
382 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 39, NO. 6, JUNE 1992 

V. F. Fusco, Microwave Circuits Analysis and Computer-Aided 
k i g n .  Englewood Cliffs, Prentice Hall, NJ, 1987. 
E. 0. Hammerstadt and F. Fkkkadal, “A microstrip handbook,” 
ELAB Report, STF 44 A74169, Univ. of Trondheim, Norway, 

M. V. Schneider, “Microstrip lines for microwave integrated 
circuits,” Bell System Tech. J . ,  vol. 48, no. 5 ,  pp. 1421-1444, 
May-June 1%9. 
R. P. Owens, “Accurate analytical determination of quasi-static mi- 
crostrip line parameters,” The Radio and Electronic Engineer, vol. 
46, no. 7, pp. 360-364, July 1976. 
E. M. Siomacco and M. Tummala, “Parametric modeling of picosec- 
ond pulse propagation on integrated circuit Interconnections,” pre- 
sented at 32nd Midwest Symp. on Circuits and Systems, University of 
Illinois, pp. 1030-1033, Aug. 1989. 
A. G. Evans and R. Fischel, “Optimal least squares timedomain 
synthesis of recursive digital filters,” IEEE Trans. Audio and 
Electroacoust., vol. AU-21, pp. 61-65, Feb. 1973. 
W. C. Elmore, “The transient response of damped linear networks 
with particular regard to wideband amplifiers,” J. Appl. Phys., vol. 

D. R. Bowman, High Speed Polycrystalline Silicon Photoconduc- 
tors for On-Chip Puking and Gating, Ph.D. dissertation, Stanford 
University, 1985. 
E. M. Siomacco, Parametric Modeling and Estimation of Puke 
Propagation on Microwave Integrated Circuit Interconnections, 
Ph.D. dissertation, Naval Postgraduate School, 1990. 

1975, pp. 98-110. 

19, pp. 55-83, 1948. 

Dual-State Systolic Architectures For 
Up/Downdating 

RLS Adaptive Filtering 

S. F. Hsieh, K. J .  R. Liu, andK. Yao 

Abstruct-We propose a dual-state systolic structure to perform joint 
up/down-dating operations encountered in windowed recursive least- 
squares (IUS) estimation problems. It is based on successively perform- 
ing Givens rotations for updating and hyperbolic rotations for downdat- 
ing. Due to data independency, a series of Givens and hyperbolic 
rotations can be interleaved and parallel processing can be achieved by 
alternatively performing updating and downdating both in time and 
space. Thls ilip-flop nature of up/down-dating characterizes the feature 
of the dual-state systolic trinrray. Efficient implementation on the evalu- 
ation of optimal residuals is also considered. This systolic architecture is 
promising for the VLSI implementation of 6xed size sliding-window 
recursive least-squares estimations. 

I. INTRODUCITON 
Consider a fixed-windowed least-squares (LS) problem, 

X(n)w(n)  = y ( n ) ,  where X ( n )  = txz-l+l, x ~ - ~ + ~ , * . * ,  xz1‘. 
RIxp is a data matrix with elements taken either from a single or p 
time-indexed multichannel data sequences, and y (  n )  = 
I y,, - /+ y,, - I+ 2 ,  . * * , Y,,] E RI is the desired response vector. We 
denote I as the window size, p as the order of the system, and n as 
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the time index (n 2 I is assumed). The LS problem is to find a 
p x 1 optimum coefficient vector &(n) E R P ,  such that the Eu- 
clidean norm of its associated residual e( n) = X (  n) w( n )  - y (  n )  is 
minimized. 

In adaptive signal processing QRD has been proven to be an 
effective tool in performing this recursive LS problem [2], [3],  [7] ,  
[8] .  However, under time-varying conditions, much attention has 
been focused on schemes employing exponential forgetting factors, 
while less on fixed-windowed ones. This is partially due to the 
difficulty of downdating obsolete data encountered in the windowed 
RLS model. Recently, some efficient up/downdating algorithms 
have been proposed [4] - [6] .  But work on efficient implementations 
and architectures for a fixed-windowed RLS filtering with such 
up/downdating is still fragmentary. In this paper, we propose a 
dual-state systolic array which is suitable for VLSI designs, to 
perform fixed-windowed RLS estimation. Efficient schemes to ob- 
tain optimal residual have not been fully addressed for the win- 
dowed RLS estimation. Along this direction, we consider the feasi- 
bilities and limitations based on systolic implementations. 

In Section 11, the basic up/downdating RLS estimation is consid- 
ered, followed by the dual-state systolic architecture in Section III. 
In Section IV, we consider the recursive estimation of optimal 
residual with systolic implementation. Conclusions are then given in 
Section V. 

II. WINDOWED RLS ESTIMATION 

Suppose at time n, the QRD of [ X (  n )  : y (  n)]  is available. Then 

where Q(n)  E RIXi is orthogonal and the Cholesky factor R(n) E 

R p x p  is upper triangular. Thus the optimum &(n) is given by 
R(n)W(n) = u(n). 

We can obtain [ R( n + 1) : U( n + l ) ]  by first updating 

R ( n )  U(.) 

(2) 

via p Givens rotations, then downdating the right-hand-side via p 
hyperbolic rotations, i.e., 

R ( n )  : 

G p , p + l  ... G * , p + l G l . p + l  

H P , P + 2  * * ’  H 2 , P + Z H l , P + 2  

( 3 )  

( 4 )  
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Here ( p  + 2) x ( p  + 2) Givens rotation matrix Gi,p+ is used to 
zero out the ( p  + 1, i)th element of the matrix in (2), i.e., J41 231 Y1 

231 J21 213 

0 0 0 0  z21 2 1 2  

Gi,p+ I 

0 0 1  

where ci = ai / d x ~  and si = ap+ / d m .  
Similarly, a ( p  + 2) x ( p  + 2) hyperbolic rotation matrix 

Hi,p+2 is used to zero out the ( p  + 2, i)th element of the matrix in 
(3), 

z o o 0  

a p + 2  ii 1 = [i -S; F; i][ a p + 2  ii 1 
Updating Downdating 

- JG- ( 6 )  -I 0 I 
whereE,= a;/d--and?;= a p + z / d R . L e t  
H ( n  + 1) = Hp,p+z * * e  H l , p + 2  and G(n + 1) = Gp,p+2  0 . .  

G l , p + 2 .  By combining (3) (4), we have 

: u 2 ( n  + 1) 

R ( n +  1 )  : u(n+ 1) 

= [  0 

0 

III. DUAL-STATE SYSTOLIC TR~ARRAY 

Similar to the systolic QRD kriarray proposed by Gentleman and 
Kung [2], which only performs updating, a duul-stute systolic 
triarray performing both updating and downdating is given in Fig. 
1. In a multichannel filtering problem, for every sensor (i.e., 
column of the data matrix) there is a delay buffer of window size I 
to queue up the data. Therefore, each data will be first fetched and 
processed (updated) and then stays in the queuing buffer for I data 
clocks and finally will be reprocessed (downdated) by the triarray. 
Before the skewed data rows enter the arrays, there is an array of 
selection switches that alternatively take in new data and old data. 
The clock rate for the processors is set at twice the input data rate so 
that both new and old data can be processed within one data clock. 
We use a black circle to denote a processor working on a Givens 
rotation (updating) and a white circle 0 to denote a hyperbolic 
rotation (downdating). We also note that only one control bit is 
required in determining whether updating or downdating operation 
needs to be performed. 

To this dual-state systolic triarray, data rows are skewed with 

r t t  r c t  

Fig. 1. Dual-state systolic array for windowed-RLS problems. 

updating and downdating data interleaved to form a sequence of 
up/down-dating wavefronts which will then impact upon this triar- 
ray sequentially. All of the wavefronts are consistent, i.e., the 
involved processors will all perform updating or downdating accord- 
ing to the underlying wavefront. as one updating wavefront finds its 
way along the triarray, one downdating wavefront follows immedi- 
ately behind, and then followed by another updating wavefront, and 
so forth. 

Every processor, after experiencing one updating wavefront, will 
switch from updating to downdating operation as the next downdat- 
ing wavefront will pass through it immediately following the previ- 
ous updating wavefront. Therefore, all processors perform updating 
and downdating successively. Thus they are doing flip-flops in 
time, which characterizes the temporal duality of this systolic 
triarray . 

A spatial duality can be also observed as follows. While a 
processor is performing updating, all its adjacent processors, either 
vertical or horizontal (but not diagonal) neighbors, are performing 
downdating. In all, for each time snapshot, we see all processors are 
doing updating and downdating evenly distributed over the entire 
triarray, and for the next snapshot, they change their roles. The 
phenomenon of flip-flops both in time and space characterizes the 
dual-state systolic triarrays. The wavefronts for the updating and 
downdating then propagate pairwise toward the lower-right direc- 
tion in the triarray. 
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IV. RECURSIVE ESTIMATION OF O m  RESIDUAIS 
In many applications, the optimal weight coefficient vector may 

not be of direct interest. Instead, we may be interested in the newest 
optimal residual C,, which is the last (i.e., the Ith) element of C(n). 
In this section, we consider an efficient implementation to obtain the 
newest residuals under the up/downdating operations. 

From (l), we can separate Q(n) into two terms as Q(n) = 
[Q,'cn), QT(n)lT, where Ql(n) E R p x / ,  Q2(n) E R('-p)x'.  We can 
also rewrite the optimal residual vector as 

Thus, a basic issue is the efficient recursive evaluation of Q2(n + 1). 
Define 

and from (7), we have Q(n + 1) = H ( n  + 1)G(n + l)Q(n + 1) 
and Q(n + 1) = H ( n  + l)Q,(n + l),  where Q,(n + 1) = G(n 
+ 1)Q(n + 1) is defined as the Q matrix associated with updating 
only. It can be shown that G and H are of the form 

G ( n  + 1 )  = 

- - 

[ o  0 OI 1 

0 ] (10) 
[ O  P ( n  + 1) 0 r I f = , t ;  

Z(n + 1) h ( n  + 1) 

kT(n + 1)  niP,,c, 0 and w n  + 1) 

2 ( n + 1 )  0 i ( n + l )  

where Z(n + 1) is a p x p matrix, and therefore, Q(n + 1) is of 
the form 

I -n,p=,c,. u,(n+ 1 ) -  hT(n+ l ) k ( n +  l)u2(n+ 1) 

-np,,c, u*(n + 1) 

(13) 
where e, and e, are the residuals associated with updating and 
downdating, respectively. From (7), it can be seen that ul(n  + 1) 
and u2(n + 1) can be obtained naturally from the up/downdating 
operations in the triarray. If the updating parameters c,'s are 
propagated down to the diagonal boundary cells and are cumula- 
tively multiplied as in [3], when the updating wavefront passes 
through the triarray, the term nf,,, c, in (12) can be obtained. A 
multiplier cell is then used to obtain e,$n + 1) = -nf+,c, u,(n  
+ 1) as in [3]. In fact, although the window size is I, the residual 
e,$n + 1) is estimated from [ x ~ - / + ~ , * * * ,  x,, x , + ~ ] ~  and 
[ y , - , + , ; - ' ,  y , ,  y , + J T  of window size I + 1 since downdating 
of x,-/+, has not yet been performed. That is, e,,(n + 1) = 

malcoefficientvectorestimatedfromdata [x,-/+,;*-, x,, x,+,]' 
and [Yn-i+i,**.r Y, ,  Yn+1IT .  

Also, if Z,'s are propagated down to the diagonal boundary cells 
and are cumulatively multiplied, when the downdating wavefront 
passes through the triarray, the downdating residual in t13) can be 
obtained easily. It is estimated from [ x , - ~ + ~ , * * * ,  x,, X , + l ] T  Of 
window size 1. That is, e,(n + 1) = x ~ - ~ + , @ ~ , , - ~ + ~ , , + ~ ~  - 
y,- ,+, .  Obviously, the residual at time n - 1 + 1 is post esti- 
mated by data from n - I + 2 to n + 1 and appears at time 
n + 1. This kind of property may or may not be of practical interest 
in real-life applications. -As to the updating residual e,(n + l ) ,  due 
to the term hT(n + l )k(n + l)u,(n + 1) which is not available 
from the systolic implementation, we are unable to extract e,( n + 1) 
from the triarray. However, (13) provides a simple relation for this 
updating residual before and a-kr the downdating. That is, e,(n + 
1) = e,Jn + 1) - hT(n + l )k(n + l)u,(n + 1). If downdating is 
performed first, then by the same argument as above, we can obtain 

Y , - / + ~ ,  and e , ( n  + 1) = -nf= ,c ,  * u l ( n  + 1) = x . + ~  

T A  
X n + I W [ n - / + l , n + l ]  - Y n + l ,  where @ [ n - , + l , n + l ]  denotes the opti- 

< 
t 

T *  ed2(n + 1) = -nP=IC", * u,(n  + 1) = X n - / + 1 W [ n - / + 2 . n l T -  

g(n + l ) Z ( n  + l ) Q , ( n )  

i T ( n  + l ) Z ( n  + l ) Q 1 ( n )  

f(n + I )h (n  + 1) 

z T ( n  + l ) h ( n  + 1) 

h(n + 1) 

k T ( n  + l ) Q , ( n )  nip= IC, (11) 

rIiP,,C", 

We can obtain the residual vector when the updating wavefront 
passes through the array and is given by 

1 -QT(n)k(n + l ) ~ , ( n  + 1) 

( 12) 
where e,, and e,? are the newest residuals associated with the 
updating and downdating, respectively, at time n + 1. Since at this 
point the downdating has not yet been performed, e,,( n + 1) is not 
considered as a residual. 

From (8) and ( l l ) ,  we can obtain the residual vector when the 
downdating wavefront passes through the triarray. Again, we are 
only interested in the newest residuals (the last two elements) and 
are given by 

ii, [n- ,+2 ,n+l l  - y ,+ , .  It is obvious that this e,(n + 1) is the exact 
residual we are looking for. However, a drawback for this scheme 
is that downdating first before the updating may incur a numerical 
stability problem [4]. A dual-state up/downdating systolic array for 
the recursive residual estimation is also shown in Fig. 1. 

V. CONCLUSIONS 

A dual-state systolic triarray performing up/down-dating opera- 
tions for fixed-window RLS filtering has been proposed. Due to the 
inherent similarity between updating and downdating, they can use 
the same hardware and alternatively pipelined to achieve parallelism 
in this dual-state systolic triarray. A flip-flop systolic behavior of 
this array is observed both in temporal and spatial domains. Extract- 
ing the optimal residuals in real-time using the proposed up/down- 
dating systolic array is also considered in this paper. 
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High-speed VLSI Architectures for Huffman and 
Viterbi Decoders 

Keshab K. Parhi 

Abstract-This paper presents pipelined and parallel architectures for 
high-speed implementation of Huffman and Viterbi decoders (both of 
which belong to the class of t r e e - b d  decoders). Huffman decoders are 
nsed for l odes  compression. The Viterbi decoder is commonly used in 
communications systems. The achievable speed in these decoders is 
inherently limited due to their sequential nature of computation. This 
speed limitation is overcome using our previously proposed technique of 
lookshead computation. The incremental computation technique is 
nsed to obtain etlicient parallel (or block) implementations. The decom- 
podtion technique is exploited to reduce the hardware complexity in 
pipelined Viterbi decoders, but not in Huffinan decoders. Logic mini- 
mization is used to rednce the hardware overhead complexity in pipelined 
H u h a n  decoders. 

I. INTRODUCI~ON 

The difficulty of pipelining the feedback algorithms was removed 
by the use of look-ahead computation. Look-ahead can be used in 
the form of pipelining [l], parallel processing [2], or both. This 
paper considers design of high-speed architectures for two classes of 
tree-based decoders: the Huffman decoder [3], and the Viterbi 
decoder (which is based on dynamic programming calculations) [4], 
[5] .  Hu!€man decoders are used for lossless compression of speech 
and image signals. Viterbi decoders are used in communications 
systems. Section 11 of this paper addresses the design of Huflinan 
decoder architectures and Section III addresses Viterbi decoder 
architectures. 

II. harmmum FOR HUFFMAN DECODERS 
Huffman decoders [3] are used for lossless compression of speech 

and image signals. In this decoder, probability of occurrence of 
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Fig. 1. A Huffman tree. 

different symbols is assumed to be known. More probable symbols 
are assigned shorter code words; this leads to an overall reduction in 
the number of bits to be transmitted. 

Although applicability of look-ahead in finite state machines was 
observed in [6] and [7], it has not been used to design high-speed 
Huflinan decoders. The unequal code wordlength in Huflinan de- 
coders makes it difficult to apply look-ahead in a traditional way. 
However, by transforming the Huflinan decoder to an equivalent 
finite state machine [8], we can apply look-ahead. In this section, 
based on [9], we present completely pipelined and parallel Huflinan 
decoder implementations. For transmission using fewer symbols 
(say four to eight), the proposed look-ahead pipelining can be more 
attractive than the approaches in [8]. 

Consider an example of a Huffman decoder which needs to 
decode one of five symbols, denoted as a, b,  c, d, and e. Let the 
probability of occurrence of these symbols be respectively 0.5, 
0.25, 0.1, 0.1, and 0.05. The Huffman code for this symbol set is 
constructed using the Huflinan tree shown in Fig. 1. The probabili- 
ties of the two lowest probability symbols are added in each step. At 
the end, we assign code words to symbols starting from the top of 
the tree such that the higher probability Occurrence is assigned a 
code 1 and lower a 0 (ties are broken arbitrarily). For the example 
symbol set, the chosen code words are K O ,  b: 10, c: 110, d: 11 11, 
and e:1110. The average code word length is 1.9 bits (a simple 
binary encoding would require three bits per symbol). 

Our example Huffman decoder can be represented by a four-state 
finite state machine as shown in Fig. 2. At the end of each 
codeword, the finite state machine returns to the initial state SI. The 
finite state machine processes one input bit, represented as x ( n ) ,  
and has five outputs represented as a(n) ,  b(n) ,  c(n) ,  d(n) ,  and 
e( n). Each output signal wire represents the presence or absence of 
the corresponding symbol in that cycle. For example, c ( n )  is 1 if 
the decoder detects the symbol c in cycle n, and 0 otherwise. Note 
that this output representation is chosen for simplicity and more 
efficient output encoding can be used in practice. 

The finite state machine can be represented by the state update 
representation 

s ( n  + 1) = s ( n ) T ( n )  

where s ( n )  = [s , (n)  s,(n) s,(n) s,(n)],  and 

T ( n )  = 
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