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Abstract

We use the residue of the map to study the stability and Gaussian beam dynamics of a general optical resonator. The map
is constructed from space domain matrix formalism. For a lossless system we find that the residue is a function of resonator
g-parameters’ product and new critical stable curves exist within the geometrically stable regions. The dynamic behavior of a
dissipative resonator with loss optical element is similar to a damping oscillatory motion and can be determined by the
corresponding conservative resonator without those loss elements. q 1998 Elsevier Science B.V.
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1. Introduction

The ABCD matrix formalism is a very useful tool to
deal with the propagation of a Gaussian beam in periodical
media to characterize laser resonators. The mode confine-
ment referring to the existence of a spatially confined
beam within the resonator has been used as a criterion for

w xcavity design 1 . Owing to the inherent clock provided by
the round-trip time of the optical resonator, recently an
approach borrowed from the nonlinear dynamics is adopted
to derive the iterative map from beam parameters to study

w xthe dynamics of laser resonators 2,3 . The dynamics of the
Žbeam parameters spot size, radius of curvature and beam
2.quality factor M have intrinsically complex behaviors

obtained by the bare resonators without invoking the effect
w xof the laser medium 2 . Although the reasons for the

complex behaviors are not clear, these behaviors have been
w x Ž .classified into three classes in Ref. 2 : i monotonic

Ž .evolution; ii damped oscillations on a few frequencies;

) Corresponding author. E-mail: wfhsieh@cc.nctu.edu.tw.

Ž .and iii quite complicated evolution. They found that
these maps were endowed with the fixed stable point,
physically representing the values of beam parameters at
steady state. On the other hand, a five-dimension iterative
map was used to discuss the dynamically stable regions of
self mode locking lasers. These five dimensions corre-
spond to spot size, radius of curvature, chirp, pulse dura-
tion and energy. The results agree with experimental data
w x3 . Therefore, analyzing the map of Gaussian beam pa-
rameters offers an approach to study the dynamic evolu-
tions of the beam parameters and the stability of the
resonators.

In order to understand the complex dynamic evolution
and stability of a resonator, we construct a simple two-di-
mensional iterative map related to the spot size and radius
of curvature. The complex dynamic behavior of the map
can be determined by the residue which is defined as a

w xfunction of the trace of its Jacobian matrix 4 . As a result,
the residue is a function of the product of g-parameters of
a general resonator. We found new critical stable curves
within the geometrically stable regions. These critical sta-
ble curves correspond to the product of wide-spread res-
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onator g-parameters equal to 1r2 which cannot be found
by ray tracing directly. When we add a loss-like effect,
such as adding a Gaussian aperture, the numerical calcu-
lated evolution of the spot size is a damping oscillatory
motion with the same period of oscillation as the lossless
resonator. In addition, we can explain the behavior of the

w xcomplex dynamics 2 of bare resonators by the residues of
the corresponding conservative maps. The numerical re-
sults demonstrate that ‘‘the damped oscillation’’ and ‘‘quite

w xcomplicated’’ evolution in Ref. 2 are just associated with
the short and long period oscillatory motions, and the
‘‘quite complicated’’ evolution is an overdamping result
under loss-like effect.

2. Theory

When the Gaussian beam propagates through an optical
element, its q-parameter will transform according to the

w xABCD law 1 . The q-parameter is given by 1rqs1rRy
ilrp w2, where R is the radius of curvature, w is the spot
size, and l is the wavelength of resonator beam. Assum-
ing that

A B
C D

is the round-trip transfer matrix and the reference plane is
chosen to be just before the beam hitting one of the two
end mirrors, by applying the ABCD law, we can relate the

Ž .q-parameter of the nq1 th round-trip to the nth one as

y12CqD 1rR y ilrp wŽ .n n
R s Re , 1Ž .nq1 2ž /AqB 1rR y ilrp wŽ .n n

and

y22p CqD 1rR y ilrp wŽ .n n
w s y Im 2Ž .nq1 2ž /l AqB 1rR y ilrp wŽ .n n

where the Re and Im represent the real and imaginary parts
of a complex number.

For a lossless resonator, the system identified with the
classical ray equation is conservative with real transfer

w xmatrix 5 . The laws of transformation of Gaussian beams
w xare formally identical to those of ray pencils 6 . The map

Žderived from the beam parameters curvature and spot size
.only of the lossless resonator belongs to the conservative

one and can be written as

R s f R ,WŽ .nq1 n n

22 2 2AqBrR q lrp w BŽ . Ž .n n
s ,22AqBrR CqDrR q lrp w BDŽ .Ž . Ž .n n n

3Ž .

and

w sh R ,wŽ .nq1 n n

22 2 2(sw AqBrR q lrp w B . 4Ž .Ž . Ž .n n n

It represents a two-dimensional iterative map, and the
discrete time interval of the map is equal to one round-trip
time of the resonator. This is the same procedure to
analyze a nonlinear dynamic system from continuous time
to discrete one. The fixed point is the self-consistent

w xsolution of q-parameter, i.e., the steady-state solution 1 .
Under linear stability analysis, the stability of the fixed
point is determined by its Jacobian eigenvalues of the map
w x7 . Discussing the Jacobian eigenvalues of the map at the
fixed point is equivalent to determine the dynamic stability
of laser resonators.

Because the map belongs to a conservative one, the
determinant of the Jacobian matrix equals unity and the
eigenvalues of the Jacobian matrix depend only on its
trace. It is convenient to discuss the stability using the

w xresidue, which is defined as 4

1Ress 2yTr M , 5w x Ž .Ž .J4

Ž .where M is the Jacobian matrix and Tr M is its trace.J J

When 0-Res-1, the eigenvalues are complex with unity
magnitude and tangent space orbits rotate about the fixed
point on ellipses and the system is stable. The relation
between residue and the phase shift per iteration of the
map, u , can be represented as

Resssin2 ur2 . 6Ž . Ž .

Whereas the system is unstable with either Res-0 or
Res)1, its tangent space orbit locates on a hyperbola.

In standing wave resonators with real round-trip trans-
fer matrices the curvatures of the resonator beam must

Ž . Ž .match those of the end mirrors. From Eqs. 3 to 5 , the
residue is

2 2Ress1y AqBrr s1y 2G G y1 . 7Ž .Ž . Ž .1 1 2

Here we have defined G saybrr and G sdybrr1 1 2 2

as the G-parameters for general optical resonators, with

a b
c d

the transfer matrix of one-way pass between the two end
mirrors, and r , r is the radii of curvature about the two1 2

end mirrors, respectively. So we can obtain a convenient
method to discuss the stability of multiple-element res-
onators using the G-parameters defined above.

For simplicity, we apply this result to discuss the
stability of a simple two-mirror resonator. This simplest
kind of optical resonator consists of only two end mirrors
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facing each other. The transfer matrix of one-way pass
between two end mirrors is

1 L ,
0 1

where L is the separation of the two end mirrors. We
obtain

2Ress1y 2 g g y1 , 8Ž .Ž .1 2

where g s1yLrr with is1, 2 and again r and ri i 1 2

are the radii of the two end-mirrors, respectively. From Eq.
Ž .8 , we found that the residue is a function of g g only.1 2

Thus we plot the residue versus g g with solid line in1 2

Fig. 1, it is a parabola and its top locates on g g s1r21 2

with Ress1. The tendency of u is also shown in Fig. 1
with dashed line, which is also symmetrical to the maxi-
mum value at g g s1r2. We will depict in Section 31 2

that the dynamic behavior is mainly determined by the
residue and u from comparing the numerical results with
theoretical analysis.

Since the resonator is dynamically unstable for Res-0
or Res)1, one gets regions with g g -0 or g g )1.1 2 1 2

And the region with 0-g g -1 is stable corresponding1 2

to 0-Res-1. It is critical stable with Ress0 for g g1 2

s0 or g g s1. The stability of these regions are the1 2

same as the geometrical stability ones. The geometrical
w xstability regions can be found in a general textbook 1 , the

resonator is stable in the region 0-g g -1 and critical1 2

stable on the borderlines g g s0 and g g s1. How-1 2 1 2

ever, extra critical curves are found within the geometri-
cally stable regions 0-g g -1 where 0-Res-1. The1 2

curves are g g s1r2 with Ress1. This result can not1 2

be found by ray tracing method. Stability range decided by
the iterative map of the beam parameters not only implies
geometrical stability range but also has an extra dynami-
cally critical stable solution with g g s1r2. For the1 2

sake of comparing the properties of these critical res-
onators, we show the configurations of resonators with ray
tracing in Fig. 2. A symmetric confocal resonator with

Ž .g sg s0 is shown in Fig. 2 a , the center of curvature1 2

Fig. 1. The calculated residue and average angle of rotation versus
the product of g-parameters. The maximum values appears at
g g s1r2.1 2

Ž . Ž .Fig. 2. Diagram of critical stable resonators, a confocal, b
semi-confocal, and imaging semi-confocal resonators in both posi-

Ž . Ž .tive c and negative d branches, respectively.

of one mirror locates at the center of the other mirror. And
the configuration with g s1r2 and g s1, as shown in1 2

Ž .Fig. 2 b , is half of the symmetric confocal resonator and
w xnamed ‘‘semi-confocal’’ 8 . We call the resonator config-

urations with g g s1r2 as ‘‘imaging semi-confocal’’1 2

resonators. Both positive and negative configurations
Ž . Ž .branches are plotted in Figs. 2 c and 2 d , respectively. In

either one of these resonators, any arbitrary ray returns to
its initial value after four round trips rather than just
double round trips for confocal configuration at g sg s1 2

0. And the semi-confocal resonator is just a special case of
the imaging semi-confocal one with g g s1r2.1 2

Since the fundamental transverse mode cannot effi-
ciently enough extract the stored energy in the gain
medium, in the confocal resonators can support more or

w xless arbitrary multi-transverse modes 1 . As mentioned
above, the geometrical configuration of the imaging semi-
confocal resonators is half of the confocal one. We will
expect that imaging semi-confocal resonators have proper-
ties similar to the confocal resonators. The multi-transverse
mode pattern and output power drop may be observed in
imaging semi-confocal resonators. In fact, we had ob-
served power drop near G G s1r2 in a Kerr-lens mode-1 2

Ž . w xlocking KLM Ti:sapphire laser 9 and multi-transverse
modes within this region by forward study. The same
result is also obtained from the diode-pumped Nd:YVO4

solid-state laser and will be presented elsewhere. And this
region is about hundreds of micrometers different from the
cavity length. In general, we adjust the resonator for
purposing the maximum output power, it is easy to avoid
this effect to keep away from operating at the power drop
region. Besides, we could apply this condition to design a
resonator to prefer one operation mode than the other
through gain competition. For example, for the KLM laser
if we design the resonator for cw mode acting at G G s1 2

1r2, the equivalent resonator of KLM mode will apart
from having G G s1r2 due to the change of effective1 2
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cavity length via optical Kerr effect. Thus, the KLM mode
is capable to extract more stored energy from the gain
medium in this resonator.

Real systems often have nonlinear effect such as satu-
rated gain, mode coupling, or optical Kerr effect. If a
nonlinear term is added to perturb this critical stable
system having Ress1, the Poincare-Birkhoff theorem

Žtells us that some of period 2 fixed points in Ress1 with
.usp survive the perturbation, producing the bifurcation

w xphenomena 7 . So this system will be sensitive to nonlin-
ear effect and subject to fluctuation. The particular signifi-
cance of ‘‘critical stable’’ exists accompanied with nonlin-
ear effect. Whereas the steady-state solution corresponds to
the ensemble average of the map evolution. The average
steady-state value cannot imply dynamical fluctuation of
the system. The spot size to the geometrical perturbation

w xdiscussed in Ref. 1 is an approach considering the varia-
tion of the steady-state spot size. Although the variation of
the steady-state spot size to the geometrical perturbation is
equal to zero at g g s1r2, the dynamical fluctuation is1 2

nonzero. We believe that the system is noisy but its
average spot size is insensitive to the variation of geomet-
rical configuration near g g s1r2 under the nonlinear1 2

effect. In addition, the resonator with nonlinear effect at
this critical structure may be also responsible for the

w xobserved chaotic behavior 10 .

3. Numerical results

In this section, we will numerically discuss the iterative
maps of both dynamic systems having complex and real
transfer matrices. In a complex matrix system, the evolu-
tion of a Gaussian beam corresponds to a dissipative

w x Ž .system 4 and its phase exhibits a damped or growing
w xoscillatory behavior 11 . It is different from the real

transfer matrix system corresponding to the ray pencil
conservative system. By considering a Gaussian aperture
as a lossy optical element, the evolution of the spot size
with and without this lossy element will be compared.

First, let us consider a lossless resonator formed by a
flat and a spherical mirror. Again one chooses the refer-
ence plane as that just before the beam hits the flat mirror.

Ž .Fig. 3 a represents 5000 iterations of the map determined
Ž . Ž .by Eqs. 3 and 4 for g g s0.9, the initial value is1 2

arbitrary chosen as 1rR s0 and w s1.5 mm. From0 0
Ž . Ž .Eqs. 6 and 8 , we obtain that the residue of this res-

onator is 0.36 and uf0.41p . Because the iterative map
belongs to the conservative one and the phase shift per
iteration is not a rational fraction of 2p , the figure shows a
close loop. Since the phase shift per iteration is approxi-
mately equal to 0.41p which is about 0.01p greater than
the closest rational fraction phase shift 2pr5, it represents
that the iterative point will return to the neighborhood of
the initial point after five iterations. So the evolution of the

Fig. 3. Evolution of the iterative map for g g s0.9 with initial1 2
Ž . Ž . Ž .values 1rR , w s 0, 1.5 . a Two-dimensional map for real0 0

round-trip transfer matrix, the diamonds mark the number corre-
Ž .sponding to the first 7 iterations. b The evolution of spot size

Ž . Ž .versus the number of iterations for the same map as a . c The
evolution of spot size versus the number of iterations for a
Gaussian aperture with transverse coefficient a s104 my2 .2

spot size will develop into five groups and the behavior of
each group acts like an oscillatory motion. The relative
phase shift is 0.41p between the neighboring trajectories.
From each oscillatory trajectory composed of every other
five iterations, there is 5=0.01p preceding phase differ-
ence after five iterations which equals to 0.01p average
preceding phase difference per iteration. Whence the pe-
riod of each trajectory equals to 2p divided by the abso-

<lute value of average phase difference per iteration, uy
< Ž .2prn 0.01p in this case , the period of the oscillatory
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Fig. 4. Evolution of spot size for g g s1r2 with initial values1 2
Ž . Ž . Ž . Ž .1rR , w s 0, 1.5 . a Conservative system and b with a0 0

Gaussian aperture corresponding to a s104 my2 .2

trajectory can be calculated from

2p
periods , 9Ž .

< <uy2prn

where 2prn is the closest rational fraction rotation angle.
Ž .The diamond marks in Fig. 3 a show the first 7 iterations

beginning from the initial state. The 5th iteration is neigh-
bor of the initial point and also leads to the initial point as
predicted by theoretical calculation. The same result is

Ž .plotted in Fig. 3 b as the evolution of spot size versus the
number of iterations. We found five oscillatory trajectories

Žhaving relative phase shift about 1r5 period correspond-
. Ž .ing to 0.41p between the neighboring ones. From Eq. 9

with ns5, we get that the period of every oscillatory
trajectory is about 207 iterations. It agrees well with the

Ž .numerical result in Fig. 3 b .
When we add a Gaussian aperture in front of the flat

mirror, the complex transfer matrix of the Gaussian aper-
ture is

1 0
,yila r2p 12

w xwhere a is the transverse coefficient 1 . Because the2

round trip transfer matrix is complex, one must use the
Ž . Ž . Ž .iterative map of Eqs. 1 and 2 instead of Eqs. 3 and

Ž . Ž .4 . Fig. 3 c depicts the numerical evolution of spot size

Žversus the number of iterations. The initial value is 1rR ,0
. Ž . 4 y2w s 0, 1.5 and transverse coefficient a s10 m0 2'which is related to 2 cm of 1re radius of the amplitude

transmission through the aperture. We find that the evolu-
tion is an underdamping oscillatory motion with the same
period of oscillation as in the lossless system. The proper-
ties of the lossy optical elements for the iterative map are
similar to the effects of damping parameters in damping
harmonic oscillators. The dynamic behavior of such a
dissipative resonator is determined by the corresponding
conservative resonator without those loss elements.

For the phase shift per iteration of the resonator having
a rational fraction of 2p , the iterative point will exactly
return to its initial point after some iterations. For example,

Žfor the critical stable resonator with g g s1r2 where1 2
.Ress1 and usp , the iterative point will return to its

initial point after two iterations and repeat itself every

Fig. 5. Evolution of spot size with long period for g g s0.89.1 2
Ž . 4 y2 Ž .a Conservative system, and with damping of a s10 m b2

4 y2 Ž .and 4=10 m c , respectively.
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Ž .other two iterations. Fig. 4 a shows a numerical result of
spot size versus number of iterations. The evolution asso-
ciates with flip-flopping between two values in a smaller
scale abscissa for the real transfer matrix system. And the
result for a lossy system with a s104 my2 is shown in2

Ž .Fig. 4 b , it acts like a critical damping oscillatory motion
and will monotonically converge to its fixed point.

From the concept of classical mechanics, the longer
period oscillatory motions have faster overdamping effect
than the shorter ones for the same damping parameter.
Similar results are found in the evolution of maps. Consid-
ering g g s0.89, the period of oscillatory trajectory is1 2

about 1071 iterations with uf0.43p and ns14r3 in Eq.
Ž .9 . The period is longer than the one of g g s0.9. The1 2

Ž .spot size evolution without damping is shown in Fig. 5 a .
When we add the Gaussian aperture with a s104 my2

2

Fig. 6. Evolution of x, corresponding to spot size, with long
Ž . w xperiod for the Gaussian Schell-model type GSM beam in Ref. 2

Ž . Ž .with g s0.1. a The Fresnel number, F, is infinity, b Fs
Ž .10000, and c Fs500.

Ž .which is the same as the value in Fig. 3 c for g g s0.9,1 2

the oscillatory motion becomes overdamping as shown in
Ž .Fig. 5 b . Further increasing the damping parameter to

a s4=104 my2, the evolution shows fast overdamping2

even before oscillatory motion and has been observed in
Ž .Fig. 5 c . It is classified as the ‘‘quite complicated’’

w xevolution in Ref. 2 . But the numerical results display that
the ‘‘damped oscillation on a few main frequencies’’ and

w x‘‘quite complicated’’ evolution in Ref. 2 are just short
and long period oscillatory motions, and the ‘‘quite com-
plicated’’ evolution is like the overdamping result having
larger damping effect. For verifying this postulation, the

w xnumerical results derived from the map of Ref. 2 are
shown in Fig. 6. Considering their coherent map with

Ž . Ž .initial values x , y , c s 0.4, 0.4, 2 and gs0.1, we0 0 0
Ž .plot in Fig. 6 a the evolution of x with the Fresnel

number, F equal to infinity. The map corresponds to the
conservative one with long period oscillatory motion. When
we add a damping effect to the map by setting Fs10000,

Ž .the evolution is an underdamping oscillation in Fig. 6 b .
Further increase of the damping effect having Fs500, the

Ž .evolution shows a ‘‘quite complicated’’ result in Fig. 6 c .
The same result can be obtained from initial values of
incoherent beam and other g-value corresponding to the

w x‘‘quite complicated’’ evolution in Ref. 2 . Therefore, the
‘‘damped oscillation on a few main frequencies’’ and
‘‘quite complicated’’ evolutions have the same dynamic
origin and can be explained by the residue and phase shift
per iteration of the map in our approach.

For g g )1, the iterative spot size becomes divergent1 2

without adding Gaussian aperture, it represents that the
resonator is unstable and agrees with the previous result

w xfrom ray tracing 1 . The damping effect causes divergence
to be restrained when adding a Gaussian aperture, so the
evolution has the same ‘‘monotonic’’ consequence as in

w xRef. 2 .

4. Conclusions

In summary, we had constructed a map from the propa-
gation of beam parameters of a general optical resonator to
study its stability and complex dynamics by the residue of
the map’s Jacobian matrices. For the lossless resonator
having a real round-trip transfer matrix, the residue is a
function of the g-parameters’ product. As a result, besides
geometrically stable regions and critical stable borderlines
of a linear optical resonator being obtained, we find new
dynamically critical stable curves corresponding to g-
parameters’ product equal to 1r2. We think that this
configuration is sensitive to the nonlinear effect and con-
tains fruitful nonlinear dynamic properties. Moreover, the
dynamic behavior of the dissipative resonator with loss
optical element, such as a Gaussian aperture or diffraction
loss having complex transfer matrix, is similar to a damp-
ing harmonic oscillator. Its intrinsic dynamics complexity
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is mainly determined by the system without those loss
elements associated with the conservative map.
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