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ABSTRACT 

111 high-fidelity color sc~isiiig, one niay atteiiipt to use recorded 
video image da ta  from an electronic camcorder to generate a ren- 
dering that appears the same as tlre origiiial image did a t  the time 
of acquisitioii. To achieve the goal, a color constaiic,~ 111cc1ianism 
is proposed to  perceive the iniage color from tlir strengt,hs of tlirrp 
RGB responses of a color camera or the like. indcnpendent of t h r  
color of the light illuminating the object. Being able to extract the 
color descriptors that a.re independent of tlie illnniination is desir- 
able because of the varity of tlie situation i l l  whicli color is irnpnrtant 
,but illumination conditions cannot be controlled. Tlir first htep of 
our method is to use a finite dimensional linear model to cstiiiiate 
the color signals. LVe have shown that a n y  color signal can be char- 
acterized as a linear combination of four principal cornpoiieiit bzsis 
functions. Once the color signals have been estimated. the unknown 
illuminant can be determined by the Toniinaga and LVandrll's es- 
timation method whicli is based on a dichromatic niodrl. I n  color 
constancy, tlie kiiowledge of surface reflectance helps i i i  tlrterinining 
the canonical color descriptors despite the variation i n  the tpectra! 
power distribution of tlie ambient light. It is slrown that the estimate 
of surface reflectance is derived from both the estimated color signal 
and illuminant straightforwardly. 'llic model of a co~nbination of the 
estimations of the surface spectral reflectance and tlre color signals 
can be employed in designing a color constancy electronic video cam- 
era which indeed improves the shortcomings of ~ l i c  tratlitioiral video 
camcorders. 

I. I n t r o d u c t i o n  

Considerable experience has been gained by the worldwide use of 
the first gerneration HDTV cameras, for example, Sony's HD(I-100, 
first introduced i n  1984. Many program producers and l e n s  manufac- 
turers have made specific recommendations (primarily i n  the areas 
of camera sensitivity and system portability) in develpmerit of the 
second generation of IIDTV cameras. More specifically. their sugges- 
tions included: improved sensitivity and extended dynamic range; 
improved image enhancement registration stability; and adherence 
to  the emerging new SMPTE-240 hl  production standard [I] .  The 
colorimetry of the camera has been modified to accommodate a wide 
color gamut specified by the SMP'TE-240 M. Sony has addressed all 
of these areas by the development of the IIDC-300 second generation 
HDTV tube caniera [I]. 

111 the  area of CC'D sensors for 1lD'TV cameras [i']. seveial man- 
ufacturers have aunouiiced the developnrerit of 2 ~nillioii pixels ('C'D. 
The techonology of these devices is that of interline t.raiisfer. The 
Tosliiba CCD chip of 25mm image size with 1920x1036 pixels rlaiins 
to have ail amorphous silicon pliotocoiiductive snrfacr layer t o  im- 
prove sensitivity. Beside the functions of lightness constancy [ 1.51 for 

irriprovirig the quality and dynamic range of image acquisition, one 
would be likely to provide a. high-fidelity color reproduction that ap- 
pears thc sanie as tlic object color appearance despite variation in 
the spectral po\veI distribution of the ainhient light. The color cori- 
s ta~icy mechaiiisiii is ddilied as blie ina,intenance of color appearance 
that is indcpendciit of the  color of the light illuminating the object. 

111 their ear ly  and important works oii color constancy, Land 
and h lc ( ld~rn  [3 ]  introdnced an algorithm to  perform color constancy, 
which they nairied the Itetinex algoritlun. This algorithm was based 
011 the assuinption that  color information could be processed i n  three 
separate wavebaiids. More recent algorithms [4][5][6][7][8][9] have 
been investigated has rd  on finite-di~riensional linear models of sur- 
face reliectmcr or illuminant functions. These have either required 
that sonic for111 of spatial average of surface color be consta.nt, or 
h a w  reciuiIed coinplex iiiteraction between these functioiis. Waridell 
[4] and Maloney [8] started with the idea of describiiig col01 spec- 
t r a  with finite-diineiisional linear models. The  model condeiises al! 
spectral inforniation iiito a few ~riiinbers by supposing that illumi- 
nation and  reflectance can each be approximated by weighted sums 
of basis fuiictioiis. Making nsc of the relationship between receptor 
values and basis funrtion weights, Wandell and Maloney showed how 
to recover botlr weights representing surface reflectance and  those 
representing illnniination. Anotlicr approach to render tlre correct 
colors of any color acquisition system under a variety of illuminant 
contlitions is based on the color correction techniques [16][17]. They 
used eight corrrctiou matrices to  rompensate the actual scene illumi- 
nant and reduce the  color error i n  tlie uniform CIE LUV color space. 

Hence, the color fidelity in video camera has been achieved under the 
standard light DSS.  

In  this paper, we consider a finite-dimensional approximation 
to the color sigiial and not approximations to  snrfa.ce spectral re- 
flectance. It has been shown that any color signal can be expressed 
in terms of only four principal colnponent functions. Therefore the 
weighting coefficients of the color signal representation can be deter- 
mined by solving a set of equations based on the receptor valnes. In 
other words. the sensor measurements are transformed into a n  ap- 
proximate linear model to the sFettral power distribution of the light 
entering tlie camera. To achieve the recovery of perceived surface 
color descriptors wliicli are independent of illuminant, the knowledge 
of surface spectral reflectance permits u s  t o  compute this canonical 
color constancy descriptors. Once the color signals have been iden- 
tified. a procediire used to separate the color signal into the desired 
surface reflectance and iIIuniinant is presented. 'Toniinaga aiid Wan- 
dell [ lo] showed tha t  the iIIumina~it can br easily csti~natctl based 
on tlie tlirlironiatir rrflcction model for optically i~ ihomoge~ ico~~s  ma- 
terials. Silice tlic objects i n  a scene may contain both ol>tic;illy ho- 
mogelieous a n d  optically inhomogeneous materials, a classification 
rrrethod i h  proposed to identify those materials. If there arc more 
tlien two different inhomogeneous materials included i n  tlie scene, 
t l i e  illnnri~ixnt is theii computed by lominaga and Wandell's method 
[lo].  \Vc Iiave slIo\vn that  'rominaga and Wandell's illiuninant esti- 
niation nretliod ta l i  l i e  reformulated as solving a constra.ined least 
q l ~ i l r c  error probl~in with a normalizatior~ equality constraint. Con- 
h c y n c q t l y ,  t lie surfare  reflrctanre is deternlilid a~~tomatical ly .  111 the 

0018-9316/92$03.00 0 IEEE 



91 

last section, a number of typical test images are conducted to verify 
the proposed color coiistancy ~neclianism. I t  is found t h a t  tlie pro- 
posed method call recover tlie correct color descriptors uiiclc~r hcveral 
lighting conditions. 

11. Color Constancy M o d e l  

A color sewing device consists of a lens that focuses liglit rcxflrcted 
from an object onto a planar sensor array. The locatioii of any object 
is identified with the location on the sensor array to which its image 
projects. Tlie light arriving a t  array location p = ( ~ , y ) ~  is called the 
color signal and denoted by l(.c,y,A), where A is visihle wavelength 
and x and y are the spatial coordinates on the array, and T is tlie 
matrix transpose. The  fuiirtion [(z, y, A )  specifies the quanta/sccond 
arriving a t  p at  each wavelength A across the electroinagnetic sper- 
trum. It is assunred to be a product of the ambient light E ( A )  a n d  
the surfa.ce spectral reflectance a t  p, S(z,y, A) .  At any location i n  the 
object, tlie ambient light is specified by its spectral power distrihu- 
tioil which desrribes the  rncrgy per seroi id a t  pack wavelcngtli. X o r  
in units of quanta/scc. I n  this papcr. the spectral powrr distrihutir)ii 
of the light is assumed to be constant over a restricted region of llic 
scene. The  ambient light is reflected from surfaces and fociisetl onto 
the sensor array. The  proportion of light of wavelengtli A reflected 
from object toward location p 011 the sensor array is determined by 
the surface spectral reflectance, S(z, y ,  A). 

At each image location, we assume that there arc L distinct 
classes of sensors corresponding to their associated setisor sensitivi- 
ties. In video camera, there are three sensor classes. termed R ,  G, 
and B. This comes from color images obtained by taking pictures of 
the scene, through a red, a green, and a blue color filter. Each sensor 
quantum catch Q, (z ,y) ,  j = 1 , 2 ,  ..., L ,  is of the form 

where q , ( A )  is the j t l i  sensor seiisitivity and takes on only values 
between 0 arid 1 inclusive. The informatioii about tlie bcene availahle 
to the visual system is roiitained in the L sensor quantum catches a t  
each position p. Tlie spectral reflectance at  each location S(x,y,A) 
is assumed to be unkiiown. 

The color constancy problem usually means that the recovery of 
perceived surface color descriptor from the strengths of the three ( I !  = 
3) sensors quantum catches representing the RGB responses of a rolor 
camera is independent of the light illuminating the object. In other 
words, color constancy attempts to provide color descriptors that are 
unaffected by changes in the illuminant aiid also predict tlir color 
appearance of tlie ohject under a canonical illumiiiant. Maloi~ey [a] 
defines a canonical color descriptor which is a functional of 5'( .c. y, A )  
and denoted by qb(S(x.y,A)). The functional y takes a funrtion 
as argument and returns a single real number. An example of a 
canonical color desceiptor $I,( S ( x ,  y, A ) )  is 

( 2 )  
@, ( S( z 7 Y . A ) = J Dss ( A 1 s ( z 1 Y 1 A ) q, ( A ) (L4 

j = 1.2 ...., L 

where D,j5( A )  is a C'IE standard source corresponding to  norin;ll day- 
light and has color temperature 6500"1<. 

From ( 2 ) ,  i t  is knowii that the kiio\vledge of S (x .y .X)  permits 
us t o  compute tlie canonical color descriptors that a rc  independent 
of tlie ambient light /:(A). Hence, the purpose of color constancy 
involves performing tlie inversion of equation ( I ) ,  the rerovrry of the 
estimates of S(z.y, A )  and the computation of the desired canoni- 
cal color descriptors. The difficulty inherent i n  this approach is the 
mismatch between the amount of information availablr at the sensor 
array and the infinitely large number of parameters needed to fully 
specify each light and reflectance. To tackle this problem. [8] showed 
that  equation (1) becomes invertible when both light and surfare re- 
flectance can be represpirted by a particular rlass of firiitr-tliriieiisiorial 

linear models. Ilence. the color constancy problem becomes s~lvaJ) i (~ .  

A. A Finite-Dimensional Representation for Color Signal 

Over th r  visible spectrum (300nm-i00nm), the surface sper- 
tral reflectance curves of natural ohjccts are usually reasonably snioo- 
th and continuous. Many experiiiients on empirical surface spectral 
reflectances show that most of thein can he modeled using otily a few 
basis functions. For example, Colien [5 ]  Found that over 99 percent 
of the variance of the spectral reflectance functions of the Munsell 
chips can he expressed using only three principal components. This 
analysis has been confirmed and extended by Maloney 181. Ili<irer 
dimensions result in het t r r  approximation, yet three functioi~\ still 
suffice when the iiltering effect of the cone response functions is \;ken 
into account. T l i ~  estimate of the surface spectral reflectance cove-  
spoiiding to  positioli ( 2 .  y ) ~ "  i i i  the srnsor array is exprehscd as  

3 

. ~ ( . r , y . ~ )  = CU~(X,Z/).I~(A) ( 3 )  
z = I  

where s,(A) is tlir i / h  basis function and a,(z,y) is its assoriated 
position-dcpriident coefficient. 

Consider approximating the spectral power distribution of light. 
Judd et a1 [6] reported that nearly all of tlie variations in tlie spectral 
power distribution of natural daylight can be described using a linear 
model consisting of t,liree terms. This was confirmed in the later stud- 
ies by Satri aiid Dah a s  w t ~ l l  as hlaloncy [8]. In addition, Maloney [SI 
has sliown that tlie priiicipal compotie~its that descrihe t he  ohserved 
variations in daylight aiid also describe tlie variations across another 
class of light source: t.he blackbody radiators. From these results, 
the  spectral power distributions of lights can be characterized as 

where e j ( A )  is the j t h  basis function a n d  0, is its associated 

IIence, tlie color signal l ( z ,  y ,  A )  a.t a position i n  a sensory array 
coefficient, 

ca.n be expressed R S  a linear comhinatioii of nine functionals. 

In fact, the product terms $2,(A)  are iiot quaranteed to consti- 
tute a basis for I(:c,y, A )  even though {s!( A ) ]  and {e,(A)} are hasises 
for .S(z, y, A )  and E (  A )  respertively. Meanwhile { & ? ( A ) }  forms a 
bpanning set for the Hilbert space of 1(z,y.A). It is likely t,o reduce 
{&,(A)} to be a linearly independent spalining set by using singu- 
lar value decomposition ( S V D )  technique. Tlie SVD is a useful tool 
for orthogonal decomposition of general rectangular matrices. The 
application to data analysis is similiar t o  the idea of the well-known 
principal-component analysis. Let $,, represent an n x  1 column vec- 
tor consisting n samples b t J ( A k ) ,  k = 1.2,  ..., n over the visible spcc- 
trum (400nin - ~ O O ~ I I I ) ,  t ~ i a t  is: ~ ~ , ~ [ ~ , ~ ( ~ l ) , ~ ~ ~ ( A z ) ,  . . . , @ , , ( A ~ ~ ) ] ~  
where n is chosen to he larger than thirty practically. Hence one 
may use an 11x9 sampling matrix *=[Q11 , rp lz ,  ..., 4331 t o  describe 
the whole feature of {ot,(A)}. By performing the singular value de- 
conipositioii on @, wc have 

+ -  - 

* = [ y ' T  (6.a) 

or rqiii valetitly 
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where U ( =  [ u l , u 2  ,..., ue])  and V ( =  [ V I , V ~ ,  ..., vs ] )  are the 11x9 
left-hand singu1a.r matrix and the 9 x 9  right-hand singular matrix, 
respcctively, and S is the Ox9 diagonal matix with elenients of the 
singular values cr1, u2, ...,erg. The n-dimensional left-hand singular 
vectors u l ,  uz ,  ..., us and 9-dimensional right-hand singular vectors 
~ 1 ~ ~ 2 ,  ... , V D  are both orthonormal eigenvectors of @aT and @7* 
respectively. The singular values ut are the square roots of the eigen- 
values of +aT and a** and in descending order. [lo] showed that  
a fairly reliable way to  estimate the rank is to compare the singular 
values by using the following performance iudcx: 

k 9 

The approximate rank of a is defined a.s the least integer of k's 
such that  R(k) is almost identical to one, i.e. , 1 R ( b )  - 1 /I c, 
where c is a small positive number. The SVD of a gave the singular 
values of al = 2304.845, u2 = 722.428, u3 = 338.058, u4 = 131.211, 
U5 = 33.848, 0 6  = 13.G14, (57 = 3.930, U* = 2.271, and 09 = 1.340, 
when n=31. The performance index was R(1) = O.SSG0, R ( 2 )  = 
0.9730, R(3)  = 0.9969. and B(4) = 0.9997. The contributions of the 
remaining five components were negligibly small. 

For this result, it can be found that the approximate rank of a is 
almost identical t o  four. This implies that the spanning set {bZ3(A)} 
can be replaced by the first four principal component basis vectors 
which are the left-haiid singular vectors u1, u2, u3, u4 and shown 
in Fig.1. It follows that the color signal I(z,y,A) can be expressed 
as 

4 

I ( z : Y , A )  x V k ( z j Y ) t L k ( A )  ( 8 )  
k = l  

where u k ( A )  is tlie k t h  principal component basis function corre- 
sponding to Uk of and qk(Z,y)  is its associated coefficient. Substi- 
tuting (8) into ( l) ,  it gets 

4 

Q J ( x >  Y) = ~ i ( z ,  Y k i j  (9) 
i = l  

where q , = J u , ( A ) q 3 ( A ) d A ,  1 _< i 5 4 , l  5 j 5 3 
or eqivalently 

Qz ,y  = WVxy ( 10) 

where d X y = [ Q ~ ( ~ , y ) , Q 2 ( x ,  y),Q3(+,y)lT 2nd Vzy=[ql(z, Y),  712(z, Y), 
v ~ ( z ,  y), 7j4(x, y ) l r  are 3 x  1 and 4 x  1 column vectors respectively. Mi = 
[U,,] is a 3 x 4  matrix. Since each sensor quantum catch Q , ( z . y )  a t  
positioii ( ~ , y ) ~  is measurable and wt3 a.re then computed, the un- 
known representation for I(z, y, A )  can be determined by inverting 
equation (9)  or (10). Then we have 

Vzy = MJ+dX, (11) 

where I+'+ is the Moore-Penrose generalized inverse 1121. 

111. General Color Reflection Model 

The reflectance is devided into two parts: interfacc (specular) 
reflectance aud body (diffuse or subsurface) reflectance [ I  I]. Tlle 
interface reflectance characterizes light reflection at  the ititerface be- 
tween the object's surfa.cc and the air. Reflection from opticaUy 110- 

mogeneous materials like metals and glasses is based mostly oti this 
interface reflectance. Healey [l 11 showed that a unichrornatic reflec- 
tion model is a rcasonable approximatioti for the homogeneous mate- 
rials. For optically inhomogeneous materials like plastics and paints, 
the body rcflectaiice becomcs significantly. The body reflectatire oc- 
curs for light that  crosses tlic object's surface, a i i d  cat~scs significxrit 
scattering among the pigment colorant layer. [ l  I ]  used the Reicli- 
m a t i  body-scattering model to show that the dichromatic reflection 
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niodcl is a reasonable a.pproximation for a large class of optically 
iitlioniogeiieous materials. Although tlic surface spectral refletance 
varies with the illumitiatioii geometries of an object. The model sug- 
gests that  the sprctral reflectance is described as a weighted sum of 
two functions of tlie iiitcrlace and body reflectanccs rinder all illu- 
mination gwmetrirs. Thus  an approximate color refleclaiice iiiodel 
( A C ' R M )  is proposed to  comhiiie the dichromatic reficction model 
for inhoniogcneous dielectrics with a unicliromatic reflectancc model 
for homogeneous materials. The ACRM model is expressed i n  the 
form 

where g is a scene geometry function indicates dependence on the 
direction a.ngle Od, the viewing angle 8,, and the phase angle 8, of 
the illumination geometry . By assuming a fixed mapping geom- 
etry, it can be shown that  the scene geometry g is a function of 
image location ( z , ~ ) ~  at  tile sensor array (111. L I ( X )  and LB(A) are 
the spectral power distributions of the interface and body reflection 
components, respectively. These components are unchanged as the 
geometric angles vary. The weights Cl(g) and C B ( ~ )  are the geomet- 
ric scale factors. 

To express the ACltIvl model in terms of the surface reflectance 
functions, let S/(A) a,nd SB(X) be the surface spectral reflectance for 
the two components of interface and body reflections, and let E ( A )  
be the spectral power distribution of the incident light. Then the 
color signal a t  location ( ~ . y ) ~  in a sensor array is 

C I ( S ) S / ( A  )E( A )  for homo. 
C'/(g)S,(A)E(A) + Cs(g).SB(A)E(A) for inhomo. 

(13) 
{ I ( J >  Y, A )  = 

and equivalently tlie total reflectance is described as 

Tlic interfacc reflectancc component S I (  A )  is determiued by Fre- 
senel's law [ l l ] .  It is reported that  many types of materials serving as 
vehicles i n  the surface layer are oil based and have constant refrac- 
tive index. For tliesr surfaces, the interface reflectance component 
becoinrs R constat i t  over tlrr visible waveleiigth. 
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A. Classf icat ion of M a t e r i a l s  I l ( z ,  Y, A )  = CZl(S)E(A) + cBl(!?)sBl(A)E(A) (16.a) 

and 

12(x,Y, A)  = CIZ(g)E(X) + CB2(g)SBZ(X)E(A) (16.b) 

The color signal planes P(z )  ( z  = 1,2)  are constructed by a set of 
two vectors E(X)  and SB,(A)E(X). It is noted that  illuminant vector 
is contained in both planes. Consequently, the process of extract- 
ing an illuminant spectrum can be reduced to  be a computational 
problem of 'Inding an intersection of two color signal planes. The 
intersection formulation can be extended t o  the case of three or more 
materials. All the planes must intersect at  only a common line cor- 
responding to  the illuminant spectrum. 

For the case of two inhomogeneous materials, The SVDs of the 
the observation matrices for both P(1) and P(2)  become 

From equation (12), it  is known that  the color signal I(x,y,X) 
can be expressed as a linear combination of the two component vec- 
tors Li (X)  and LB(X)  for the inhomogeneous materials or only a 
vector L l (X)  for homogeneous materials. For example, the two vec- 
tors L r ( X )  and L B ( X )  span a two-dimensional plane or subspace for 
the dichromatic model of the inhomogeneous materials. The spanned 
subspace containing all the possible color signals observed from an 
inhornogeneous surface is called the color-signal plane P. Similiarly, 
there exists a spanned one-dimensional color-signal plane for the 
unichromatic model of the homogeneous materials. Based on the 
above discussion, the classification of materials is dependent on the 
determination of the dimensionalities of their corresponding color- 
signal planes. 

It is assumed that  there are m color signals reflected from a re- 
gion of the same material and arriving a t  m different image locations. 
Each color signal is sampled at  n points over the visible wavelength. 
The m sampled color signals are represented by n-dimensional column 

where (zt,yt) is the image location for the i th  color signal where 1 
5 i 5 m. Consequently, the m color signal vectors span a color sig- 
nal plane P, and are summarized in an n x m  observation matrix M 
defined by 

vectors denoted by 17 =(~(z,, Y,, XI) ,  I(z,,Y, , ~ z ) ,  ..., I(.$, Y ~ , x , ) ) ~ ,  

A4 = [<,I;, ...) b] (15) 
The dimensionality of the space spanned by the measured color 

signals can be identified by the rank of the matrix M. Similiarly, one 
may use the singular performance index R(k)=(C,k=, o T ) / ( C z l  U : )  

defined in equation ( 7 )  to  determine the rank of M, where a, is the 
ith singular value of the SVD of the matrix M. If R(1) 5 1.0, then the 
mea.sured da ta  from an one dimensional color signal plane. In this 
case the observation conditions reveal only the interface reflections 
from the region. It can be concluded that the region contains the 
homogeneous material. If R(2) Z 1, then the data  generate a plane 
of dimensionality which is equal to  two. Hence, the corresponding 
region contains the inhomogeneous material. For the case of da ta  
having a higher dimensionality than two, it can be concluded that  
the ACRM model is in error for this material. 

B. E s t i m a t i o n  of  I l l u m i n a n t  a n d  Surface  Ref lec tances  

More recently, Ho, Funt, and Drew [9]  proposed a separa- 
tion algorithm to  extract the illuminant from a color signal. Un- 
fortunately, it  is found that their method is not very efficient. An- 
other cost-effective approach to  estimate the illuminant is proposed 
by Tominaga and Wandell [lo]. They showed that  the illuminant 
can be estimated based on the ACRM model. Here we would like to  
give a brief summary to describe their estimation method and refor- 
mulate it as a constrained least square error problem. It is known 
that  the interface reflectance SI(X) of many types of materials having 
oil-based surface layer is constant over the visible wavelenght. This 
implies that  the interface spectral power distribution Lr( A )  of the 
inhomogeneous materials depends on the illuminant E ( X )  only. In 
contrast to  inhomogeneous materials, the  interface reflectance of the 
homogeneous materials depends on the visible wavelength. There- 
fore, the illuminant cannot be extracted from the color signals for 
homogeneous materials. As consequence, each color signal plane for 
inhomogeneous material is spanned by the illuminant and body re- 
flection. The illuminant corresponds to  the intersection of two color 
signal planes for inhomogeneous materials. In other words, the scene 
should contain two or more inhomogeneous materials to provide an 
existance condition for determining the illuminant. Suppose that  we 
measure color signals from the regions of two different inhomogeneous 
materials under the same light source. The color signals for these two 
regions can be described as follows: 

(17.a) 

and 
M 2  = U2CzV; = o?u:vfT + aiu:vZT (17.b) 

Since the left-hand singular vector U; and U\ are a set of ba.sis vectors 
that  span a two-dimensional color signal plane P ( i ) .  Therefore, any 
color signal J ( i )  belonging t o  P ( i )  is expressed in alinear combination 
of U; and u i  

I(i) = c;u; +[;U\ (18) 

Since the intersection line must lie in both P(1)  and P(2) ,  we have 
the relation 

[;U; +[;U; = [;U: +[;U: (19) 

To solve c:, 1 5 i , j  5 2, the above equation should be rewritten as 
a homogeneous linear system 

A?= 0 (20) 

where A = [ u ~ , u ~ , u f , u ~ ]  =an n x 4 matrix and ?=[< : ,E : , -< : ,  
-<,"IT. 

Next, we would introduce the following useful lemma which 
uses the concept of rank to  characterize the solvability of equation (20). 
Lemmal: Solvability of Equations [12] 

Consider the system of equations Ax = b. The system is solvable 
if the rank of augmented matrix [Alb] equals that  of A. Moreover, 
the system has infinitely many solutions when the rank is strictly less 
than the number of unknowns. 

Since b = 0 in equation (20), the rank of augmented matrix 
is always equal to  tha t  of A. Furthermore;it is known tha t  the 
augmented matrix C = [AI01 is derived by a sequence of elemen- 
tary row operations from the n x 5 matrix = [Z,S>~,~,S>Z,~ 
01, where E' = [ E ( X ~ ) , E ( X Z )  ,..., E(X,)IT, SEI = [sB,(Xi)E(Xi), 
SB] ( X z ) E ( X z ) ,  ..., S B ~  (X,)E(Xn)IT and SEz=[SB,( Ai)E(Xl), s B z (  X Z )  

E ( & ) ,  ..., sB,(Xn)E(Xn)IT. 
Hence the ranks of both augmented matrices are indentical. Look- 

ing upon the augmented matrix R, one may find that  there are only 
three linearly indenpendent column vectors. Therefore, the rank of 
C is strictly less then the number of unknowns. From Lemma 1, i t  is 
concluded that  equation (20) has infinitely many solutions. 

By applying the constrained least-square-error technique to 
equation (20), the solution for 7 can be computed as 

min;I/A?/I subject l o  11.11 = 1 (21) 

where I\?/\ = 1 is the normalization constraint used t o  yield a unique 
solution of equation (20). 

It is found in appendix 1 that the solution r' is identical to  the 
minimum eigenvector of h T A = F ' " .  Consequently, the estimate of 
illuminant is given by 
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E = T y u ;  + ,Tinu; 

E = - ( T y U ;  + T y u ; )  

(22.a) 

or 
(22.b) 

where 
It should be noted that  that  the method of estimating the illurni- 

naiit is also true when the scene contains more than two inhonioge- 
neous materials. Once the spectral power distribution of illumination 
is identified, the remainder of the problem is straightforward. The 
estimate of total surface reflectance at  ( 5 , ~ ) ~  can then be computed 
using 

is the ith component of ,-In. 

s (z>Y>X)  = i ( z , Y , X ) / g X )  (23) 
= E;'=, %(Z> Y ) ( % ( X ) / E ( X ) )  

where f (z ,y ,X)  is the estimated color signal and fjl(z,y) is the ith 
weighting coefficient. 

IV. Experimental Results 

A laboratory setup has been used to test the above algorithm. 
Color images are digitized using a Sony XC-711 CCD camera and 
gelatin filter. The camera is equipped with a primary color vertical 
stripe filter which gives color separation. Fig.2 illustrates thc spec- 
tral sensitivity characteristics of the sensors. These curves have been 
taken from manufacture's specifications. 

To demonstrate the effectiveness of thc proposed color constancy 
method, a test pattern made of two different inhomogeneous niate- 
rials, that  is, yellow aiid brown N P L  ceramic tiles with shadows, is 
particularly considered in our simulation. Assume that  this test pat- 
tern is illuminated under two different typical light sources illuminant 
A and illumiiiant C which are defined in Wyszecki and Stiles [ 141. Il- 
luminant A and illuminaiit C are termed as the incandescent lamp 
and the correlated average daylight which have color temperatures 
2 8 5 4 O K  arid 6770°K respectively. The images of test pattern taken 
under illuminant A and illuminant C are shown in Fig.6 and Fig.7 
respectively. It is observed that tlie color appearances of both images 
seem qnite different. To predict what an image would have looked like 
under a canonical illuriiiiiant DG5, the color signals a t  sensor array 
should be identified by performing equation (11) based on the sensor 
measurements. The estimated color signals a t  three typical sensor 
locations under illumiiiant A aiid illuminant C are shown in Fig.3.a 
and Fig.3.b respectivrly. For comparison, the dashed curves for the 
estimated color signals are approximately the same as tlie solid curves 
for tlie actual color signals. Next, one may use equation (22) to  esti- 
mate  the spectral power distributions of illumiirant d a.nd illuminaiit 
C. Both the estimated illuminants are shown in Fig.4.a a.nd Fig.4.b. 
Finally, the resultant surface reflectances a t  three typical sensor lo- 
cations derived from images under illuminant A and illuminant C are 
showii ir i  Fig.5.a and Fig.5.b. As expected, the estimation iiietliod 
yields satisfactory approximations to  the actual surface reflectances. 
Fig.8 and Fig.9 arc. the images of the color descriptors under the 
canonical illuminant 1165 whir11 are derived frorti the estimated sur- 
face reflcctances of Fig.5.a and Fig.5.b respectiveiy. For comparison, 
it turns out that  the color appearances of both Fig.8 and Fig.9 are 
quite similar t o  t1ia.t of the actual canonical color descriptor shown 
in Fig.10. 

V. Conclusion 

We have shown that  any color signal can be characterized 
as a linear combination of four principal component basis fuiirtions. 
Heiire the weighting coefficients of the color signal represenlation 
are identified by solving a system of equations based on the I C B  
respoiises of a color camera. Furthermore, it has indicated that the 
Tomiuaga and Waiidell's illuminant estimation problem can be refor- 
mulated as solving a constrained least square error problem. Once 

both color signals and illuminant have been estimated, the surface 
reflectance is then computed automatically. 
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Fi9.2 The spectral response curve of sensors of SONY xc-711 
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Fig3.b The estimated Color Signals of 3 typical sensor locations 
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Fig5.a The estimated Reflectances of 3 typical sensor locations 
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Fig5.b The estimated Reflectances of 3 typical sensor locations 

Fig.6 Image of test pattern under 

illuminant A 

Fig.7 Image of test pattern under 

illuminant c 

Fig.8 Image derived from Fig.5.a 

and under canonical D65 



and 

(A.4) 

( A  5 )  

r lT  1 T = 1  

or equivalently 
(A‘A)? = (-?*IF = x 7  

It is shown that  7 and A = (-y*) are an eigenvector and an eigen- 
value of ATA respectively. Substituting (A.4) and (A.5) into (A.2),  
we have 

(A.6) L ( 7 ,  A )  = x 
If? is chosen to  have minimum eigenvalue A,,, such that 

L(Fmtn, Am,,) < L ( F ,  A)  for all 7 .  
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