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ABSTRACT

In high-fidelity color sensing, one may attempt to use recorded
video image data from an electronic camcorder to generate a ren-
dering that appears the same as the original image did at the time
of acquisition. To achieve the goal, a color constancy mechanism
is proposed to perceive the image color from the strengths of three
RGB responses of a color camera or the like, indenpendent of the
color of the light illuminating the object. Being able to extract the
color descriptors that are independent of the illumination is desir-
able because of the varity of the situation in which color is important
,but illumination conditions cannot be countrolled. The first step of
our method is to use a finite dimensional linear model to estimate
the color signals. We have shown that any color signal can be char-
acterized as a linear combination of four principal component besis
functions. Once the color signals have been estimated. the unknown
illuminant can be determined by the Tominaga and Wandell’s es-
timation method which is based on a dichromatic model. In color
constancy, the knowledge of surface reflectance helps in determining
the canonical color descriptors despite the variation in the spectral
power distribution of the ambient light. It is shown that the estimate
of surface reflectance is derived from both the estimated color signal
and illuminant straightforwardly. The model of a combination of the
estimations of the surface spectral reflectance and the color signals
can be employed in designing a color constancy electronic video cam-
era which indeed improves the shortcomings of the traditional video
camcorders.

1. Introduction

Considerable experience has been gained by the worldwide use of
the first gerneration HDTV cameras, for example, Sony’s HDC-100,
first introduced in 1984. Many program producers and lens manufac-
turers have made specific recommendations (primarily in the areas
of camera sensitivity and system portability) in develpment of the
second generation of HDTV cameras. More specifically, their sugges-
tions included: improved sensitivity and extended dynamic range;
improved image enhancement registration stability; and adherence
to the emerging new SMPTE-240 M production standard [1]. The
colorimetry of the camera has been modified to accommodate a wide
color gamut specified by the SMPTE-240 M. Sony has addressed all
of these areas by the development of the HDC-300 second generation
HDTV tube camera [1].

In the area of CCD sensors for HD'TV cameras [2]. several man-
ufacturers have announced the development of 2 million pixels C'CD.
The techonology of these devices is that of interline transfer. The
Toshiba CCD chip of 25mm image size with 1920x 1036 pixels claims
to have an amorphous silicon photoconductive surface layer to im-
prove sensitivity. Beside the functions of lightness constancy [15] for
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improving the quality and dynamic range of image acquisition, one
would be likely to provide a high-fidelity color reproduction that ap-
pears the same as the object color appearance despite variation in
the spectral power distribution of the amnbient light. The color con-
stancy mechanism is defined as the maintenance of color appearance
that is independent of the color of the light illuminating the object.

In their early and important works on color constancy, Land
and McCann [3] introduced an algorithm to perform color constancy,
which they named the Retinex algorithm. This algorithm was based
on the assumption that color information could be processed in three
separate wavebands. More recent algorithms [4][5](6)[7][8][9] have
been investigated based on finite-dimensional linear models of sur-
face reflectance or illuminant functions. These have either required
that some form of spatial average of surface color be constant, or
have required complex interaction between these functions. Wandell
[4] and Maloney [8] started with the idea of describing color spec-
tra with finite-dimensional linear models. The model condenses all
spectral information into a few numbers by supposing that illumi-
nation and reflectance can each be approximated by weighted sums
of basis functions. Making use of the relationship between receptor
values and basis function weights, Wandell and Maloney showed how
to recover both weights representing surface reflectance and those
representing illumination. Another approach to render the correct
colors of any color acquisition system under a variety of illuminant
conditions is based on the color correction techniques [16][17]. They
used eight correction matrices to compensate the actual scene illumi-
nant and reduce the color error in the uniform CIE LUV color space.

Hence, the color fidelity in video camera has been achieved under the
standard light Dgs.

In this paper, we consider a finite-dimensional approximation
to the color signal and not approximations to surface spectral re-
flectance. It has been shown that any color signal can be expressed
in terms of only four principal component functions. Therefore the
weighting coefficients of the color signal representation can be deter-
mined by solving a set of equations based on the receptor values. In
other words, the sensor measurements are transformed into an ap-
proximate linear model to the spectral power distribution of the light
entering the camera. To achieve the recovery of perceived surface
color descriptors which are independent of illuminant, the knowledge
of surface spectral reflectance permits us to compute this canonical
color constancy descriptors. Once the color signals have been iden-
tified, a procedure used to separate the color signal into the desired
surface reflectance and illuminant is presented. Tominaga and Wan-
dell [10] showed that the illuminant can be easily estimated based
on the dichromatic reflection model for optically inhomogeneous ma-
terials. Since the objects in a scene may contain both optically ho-
mogencous and optically inhomogeneous materials, a classification
method is proposed to identify those materials. If there arc more
then two different inhomogeneous materials included in the scene,
the illuminant is then computed by Tominaga and Wandell’s method
[10]. We have shown that Tominaga and Wandell’s illuminant esti-
mation method can be reformulated as solving a constrained least
square error problem with a normalization equality constraint. Con-
sequently, the surface reflectance is determined automatically. In the
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last section, a number of typical test images are conducted 1o verify
the proposed color constancy mechanism. It is found that the pro-
posed method can recover the correct color descriptors under several
lighting conditions.

IL. Color Constancy Model

A color sensing device consists of a lens that focuses light reflected
from an object onto a planar sensor array. The location of any object
is identified with the location on the sensor array to which its image
projects. The light arriving at array location p=(z,y)7 is called the
color signal and denoted by I{x,y, A}, where X is visible wavelength
and x and y are the spatial coordinates on the array, and T is the
matrix transpose. The function I(z,y, \) specifies the quanta/second
arriving at p at each wavelength A across the electromagnetic spec-
trum. It is assumed to be a product of the ambient light £(X) and
the surface spectral reflectance at p, §(z,y, A). At any location in the
object, the ambient light is specified by its spectral power distribu-
tion which describes the energy per second at each wavelength. A or
in units of quanta/sec. In this paper, the spectral power distribution
of the light is assumed to be constant over a restricted region of the
scene. The ambient light is reflected from surfaces and focused onto
the sensor array. The proportion of light of wavelength A reflected
from object toward location p on the sensor array is determined by
the surface spectral reflectance, S{z,y,A).

At each image location, we assume that there are L distinct
classes of sensors corresponding to their associated sensor sensitivi-
ties. In video camera, there are three sensor classes, termed R, G,
and B. This comes from color images obtained by taking pictures of
the scene, through a red, a green, and a blue color filter. Each sensor
quantum catch Q;(x,y), j = 1,2,...,L, is of the form

Q;(-Tsy) = jl(z,y,/\)q](/\)d/\ (1)
= JE(A)5(z,y,A)g;(\)dA

where ¢;(A) is the jth sensor sensitivity and takes on only values
between 0 and 1 inclusive. The information about the scene available
to the visual system is contained in the L sensor quantum catches at
each position p. The spectral reflectance at each location S(z,y,A)
is assumed to be unknown.

The color constancy problem usually means that the recovery of
perceived surface color descriptor from the strengths of the three (L =
3) sensors quantum catches representing the RGB responses of a color
camera is independent of the light illuminating the object. In other
words, color constancy attempts to provide color descriptors that are
unaffected by changes in the illuminant and also predict the color
appearance of the object under a canonical illuminant. Maloney [3]
defines a canonical color descriptor which is a functional of S(z,y, )
and denoted by ¥(S5(x.y,A)). The functional 3 takes a function
as argument and returns a single real number. An example of a
canonical color desceiptor p;{S(z,y,A)) is

V;(S(2, 5. A)) = [ Des(A)S(2,y, A)g;(A)dA (2)

Jj=1.2...,L
where Dgs(A) is a CIE standard source corresponding to normal day-
-light and has color temperature 6500° A"

From (2), it is known that the knowledge of S(z,y,\) permits
us to compute the canonical color descriptors that are independent
of the ambient light £(A). Hence, the purpose of color constancy
involves performing the inversion of equation (1), the recovery of the
estimates of S(z.y,A) and the computation of the desired canoni-
cal color descriptors. The difficulty inherent in this approach is the
mismatch between the amount of information available at the sensor
array and the infinitely large number of parameters needed to fully
specify each light and reflectance. To tackle this problem, [8] showed
that equation (1) becotes invertible when both light and surface re-
flectance can be represented by a particular class of finite-dintensional
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linear models. Hence, the color constancy problem becomes solvabic.

A. A Finite-Dimensional Representation for Color Signal

Over the visible spectrum (400nm-700nm), the surface spec-
tral reflectance curves of natural objects are usually reasonably smoo-
th and continuous. Many experiments on empirical surface spectral
reflectances show that most of them can be modeled using only a few
basis functions. For example, Cohen [5) found that over 99 percent
of the variance of the spectral reflectance functions of the Munsell
chips can be expressed using only three principal components. This
analysis has been confirmed and extended by Maloney [8]. Higher
dimensions result in better approximation, yet three functions still
suffice when the filtering effect of the cone response functions is «aken
into account. The estimnate of the surface spectral reflectance corre-
sponding to position (x,y)? in the sensor array is expressed as

3

Sz ) = 3 aila, s ) (3)

=1

where s;(X) is the ith basis function and a;(z,y) is its associated
position-dependent coefficient.

Consider approximating the spectral power distribution of light.
Judd et al [6] reported that nearly all of the variations in the spectral
power distribution of natural daylight can be described using a linear
model consisting of three terms. This was confirmed in the later stud-
ies by Satri and Das as well as Maloney [8]. In addition, Maloncy [8]
has shown that the principal components that describe the observed
variations in daylight and also describe the varjations across another
class of light source: the blackbody radiators. From these results,
the spectral power distributions of lights can be characterized as

3
E(N) =Y Bie;(N) (4)
=1

where ¢;(A) is the jth basis function and 4; is its associated
coefficient.

Hence, the color signal I(z,y,A) at a position in a sensory array
can be expressed as a lincar combination of nine functionals.

Ha,y, Ay = 0 0 (i@ )8, Ve (1)
= Z?:l Yi=1 i y)05(A)

where ¢;;(A)=si(A)e;(A) and pi;(x, y)=a:(z,y)B;.

(5)

In fact, the product terms ¢;;(A) arc not quaranteed to consti-
tute a basis for /(z,y, A) even though {s;(A)} and {e;{))} are basises
for S(z,y,A) and E(A) respectively. Meanwhile {¢;;(A)} forms a
spanning set for the Hilbert space of I(z,y,A). It is likely to reduce
{@:;(A\)} to be a linearly independent spanning set by using singu-
lar value decomposition (SV D) technique. The SVD is a useful tool
for orthogonal decomnposition of general rectangular matrices. The
application to data analysis is similiar to the idea of the well-known
principal-component analysis. Let ¢7,] represent an nX 1 column vec-
tor consisting n samples ¢;;( M), k¥ = 1.2,...,n over the visible spec-
trum (400nm - 700nm), that is, q‘i]:[@](/\l),¢1j(/\;g),...,¢l;,(/\,,)]’r
where n is chosen to be larger than thirty practically. Hence one
may use an nx9 sampling matrix @:[5,1,512,...,1533] to describe
the whole feature of {¢;;(A)}. By performing the singular value de-
composition on @, we have

& =UxvT (6.a)
or equivalently

® = oyuv] 4 oaupvl + L+ ggugvy (6.b)
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where U(= [u1,ug,...,ug]) and V(= [v1, va, ..., vg]) are the nx9
left-hand singular matrix and the 9x9 right-hand singular matrix,
respectively, and ¥ is the 9x9 diagonal matix with elements of the
singular values 01, 03,...,00. The n-dimensional left-hand singular
vectors u,uz,...,ug and 9-dimensional right-hand singular vectors
V1,V2,...,vg are both orthonormal eigenvectors of &7 and 7@
respectively. The singular values o; are the square roots of the eigen-
values of ®®7 and ®7® and in descending order. [10] showed that
a fairly reliable way to estimate the rank is to compare the singular
values by using the following performance index:

9

k
B(ky= (3" oh /(3 o} (7)
=1

=1

The approximate rank of & is defined as the least integer of k’s
such that R(k) is almost identical to one, ie. , | R(k) =1 |{< e,
where ¢ is a small positive number. The SVD of & gave the singular
values of 01 = 2304.845, o2 = 722.428, 03 = 378.058, 04 = 131.211,
a5 = 33.848, 05 = 13.614, o7 = 3.930, g5 = 2.271, and o9 = 1.340,
when n=31. The performance index was R(1) = 0.8860, R(2) =
0.9730, R(3) = 0.9969, and R(4) = 0.9997. The contributions of the
remaining five components were negligibly small.

For this result, it can be found that the approximate rank of & is
almost identical to four. This implies that the spanning set {¢:;(A)}
can be replaced by the first four principal component basis vectors
which are the left-hand singular vectors uj, uz, ug, ug and shown
in Fig.1. It follows that the color signal /(z,y, ) can be expressed
as

4
Iy, A) = 37 med,y)ur() (8)
k=1
where up(A) is the kth principal component basis function corre-
sponding to uy of ® and ni(z,y) is its associated coefficient. Substi-
tuting (8) into (1), it gets

4
Qilz,y) = Y mile,y)wi; (9)
i=1
where w;;=[u;i(A)q;(A)dA, 1 <i<4,1<57<3
or egivalently

Qey = Wiky (10)

where G, =[Q1(2,4), Q2(, 1), Qa(z,y)|T and Foy=[m (2, y), m2(,y),
ma(z, y), na(z, y)]T are 3x 1 and 4x1 column vectors respectively. W =
[wij) is a 3x4 matrix. Since each sensor quantum catch @;(x,y) at
position (z,y)T is measurable and wjj are then computed, the un-
known representation for I{z,y,\) can be determined by inverting
equation (9) or (10). Then we have

oy = WHQay (1)

where W+ is the Moore-Penrose generalized inverse [12].

II1. General Color Reflection Model

The reflectance is devided into two parts: interface (specular)
reflectance and body (diffuse or subsurface) reflectance [11]. The
interface reflectance characterizes light reflection at the interface be-
tween the object’s surface and the air. Reflection from optically ho-
mogeneous materials like metals and glasses is based mostly on this
interface reflectance. Healey {11} showed that a unichromatic reflec-
tion model is a reasonable approximation for the homogencous mate-
rials. For optically inhomogeneous materials like plastics and paints,
the body reflectance becomes significantly. The body reflectance oc-
curs for light that crosses the object’s surface, and causes significant
scattering among the pigment colorant layer. [11] used the Reich-
man body-scattering model to show that the dichromatic reflection
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model is a reasonable approximation for a large class of optically
inhomogeneous materials. Although the surface spectral refletance
varies with the illumination geometries of an object. The model sug-
gests that the spectral reflectance is described as a weighted sum of
two functions of the interface and body reflectances under all illu-
mination geometries. Thus an approximate color reflectance wodel
(AC'RM) is proposed to combine the dichromatic reflection model
for inhomogeneous dielectrics with a unichromatic reflectance model
for homogencous materials. The ACRM model is expressed in the
form

Cr(g)Li1(N) for homo.

z,9,4) = { Ci{9)Li(N) + Calg)L(A) for inhomo. (1)
where g is a scene geometry function indicates dependence on the
direction angle 8y, the viewing angle 6;, and the phase angle 6, of
the illumination geometry . By assuming a fixed mapping geom-
etry, it can be shown that the scene geometry g is a function of
image location (z,)7 at the sensor array [11]. L;()) and Lg(A) are
the spectral power distributions of the interface and body reflection
components, respectively. These components are unchanged as the
geometric angles vary. The weights C;(g) and Cpg(g) are the geomet-
ric scale factors.

To express the ACRM model in terms of the surface reflectance
functions, let S;()\) and Sp()) be the surface spectral reflectance for
the two components of interface and body reflections, and let E(A)
be the spectral power distribution of the incident light. Then the
color signal at location (z, y)T in a sensor array is

for homo.
for inhomo.

(13)

e Cilg)SHNEN)
Tte.3,2) = { CHANSHANER) + Col9)S8(AEN)

and equivalently the total reflectance is described as

for homo.
for inhomo.

o _ Ci(g)51(A)
St ) = { Cil9)SHN) + Ca(g)S5() e
The interface reflectance component S;(A) is determined by Fre-
senel’s law [11]. It is reported that many types of materials serving as
vehicles in the surface layer are oil based and have constant refrac-
tive index. For these surfaces, the interface reflectance component
becomes a constant over the visible wavelength.



. Classfication o terial.

From equation (12), it is known that the color signal (x,y,A)
can be expressed as a linear combination of the two component vec-
tors Ly{)) and Lp(X) for the inhomogeneous materials or only a
vector Lj(A) for homogeneous materials. For example, the two vec-
tors Ly(A) and Lg(A) span a two-dimensional plane or subspace for
the dichromatic model of the inhomogeneous materials. The spanned
subspace containing all the possible color signals observed from an
inhomogeneous surface is called the color-signal plane P. Similiarly,
there exists a spanned one-dimensional color-signal plane for the
unichromatic model of the homogeneous materials. Based on the
above discussion, the classification of materials is dependent on the
determination of the dimensionalities of their corresponding color-
signal planes.

It is assumed that there are m color signals reflected from a re-
gion of the same material and arriving at m different image locations.
Each color signal is sampled at n points over the visible wavelength.
The m sampled color signals are represented by n-dimensional column
vectors denoted by I; =(I(z,9i, A1), (26,9 ,A2)s s I (26 91y Aa)) Ty
where (2;,7;) is the image location for the ith color signal where 1
<i < m. Consequently, the m color signal vectors span a color sig-
nal plane P, and are summarized in an nxm observation matrix M
defined by

M =[0I, .., T (15)

The dimensionality of the space spanned by the measured color
signals can be identified by the rank of the matrix M. Similiarly, one
may use the singular performance index R(k)=(3%; 0?)/(2%, o?)
defined in equation (7) to determine the rank of M, where o; is the
1th singular value of the SVD of the matrix M. If R(1) = 1.0, then the
measured data from an one dimensional color signal plane. In this
case the observation conditions reveal only the interface reflections
from the region. It can be concluded that the region contains the
homogeneous material. If R(2) = 1, then the data generate a plane
of dimensionality which is equal to two. Hence, the corresponding
region contains the inhomogeneous material. For the case of data
having a higher dimensionality than two, it can be concluded that
the ACRM model is in error for this material.

B. Estimation of Illuminant and Surface Reflectances

More recently, Ho, Funt, and Drew [9] proposed a separa-
tion algorithm to extract the illuminant from a color signal. Un-
fortunately, it is found that their method is not very efficient. An-
other cost-effective approach to estimate the illuminant is proposed
by Tominaga and Wandell [10]. They showed that the illuminant
can be estimated based on the ACRM model. Here we would like to
give a brief summary to describe their estimation method and refor-
mulate it as a constrained least square error problem. It is known
that the interface reflectance Sr(A) of many types of materials having
oil-based surface layer is constant over the visible wavelenght. This
implies that the interface spectral power distribution L(A) of the
inhomogeneous materials depends on the illuminant E(A) only. In
contrast to inhomogeneous materials, the interface reflectance of the
homogeneous materials depends on the visible wavelength. There-
fore, the illuminant cannot be extracted from the color signals for
homogeneous materials. As consequence, each color signal plane for
inhomogeneous material is spanned by the illuminant and body re-
flection. The illuminant corresponds to the intersection of two color
signal planes for inhomogeneous materials. In other words, the scene
should contain two or more inhomogeneous materials to provide an
existance condition for determining the illuminant. Suppose that we
measure color signals from the regions of two different inhomogeneous
materials under the same light source. The color signals for these two
regions can be described as follows:
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Ii(z,9,2) = Cn(9)E(A) + Cpi(9)SB1(A) E(X) (16.a)

and

11(2,9,8) = Crag) E(A) + Cpa(9) Sp2( ) E(A) {16.b)

The color signal planes P(¢) (i = 1,2) are constructed hy a set of
two vectors E(A) and Sp;(A)E(A). It is noted that illuminant vector
is contained in both planes. Consequently, the process of extract-
ing an illuminant spectrum can be reduced to be a computational
problem of fnding an intersection of two color signal planes. The
intersection formulation can be extended to the case of three or more
materials. All the planes must intersect at only a common line cor-
responding to the illuminant spectrum.

For the case of two inhomogeneous materials, The SVDs of the
the observation matrices for both P(1) and P(2) become

M1 =05,V = olubviT + olulvdT (17.a)

and

M2 = UpoV = 0?u?viT + o2udv3T (17.b)

Since the left-hand singular vector ui1 and ui2 are a set of basis vectors
that span a two-dimensional color signal plane P(¢). Therefore, any
color signal I(i) belonging to P(z) is expressed in a linear combination
of uj and u}, o )
1(8) = €uy + &puy (18)

Since the intersection line must lie in both P(1) and P(2), we have
the relation .

Eruh + Guj = gfuf + Guj (19)
To solve E{, 1 < 4,7 <2, the above equation should be rewritten as
a homogeneous linear system

A7 =0 (20)

where A = [u},u},u? uZ] =an n x 4 matrix and 7=[¢},€}, €2,
-g)r.

Next, we would introduce the following useful lemma which
uses the concept of rank to characterize the solvability of equation (20).
Lemmal: Solvability of Equations [12]

Consider the system of equations Ax = b. The system is solvable
if the rank of augmented matrix [A|b] equals that of A. Moreover,
the system has infinitely many solutions when the rank is strictly less
than the number of unknowns.

Since b = O in equation (20), the rank of augmented matrix
is always equal to that of A. Furthermore,-it is known that the
augmented matrix £ = [A|0] is derived by a sequence of elemen-
tary row operations from the n X 5 matrix Q = (E,SE(,E,SE|
0), where £ = [E(M), E(Az), .., EQW)T, SE1 = [SB,(M)E(M),
S5, (A2) E(A2), -y S5y (An) EA))T and SE2=[55,(0M)E(M), S5,(Aa)
E(A2)s S, (An) QR .

Hence the ranks of both augmented matrices are indentical. Look-
ing upon the augmented matrix (1, one may find that there are only
three linearly indenpendent column vectors. Therefore, the rank of
¥ is strictly less then the number of unknowns. From Lemma 1, it is
concluded that equation (20) has infinitely many solutions.

By applying the constrained least-square-error technique to
equation (20), the solution for ¥ can be computed as

minz ||A7]| subject to ||7|| =1 (21)

where ||7}| = 1 is the normalization constraint used to yield a unique
solution of equation (20).

It is found in appendix 1 that the solution 7 is identical to the
minimum eigenvector of ATA=7""_ Consequently, the estimate of
illuminant is given by
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E= T{"i"u% + T{"i"u% (22.a)

or
B = (e} + 1) (22.b)
where 7" is the ith component of 7.

It should be noted that that the method of estimating the illumi-
nant is also true when the scene contains more than two inhomoge-
neous materials. Once the spectral power distribution of illumination
is identified, the remainder of the problem is straightforward. The
estimate of total surface reflectance at (z,%)7 can then be computed
using . R R

$(z.3.0) = Iz, 0/ B
= Ty Mz, (M) E(N)

where f(x,y,)\) is the estimated color signal and 7;(z,y) is the ith
weighting coefficient.

(23)

IV. Experimental Results

A laboratory setup has been used to test the above algorithm.
Color images are digitized using a Sony XC-711 CCD camera and
gelatin filter. The camera is equipped with a primary color vertical
stripe filter which gives color separation. Fig.2 illustrates the spec-
tral sensitivity characteristics of the sensors. These curves have been
taken from manufacture’s specifications.

To demonstrate the effectiveness of the proposed color constancy
method, a test pattern made of two different inhomogeneous mate-
rials, that is, yellow and brown NPL ceramic tiles with shadows, is
particularly considered in our simulation. Assume that this test pat-
tern is illuminated under two different typical light sources illuminant
A and illuminant C which are defined in Wyszecki and Stiles [14]. II-
luminant A and illuminant C are termed as the incandescent lamp
and the correlated average daylight which have color temperatures
2854°K and 6770°K respectively. The images of test pattern taken
under illuminant A and illuminant C are shown in Fig.6 and Fig.7
respectively. It is observed that the color appearances of both images
seem quite different. To predict what an image would have looked like
under a canonical illuminant Dgs, the color signals at sensor array
should be identified by performing equation (11) based on the sensor
measurements. The estimated color signals at three typical sensor
locations under illuminant A and illuminant C are shown in Tig.3.a
and Fig.3.b respectively. For comparison, the dashed curves for the
estimated color signals are approximately the same as the solid curves
for the actual color signals. Next, one may use equation (22) to esti-
mate the spectral power distributions of illuminant A and illuminaut
C. Both the estimated illuminants are shown in Fig.4.a and Fig4.b.
Finally, the resultant surface reflectances at three typical sensor lo-
cations derived from images under illuminant A and illuminant C are
shown in Fig.5.a and Fig.5.h. As expected, the estimation method
yields satisfactory approximations to the actual surface reflectances.
Fig.8 and Fig.9 are the images of the color descriptors under the
canonical illuminant Dgs which are derived from the estimated sur-
face reflectances of Fig.5.a and Fig.5.b respectively. For comparison,
it turns out that the color appearances of both Fig.8 and Fig.9 are
quite similar to that of the actual canonical color descriptor shown
in Fig.10.

V. Conclusion

We have shown that any color signal can be characterized
as a linear combination of four principal component basis functions.
Hence the weighting coefficients of the color signal representation
are identified by solving a system of equations based on the RGB
responses of a color camera. Furthermore, it has indicated that the
Tominaga and Wandell’s iluminant estimation problem can be refor-
nulated as solving a constrained least square error problem. Once

both color signals and illuminant have been estimated, the surface
reflectance is then computed automatically.

" A
il I AN Y L
os N[ 1V

os L/ / VL
o 7 i
03 H I /\\ \
o 1y N
0 JARY

400 500 600 700
Wave Length nm.

Relative Response

Fig.2 The spectral response curve of sensorS of SONY Xc-711

The Light source is Illuminant A
200

1wr solid: Actual Curve 4

Dashed: Estimated Curve

900 450 500 550 600 650 700

Fig3.a The estimated Color Signals of 3 typical sensor locations

The Light source is Iluminant C

© P A
50 /

0 Solid: Actual Curve

Dashed: Estimated Curve 4
30 i
20| oomzen |
101 T T T
900 450 500 550 500 650 700

Fig3.b The estimated Color Signals of 3 typical sensor locations
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Fig5.b The estimated Reflectances of 3 typical sensor locations
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Fig.6 Image of test pattern under

illuminant A

Fig.7 Image of test pattern under

illuminant C

Fig.8 Image derived from Fig.5.a

and under canonical D65
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Fig.9 Image derived from Fig.5.b

and under canonical D65

Fig.10 Image of the original test pattern

under canonical illuminant D65

VI. Appendix 1

The solution to the constrained least square error problem of

equation (21) can be found by using the following Lagrange multiplier
formulation:

minz  L(7, M) = [|A7)3 + A (|7 - 1) (A1)
or equivalently
min £(7,A) = FIATAT + 4(7T7 - 1) (A.2)

where 7 is the Lagrange multiplier.
{12] shows that 7 is a relative minimum point for the problem of
equation (21) if it satisfies the following Kuhn-Tucher conditions:

V(FTATAT) 4y v (7T — 1) =0 (A.3)

and
T =1 (A4)
or equivalently
(ATA)F = (=97 = A7~ (A.5)
it is shown that 7 and A = (—v*) are an eigenvector and an eigen-

value of ATA respectively. Substituting (A.4) and (A.5) into (A.2),
we have

L(7,A) = A (A.6)

If 7 is chosen to have minimum eigenvalue Apin such that
L(Tnin, Amin) <L(7,A) for all 7.
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