. 

Lemma 1. 
be divided into the constant (ki, Ui) and varying (ti, Vi) parts as 

Thefirst moments and the inertia tensors of composite bodies can 

kj + t i  (12) cji) = 
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where 
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k, = rn,c$) 

e, = 0 

v, = 0 

and i f i  < n 

for  rotationaljoint i + 1 ( i .e . ,  K:+, = l), while 
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for  translational joint i + 1 (i.e., K;+l = 1). 
Note that '+:Rb is the third column of the coordinate transformation matrix 

'+;.R 

and 

This lemma can be straightforwardly proved by the principle of mathematical 
induction, for which we refer to Lin.35 For convenience, we name hi, ki and Ui 
inertia constants of the composite body i. 

Theorem 2. For a manipulator with n low-pairjoints in which joint r is thejirst 
rotational joint counting from the base and joint s is the nearest rotational joint 
not parallel to joint r, a sufficient knowledge of the inertia parameters for  
determining the actuator forces T is the information of the set 9 consisting of 

3. Ki& fori = 1 , .  . . , n 
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4. K;(k;), , K;(ki), , Ki(kJz for s < i 5 n 

and 

where S j  = 0 for  the case that U,//uk//& Vk < j < s, and i s  is zero or parallel to 
ur for  every rotationaljoint m ,  r 5 m < j ;  otherwise, Sj = 1; and u; = 0 for  the 
case of ui//ur, r < i < s ;  otherwise ui = 1 .  

Proofi We recognize that the dynamic equations of a manipulator with n 
joints are 

H(q, x)q + 7'(q, q, x) + 7g(q, x) = 7 (29) 

where q E R" consists of the joint displacements, x E R'O" consists of the 10n 
inertia parameters, 7 E R" consists of the actuator forces, H(q, x) : R"+P + 
R""" is the symmetric inertia matrix, 7g(q, x) : Rll" + R" consists of the 
gravitational forces, T E R" consists of the actuator forces, and F ( q ,  q, x) : 
R1*" + R""" consists of the Coriolis, centrifugal forces, which can also be 
related to the inertia matrix with Christoffel symbols (Cijk)33: 

where T ?  is the ith element of 7c ,  q; is that of q, and hij is the (i, j)th entry of H. 
According to (30)-(32), the knowledge of the inertia parameters for determining 
H is sufficient to determine T ~ .  Thereafter, we just need to investigate the 
inertia parameters in (9) and (1  1). 

According to (12), (19), and (23), 4; and then a!' can be calculated with the x- 
and y-components of Kj*kj and Kjmj, j = i + 1, . . . , n,  i.e. 
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where a i j k ,  bijk, and Cijk are some appropriate functions. 
We can rewrite (25) for translational joint i + 1 in the form of 

where 

Equations (21) and (36) reveal that Vi is independent of KjUj, j > i, and is a 
function of Kjmj, Kj$j), the x- and y-components of K:kj and the (3,3)th, 
(1,2)th, (1,3)th, (2,3)th entries and the difference of the (1,l)th and (2,2)th 
entries of Kj*Uj, j > i. 

We examine (9) and (1 1) and find that hrni and T ;  are not explicitly related to 
the z-component of t?) and that only one column, the third column, of KTJy’ is 
required in calculating the inertia matrix. The observations for (9), ( l l ) ,  (21), 
and (36) allow us to conclude that the knowledge of 

are sufficient to determine the inertia matrix and gravity load. However, we can 
still eliminate some elements for link i, i < s. 

For the case of i < r, there are only translationaljoints. Equations (9) and 
(1 1) are reduced to 
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i < r (38) 

which implies that Jy) and g f ) ,  i < r, are unnecessary in determining the inertia 
matrix and the gravity load, nor are U; and kj necessary. 

The rotational joints remaining in front of s are parallel to one another. Thus, 
u:) = [ O ,  0, 1IT for rotational joints m and i, r 5 m < i < s. If joint m is a 
rotational joint and joint i is a translational joint, r 5 m < i < s, u:) = u!) is 
constant since the body-fixed frame on a translational joint is invariant to the 
motion of the nearest rotational joint in front of the translational joint. Equation 
(9) is then reduced to 

T g  = - 

Equations (1 1) and (39) allow us to delete k, of any rotational joint j ,  r I j < s 
out of the sufficient knowledge of the inertia parameters if u,//uk//g, V k  < j < s, 
and i s  is zero or parallel to u, for every rotational joint m, r 5 m < j. Instead of 
k; for translational joint i, r < i < s, a combination of 

is sufficient since u;) is constant. Besides, we only need the (3,3)th entry of Jp) 
for the rotational joints, which contains some Uj and kj, j 2 i. 

Suppose that joints i and m, i < m 5 s, are rotational joints and joints k, i < 
k < m, are translational joints. Combining (21) and (36), we get 
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m- I 

since 

implies that the third row of TR is (uj“’) T .  (Vi)33 is independent of Urn because 
of u:”’ = [0, 0, I I T  and it additionally contains the constants 

-(u!k’),[(U!k))x(kk)+ + (~!~’)y(kdyl + [I - (~!~’)Zl(kk), (43) 

Note that u,//uj. Therefore, only one entry, the,(3,3)th entry, of K;Uj ,  r 9 j < 
s, and the combination (43) of the components of kk for translational joint k ,  r 5 

k < s, should be included in the sufficient knowledge of the inertia parameters. 
However, the two combinations (40) and (43) of the components of ki for any 
translational joint i remaining between joints r and s are unnecessary if the 
translational joint is parallel to joint r since the x- and y-components of u!’ are 
zero in this case. This completes the proof. rn 

Remark: In the literature, Gautier et al.22324325 and Mayeda et a1.2c28 investi- 
gated the minimal knowledge of the inertia parameters for the manipulator 
dynamic model. The inertia constants listed in Theorem 2 are substantially 
equivalent to the results of Gautier et al. and Mayeda et al., although some 
minor terms are different since the set of the minimal knowledge of the inertia 
parameters is not unique. Another difference is that our approach does not say 
the inertia constants in Theorem 2 are the minimal knowledge of the inertia 
parameters for the dynamic model. However, an off-line identification method 
for estimating these inertia constants will be presented in the next section. 
Since these inertia constants are all identifiable, they form a set of minimal 
knowledge of the inertia parameters for determining the dynamic model. The 
off-line identification method requires an algorithm to compute ti and Vi, which 
is proposed as follows. 
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Algorithm 1. To compute tj and V j ,  j 2 r. 

Step 1: Let  4, = 0 and V,, = 0. I f  j = n,  g o  to step 5;  otherwise, go to step 2 

Step 2: I f  joint n is a rotational joint 
f o r  n - 1 2 s or step 4 for n - 1 < s. 

Otherwise 

If j = n - 1 ,  g o  to step 5 ;  otherwise, let i =: n - 2 and go to step 3 
for i 2 s or step 4 for i < s. 

Step 3: Compute ti and Vi using (19) and (21) ifjoint i + 1 is a rotational 
joint. Ifjoint i + 1 is a translational joint, compute ti, i?$+ll) and Vi 

Step 4: 

Step 5: 

using (23), (12), and (36). I f  j = i ,  g o  to step 5 ;  otherwise, let i =: i - 
1 and do step 3 again for i L s or g o  to step 4 for i < s. 
If joint i + 1 is a rotational joint, compute ti using (19), otherwise 
using (23). I f  joint i is a rotational joint, in addition compute (Vi)33 
using (41). I f  j = i ,  g o  to step 5 ;  otherwise, let i =: i - 1 and do step 4 
again. 
Output ej and Vj. 
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In this algorithm, we only compute the (3,3)th entry of K;Vj for j < s since 
the other entries are unnecessary in determining the inertia matrix. The re- 
quired inertia constants for links in front of joint r are only m j ,  j < r;  therefore 
Vj and t j ,  j < r ,  are not required in determining the inertia matrix and the 
gravity load. 

3. OFF-LINE IDENTIFICATION 

We intend to identify all the inertia constants listed in Theorem 2 by rotating/ 
translating one joint at a time. The identification method is backward recursive. 
The inertia constants of the composite body n are first estimated and then used 
as known values to estimate those of the composite body n - 1. Finally, all 
required inertia constants are recursively estimated. The identification proce- 
dure requires the linear equations. The linear independence of the columns of 
the matrix in the linear equations implies that the inertia constants in the linear 
equations are identifiable. In the following, we derive the linear equations for 
the motion of only one joint and investigate the columns of the matrix in the 
equations. 

Suppose that joints i and j ,  i < j ,  are rotational joints, and joints k ,  i < k < j ,  
are translational joints. We lock joints j + 1 to n so that the composite body j 
can be seen as a rigid body. Applying Newton-Euler equations, we obtain the 
inertia force fV and torque tV of the composite body j ,  acting at the center of 
mass of the composite body j, as follows 

= f < A h ( j )  J J  + m(.i) J ( f j j ) m j j ) )  (45) 

where i j  is the inertia tensor of the composite body j about the center of mass of 
the composite body j ,  i.e. 

and mj and bj are the angular velocity and acceleration of link j ,  respectively. 
Let 

The dynamic equilibrium states that the force fEj  and torque tEj applied by joint 
j on link j is in equilibrium with the inertia force and torque and the gravity 
force of the composite body j ,  i.e. 
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since 

c x [w x (0 x c)] = -(c - 0)(0 x c) + [c * (0 x c)]0 

= (0 * c)(c x 0)  - [0 . (c x 0 ) l c  

= -0 x [c x (c x o)] (50) 

3.1. Rotating One Rotational Joint 

We rotate joint i but lock all other joints. Under such a condition, the com- 
posite body k or j can be seen as a rigid body. The actuator force of joint j due 
to the motion of joint i is the component oft$ along the direction of the joint, 
i.e. 

Similarly, we also get the equation for the actuator force of every trans 
tionaljoint k, i < k < j ,  in the form of 

i 1) 

a- 

(52)  

Since only joint i rotates, we apply kinematics to get 
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(54) 

I (55) a(j) = x j s ( j ) G i  + u(j) x x . is(j))4: 

where qi is the displacement of joint i. Substituting (53)-(55) into (51) and (52) 

by’ = Qqi 

J 

yields 

rj = 

Note that ujk) is invariant since joint k is a translational joint. We are also 
interested in the actuator force of joint i, which is 

since wj‘) = uj‘)g. I ?  bj‘) = uj‘)gi and aj‘) = 0. 
The next effort is devoted to examining the linear independence of the coeffi- 

cients on the right sides of (56)-(58). We remark that the x- and y-components 
of g”’ are linear independent if rotational joints i and j are not parallel to each 
other since these two components are linearly independent for the case that 
joint j is not parallel to the gravity direction. If ui is neither parallel nor perpen- 
dicular to u,, the three components of uij) are nonzero. However, ( ~ j j ) ) ~  = 0 for 
ui I uj ,  whereas (u(’))~ = ( ~ j j ) ) ~  = 0 for ui / /u j .  Thus, we conclude the following. 
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Property 1. Rotating joint i and locking all other joints. 

1. Actuator force of rotational joint j ,  i.e., (56). 
(a) The coefficients in (56) are linearly independent over (4; , c j i ,  q j }  C R 3  

(b) The coefficient of (Uj),, is zero; the other coefficients are linearly 

(c) Only the coefficient of (Uj)33 is nonzero if uj//ui/ /g and {s / /u; .  
(d) Only the coefficients of (UJ)33, (kj), , and (kj),, are nonzero and linearly 

if joint j is neither parallel nor perpendicular to joint i. 

independent if uj I u;. 

independent if uj//ui but uixg or :Sx(Ui. 

2 .  Actuator force of translational joint k, i.e., (57). 
(a) kk has no effect on Tk if uk//ui. 
(b) The coefficients, q; and 4:, are linearly independent if ukx(ui. 

(a) The coefficients in (58) are linearly independent over {q; , gi} C R if 
3. Actuator force of rotating joint i, i.e., (58). 

u;xg. Otherwise, only the coefficient of (Uj)33 is nonzero. 

3.2. Moving One Translational Joint 

We now consider another case that all joints except a translational joint k ,  i < 
k < j ,  are locked. Since only a translational joint is in motion, there is no 
angular velocity and acceleration. The velocities and accelerations of the links 
remaining behind joint k are all Ukqk and Ukqk, respectively. Analogous to (51) 
and (52), we get the actuator forces of joint j and joint k in the forms of 

(60) 

If joint k is not parallel to joint j ,  the x- and y-components of up' are linearly 
independent; otherwise, they are zero. 

( k )  ] rk = &k[qk - (g >z 

Property 2. Moving translational joint k and locking all other joints. 

1. Actuator forces of rotational joint j ,  i.e., (59). 
(a) The coefficients in (59) are linearly independent over { q k  , q j }  C R Z  if 

(b) The coefficients in (59) are zero if uj/g and Ujluk. 

(a) The coefficient in (60) is nonzero if qk is nonzero. 

either ujxg or ujXuk. 

2. Actuator forces of moving joint k, i.e., (60). 

3.3. Off-Line lndentification Procedure 

Lemma 3. The inertia constants listed in Theorem 2 are all identijiable. 
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Proof: The inertia constants listed in item 3 of Theorem 2 can be identified 
by moving one translational joint at a time for every translational joint and 
using (60). 

For a rotational joint j ,  j 2 s, there exists at least one rotational joint, say 
joint r, in front of joint j such that joint j is not parallel to it. If the two joints are 
also not perpendicular to each other, item l(a) in Property 1 implies that there 
exists a persistently exciting trajectory of qi and q, such that the columns of the 
matrix in the linear equations formed by (56) are linearly independent. Since ti 
and Vi can be calculated by Algorithm 1 if the inertia constants of links j + 1 to 
n are known, the inertia constants listed in item 2 of Theorem 2 can be esti- 
mated recursively by using the standard least-squares method.36 If joint j is 
perpendicular to joint r,  we can rotate joint j alone to identify (Uj)33 by using 
(58), while the other inertia constants are still estimated, according to item I(b) 
of Property I ,  in the same way as for the above case. 

For a translational joint k, k > s, we rewrite (57) in the form of 

We denote any two nonparallel rotational joints in front of joint k as joints i and 
j, i < j. There are at least two nonzero components of ujj) for some configura- 
tions according to (4) and (42). Since ujk) = i R  u:” and i R  is an orthogonal 
matrix, there are also at least two nonzero components of uik) for some configu- 
rations. It is then possible to rotate joint j to find two or more configurations in 
which at least two components of ujk) are nonzero. Under such configurations, 
the coefficients on the right side of (61) are linearly independent. Therefore, kk 
for any translational joint k, k > s, can be estimated by rotating joint i under at 
least two such configurations and using (61). This shows that the inertia con- 
stants listed in item 4 of Theorem 2 are identifiable. 

Equation (57) and item 2(b) of Property 1 imply that the inertia constants 
listed in item 5 of Theorem 2 are identifiable by rotating joint r. 

At last, we consider the rotational joints remaining in front of joint s. In this 
case, all rotational joints are parallel to one another. However, (Uj>33 for rota- 
tional joint j ,  j < s, is still identifiable by rotating joint r according to items l(c), 
l(d), and 3(a) of Property 1. Item l(d) of Property 1 also indicates that the x- 
and y-components of kj are identifiable by rotating a rotational joint i, i < j ,  for 
the case that u,Xg or $Xui, whereas item l(a) of Property 2 reveals that these 
components for the case of uj//u,//g//is for any rotational joint i remaining in 
front of joint j can still be estimated by moving a translational joint k ,  which 
remains in front ofjoint j and is not parallel tojoint j ,  if it exists. This completes 
the proof. W 
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Theorem 4. The inertia constants listed in Theorem 2 are a set of the minimal 
knowledge of the inertia parameters for  determining the dynamic model of a 
manipulator. 

Proofi Since the inertia constants in Theorem 2 are all identifiable and are 
linearly independent, the claim is true. 

The proof of Lemma 3 provides us with an off-line identification procedure. 

Algorithm 2. Off-line identijication procedure. 

Step 1: Move one translational joint at a time for every translational joint 
and use (60) to estimate m k  for every translational joint k. 

Step 2: Do the following substeps recursively from joint n to joint s .  
2.1. For rotational joint j ,  we compute Vj and 4, using Algorithm 1.  

Let joint j be neither parallel nor perpendicular to joint r.  Under 
such condition, find three or more configurations of qj such that 
the components of up) are all nonzero and the first two are not 
equal. For each of such configurations, we rotate joint Y alone 
and measure the values of r j7  G r ,  and d r .  These values are 
substituted into (56) to form the linear equations. Applying the 
least-squares method, we then estimate [(Uj)l, - (U,)221, (U~)U,  

If joint j is always perpendicular to joint r ,  the above method 
cannot estimate (U,)33. We additionally rotate joint j alone to 
estimate this value by using (58). 

2.2. For translational joint j ,  we also compute Vj and tj using Algo- 
rithm l .  We rotate joint s to find two or more configurations 
such that at least two components of up) are nonzero. For each 
of such configurations, we rotate joint r alone and measure the 
values of r j ,  i r ,  and qr.  These values are substituted into (61) to 
form the linear equations. Applying the least-squares method, 
we then estimate the three components of kj. 

Step 3: Do the following substeps recursively from joint s - 1 to joint Y .  

(Uj>l,, (ujl13 9 (ujl23 9 (kj1.x 9 and ( k j ) y  * 

3.1. If joint j is a rotational joint, compute (Vj)33 and (t) j  using 
Algorithm 1. 
(a) If u,X(g, we rotate joint r alone and use (56) to estimate 

(b) If u,/g and there exists a rotational joint i in front of joint j 
from which the distance to joint j (i.e., {s) is nonzero and not 
parallel to joint j ,  we rotate joint i alone and use (56) again 
to estimate (Uj),, , (kj)x, and (kj)y. 

(c) If ur /g  and any rotational joint i in front of joint j satisfies 
{ s / u j ,  we still rotate joint r and use (56) to estimate (Uj),, . 
However, we check if there is a translational joint k in front 
of joint j that is not parallel to joint j. If there is, we move 

( U j h  7 (kj1.x 7 and (kj)y 
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Mass Center of Mass (m) 
(kg) (c:").. (c:")~ (c:")~ 
9.29 0. 0.1105 0.0175 

this translational joint for two or more configurations in 
which the x- and y-components of uv' are linearly indepen- 
dent and then use (59) to estimate (kj)x and ( k j ) y .  

3.2. Ifjoint j is a translational joint, compute t j  using Algorithm 1. 
We rotate joint r alone and apply (57) and the least-squares 
method to estimate -(utj))z[(u~))x(kj), + ( ~ ~ ) ) , ( k ~ ) ~ ]  + [l - 
(u?)f I(kj)z and -(u?), (kj1.r + (uv))x(kj)y.  

Inertia Tensor (kg mZ) 
(I:i>)i~ (I;<i>)zz (I;<'>)= 

0.276 0.255 0.71 

The off-line identification procedure is not a unique method. However, it is 
simple because we rotate joint r alone in the most part of the identification 
procedure. Since the joint acceleration cannot be very accurately measured in 
comparison with the joint displacement and velocity, the allowance of one joint 
in motion at  a time in the above procedure can reduce the identification error to 
some extent. 

Link 
(Type) 
1 (R) 
2 (R) 
3 (T) 
4 (R) 
5 (R) 
6 (R) 

4. ILLUSTRATIVE EXAMPLE 

The Stanford arm has five rotational joints and one translational joint, The 
normal driving-axis coordinate system16 and the kinematic and dynamic param- 
eters of the Stanford arm are shown in Figure 2. We assume that the inertia 
parameters are unknown, and want to use the off-line identification procedure 
to estimate the minimal knowledge of the inertia parameters. 

0 P b  d 
(m) (m) 

41 0. 0. 0. 
qz +90° 90' 0. 0.1529 

0. 90" 0. 43 tO.6447 
44 0. 0. 0. 

45 -90' 90' 0. 0. 
4s 90' 0. 0. 

Y O  

:: -0i0541 

5.01 1 %_ 
0.108 0.018 0.1 

4.25 -0.6447 2.51 2.51 0.006 
1.08 0.0092 0.0054 0.002 0.001 0.001 
0.63 -0.0566 0. 0.003 0.003 0.0004 
0.51 0. 0. 0.1554 0.013 0.013 0.0003 

Figure 2. 
arm. 

Normal driving-axis coordinate system and technical data of the Stanford 
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The first rotational joint is joint 1, and joint 2 is the nearest rotational joint not 
parallel to joint 1, i.e., r = 1 and s = 2. Note, joint 1 is parallel to the gravita- 
tional direction. According to Theorem 2, the minimal knowledge of inertia 
parameters is the set of 

Although m3 can be estimated individually according to step 1 in Algorithm 2, 
it can also be identified together with k3 by using step 2.2 in Algorithm 2. For 
convenience, we skip step 1 of Algorithm 2 and use step 2 to estimate the 
inertia constants of the composite bodies remaining behind joint 1. 

It is easy to find some persistently exciting configurations described in step 2 
of Algorithm 2. For example, the following configuration satisfies the require- 
ment of Algorithm 2 

9 =  

0.7 

where q = [q l ,  . . . , q6IT. The values of u?, j = 2, 3 , 4 ,  5, 6, are listed in the 
first row of Table I. The other two configurations to form persistently exciting 
configurations for estimating the inertia constants of composite bodies 2, 4, 5, 
and 6 are selected the same as (62) except that the corresponding joint displace- 

Table I. 
three individual exciting configurations. 

Representations of uI with respect to the body-fixed frames in 
- - 

u(2) .(3) (4) u(’) (6)  
I 1 I I 1 

1 [ - 0 y ]  0.7648 [ -()0&9] [ ::::a] 
2 [ 0 . 7 ]  [ -0.6442 0. ] [00:);] [ ;:!):;] [ -0.8624 0.30221 

[ 0.7648 0. ] [ -0.49271 0.5850 
0.6442 0.6442 0.4927 - 0.8624 

0.7648 0.7648 0.5850 - 0.8696 - 0.4060 

-0.8620 
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ment is changed to -0.6 and -0.7. That means we use the following three 
configurations to estimate the inertia constants of composite body 6 

. -  
0.7 

0.7 

0. 

0.7 

0.7 

0.7 . .  

0.7 

0.7 

0. 

0.7 

0.7 

-0.6 . .  

, q =  

0.7 

0.7 

0. 

0.7 

0.7 

-0.7 
, -  

Another configuration for estimating the inertia constants of composite body 3 
is that the displacement of joint 2 is changed to -0.7 while the other joint 
displacements are kept the same as (62). The values of up) for the second and 
third configurations of the individual identification process are also listed in 
Table I. 

Under each of the above configurations, we rotate joint 1 from the displace- 
ment of 0.7 to 1.223 rad (i.e., a rotation of 30"). We assume there is a controller 
installed in the power driver of the actuator on joint 1 such that the response of 
the joint angle to a step input is a second-order critically damping with damping 
time constant l/cr = 1/1Os, i.e. 

We arbitrarily select three sets of the values of T ~ ,  q l ,  and q I ,  say at r = 0.2,0.3,  
and 0.4, and substitute them into (56) and (57) to form the linear equations. 
Using a package of the least-squares method, we then estimate the inertia 
constants of composite bodies 2, 3, 4, 5, and 6. Since joint 2 is perpendicular to 
joint 1, (U2)33 is not yet identified. We rotate joint 2 alone, take one set of the 
values of T~ and &, and use (58) to estimate (U2)33. (u1)33 is also estimated in the 
same manner. The identified values of the minimal knowledge of the inertia 
parameters of the Stanford arm are shown in Table 11. 

It should be remarked that the example is performed in a computer simula- 
tion. The actuator forces are calculated by a software of the recursive Newton- 
Euler formulation when the joint displacements, velocities, and accelerations 
are given. We also write a program, which uses the identified values of the 
minimal knowledge of the inertia parameters and sets the inertia constants of 
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Table 11. 
Composite 

Identified values of inertia constants of the composite bodies. 

Body i 1 2 3 4 5 6 

-0.oooO1 0.0099 
ki - [ 2.7400 ] [ 8: ] [ o . o y ]  

-2.7400 

(u;)ll-(u;)22 - 4.3850 - -0.0235 

- 0.00003 - - 0 .00005 

- -0.00003 - 

1.0144 4.4053 - 0.0044 (Ui133 
(Ui112 
(ui)l3 
(ui)23 

0. 
0. 

- 0. - 

[-o!i49] E] 
0.0270 0. 
0.0277 0.0003 

0. 0. 
0. 0. 
0. 0. 

composite bodies other than those in Theorem 2 to zero, to compute the inertia 
matrix and the gravity load by using (9) and (11)-(13). We find the results are 
the same as those using another method presented in Lin.32 This verifies our 
theorems and the off-line identification procedure. 

5. CONCLUSION 

We have presented a new approach to finding a set of the minimal knowledge 
of the inertia parameters for determining the manipulator dynamics. An identifi- 
cation procedure is only to estimate the inertia constants in the minimal knowl- 
edge of the inertia parameters. The central topic of this article is then to de- 
velop such an off-line identification method. The identification procedure 
demands only to move one joint (the first rotational joint in the most part of the 
procedure) at a time for recursively estimating the minimal knowledge of the 
inertia parameters. A simulation example of the Stanford arm verifies the off- 
line identification procedure. The main advantage of our method is that the 
identification procedure does not require the symbolic dynamic equations. 

Finding a persistently exciting trajectory is always a difficult problem in the 
identification. A r m ~ t r o n g ~ ~  addressed a method of generating the optimal iden- 
tification trajectory, whereas trial and error methods are widely used in the 
literature. 1 3 3 1 5 , 1 7  On the contrary, our off-line identification procedure provides 
a sufficient condition for a persistently exciting trajectory and allows the identi- 
fication method to be easily implemented. 

This article was supported by the National Science Council, Taiwan, under Grant No. 
NSC80-0404-E-009-3 1. 
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