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Abstract. Two new,  simple, general and rigorous closed-form integral solutions to 
t h e  base current density and to the base transit time for electron transport in NPN 
bipolar transistors with heavily doped base and non-uniform band structure are 
presented. The  expressions include the effects of non-uniform band structure. the 
influence of Fermi-Dirac statistics, the position-dependent mobility and  the velocity 
saturation effect at t h e  base-collector depletion-layer edge on the base side. An 
application of th is  new simplified base current density of equation to Early Voltage 
in a narrow-base bipolar transistor is illustrated. A simple example for the effects 
of the minority-carrier density and of the base built-in field on the minoritv-carrier 
base transit time is also qualitatively discussed. 

1. Introduction 

Two important transport quantities of minority carriers 
across the quasi-neutral base of a transistor have received 
considerable attention in the physics of transistor action. 
One is the current density and is described by the familiar 
integral relationship between J ,  and V,,, which are 
connected by a so-called Gummel number (denominator 
of equation ( 1 ) )  as 

This relation for the electron current flow through the 
base region of an NPN transistor was first derived in a 
closely analogous expression (for PNP) by Moll and 
Ross [ l ]  and is widely used in transistor modelling 
analysis. 

Another significant parameter is the minority-carrier 
transit time (7) through the base region. Again, a similar 
result (for NPN) to Moll and Ross's [I] original formu- 
lation (for PNP) of the integral relation for I which 
depends on the base doping is expressed as 

It is noted that equations ( I )  and (2) are good only for the 
simplest case with some approximations, such as non- 
degenerate carrier densities, low-level injection, position- 
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independent diffusion coefficients and uniform base 
structure. 

Although there is a large body of papers [2-71 
published on these subjects in the last fifteen years, all of 
the previous results based on the conventional drift- 
diffusion transport equation were expressed in terms of 
the carrier diffusion coefficient instead of the carrier 
mobility as given by equations (11) and (12) below. It is 
noted that a number of these are on minority carriers in 
transparent emitters [2-6] rather than on base transport 
[7, SI. In 1978, Abram et a/ [9] generalized the use of 
mobility (or average mobility) rather than diffusion 
coefficient in their work. However, a consistent and 
systematic study (including the heavy-doping and non- 
uniform band structure effects) of the base transport 
equation does not seem to exist in the literature. 

In this paper, two new, simple, closed-form integral 
relations are generalized to be valid for bipolar tran- 
sistors with heavily doped base and non-uniform band 
structure under the assumption of one-dimensional anal- 
ysis. The results show the complex heavy-doping and 
non-uniform band structure effects. These effects may 
include actual bandgap narrowing, carrier degeneracy, 
influence of the impurity band, position-dependent mo- 
bility, and the built-in electric field due to a graded 
doping density or a graded band structure. In addition, 
the velocity saturation effect at the base-collector deple- 
tion-layer edge on the base side is also accounted for. 
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2. Theory and discussion 

As shown in figure 1, we consider the base of a one- 
dimensional NPN junction transistor with quasi-neutral 
base width W, and assume that the edges of the base- 
emitter and base-collector depletion layers are located at 
x = 0 and x = W,, respectively. The starting equations, 
for generalizing Moll-Ross integral relations, are the 
current density flow equations, expressed in their most 
general consistent form, involving the gradients of the 
electrostatic potential, the two carrier concentrations and 
the activity coefficients y. and y ,  for both the minority 
(electron) and majority (hole) carriers [ IO]  

dn dV InY" (3) J ,  = kTp. - - qnpn - + kTnp, - dx dx dx 

J , =  -kTp --qpp dp --kTppc,- dV din?,  (4) 
dx dx dx 

and 

where the symbols in the above equations have their 
usual meaning except that AE8 represents the effective 
bandgap shrinkage which accounts for the actual band- 
gap narrowing effect (AnGN), the density-of-state effects 
(Aoos), and the influence of Fermi-Dirac statistics (AFD). 
Parameters AEg, ABGN, ADos and AFD are defined in [IO]. 
It should be mentioned here that the Fermi-Dirac inte- 
gral of order one-half (Fli2) used in [IO] for AFD implies 
that the density of states IS proportional to the square 
root (parabolic) of the kinetic energy (see appendix I). 
This is not the general situation for the case of high 
doping [9, 11, 121. 

It is important to note that equations (3) and (4) have 
moved the influence of Fermi-Dirac statistics in the 
diffusion terms to the activity coefficient terms and 
replaced the carrier diffusivities in the diffusion terms by 
the carrier mobilities. The activity coefficients here ac- 
count for the non-ideal behaviour of the carriers due to 
heavy-doping effects and non-uniform band structure. 
These coefficients are functions of electron affinity, band- 
gap, doping density and the density of states that vary 
with position. It is also noted that equations (3) and (4) 
are similar in form to those derived by Van Overstraeten 
et al [12]. The latter, however, retained the effects of 
degeneracy in the diffusion terms and regarded the 

Emitter Base Collector 

0 F - x  WP 

Figure 1. One-dimensional NPN bipolar junction transistor 
showing base-emitter and basecollector junction layers, 
and quasi-neutral base width W,. 
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intrinsic Fermi level Ej as a measure of the electrostatic 
potential, which is not suitable for the case of non- 
uniform band structure [13]. The use of equation (5) 
implies low injection as discussed in [IO]. 

It is a necessary condition for a good transistor that 
p > 1. This implies that the hole current is small and may 
be neglected, i.e. J ,  0. From this, the electric field 
( E  = -dV/dx) can be evaluated by equating (4) to zero 
as 

dV kTdp kTd In yp 
dx qpdx q dx ' 

Eliminating the electric field by substituting (6) into (3) 
one obtains, after some manipulation, the following 
equation for the minority-carrier current density J ,  

(6) - = - _ _ _ _  ~ 

(7) 

Integrating both sides of the above equation between 
x = 0 and x = W, and treating recombination as negli- 
gible so that J ,  can be removed from the integral gives 

= p( w, In( W, )y.( W, )yo( W,) - p(O)n(O)y,(O)y,(O). 
(8) 

The above equation is the general equation from which 
the Moll-Ross current relation, or its extension, is ob- 
tained. 

To account Cor the velocity saturation effect, wc 
simply consider the collector current density J ,  as [I41 

. J c (  = - J n )  = qV,n(W) P .  (9) 

where V, is the electron saturation velocity and n(W,) is 
the electron concentration within the space-charge layer 
required to support the drift current. Also, at the emitter 
end of the base, x = 0, we use the boundary condition 
Cl01 

Combining equations (9, (7), (8) and (9), by purely 
algebraic operations, we obtain 
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Equations (11) and (12) are the generalization of the 
Moll-Ross current relation. The denominator in the 
above relation can be considered as the effective base 

voltage in a narrow base bipolar transistor is given in 

Equation (11) then becomes 

(15) kTr ,p(o)n(o) /n ,Z . (o)  
JP (p(x)/n?&)) dx ' 

J ,  = - 
Gummel number. An application of this result to Early 

Combining ( 5 )  and (1s) vields 
appendix 2. 

It is clear from equations (11) and (12) that the 
velocity saturation effect, the shape of the base doping 
profile, position-dependent mobility and position-depen- 
dent complex heavy-doping effects are included. The 
velocity saturation effect has usually been neglected in 
previous studies [7-9, 12, 15, 161. Also, the previous 
results are mainly based on the conventional drift-diffu- 
sion transport equation which will lead equation ( I  1) or 
(12) to be expressed in terms of the carrier diffusion 
coefficient [S, 12, IS] or average (or effective) diffusion 
coefficient [7, 151 instead of the carrier mobility. It must 
be emphasizeathat the statement expressed mathemati- 
cally by the conventional diffusion model is in general 
consistent only for a uniform medium, whose structure 
and diffusion properties in the neighbourhood of any 
point are the same in all directions. Thus, it is not strictly 
physically correct for the case studied here. It is also 
extremely important to note that the values of the 
diffusion coefficients must be calculated through the 
complex degenerate Einstein relations, while the mobility 
can be directly obtained from experiments. The results 
presented here are more general and more physically 
significant. 

In order to solve the transit time of minority carriers 
across the quasi-neutral base of a transistor, we return to 
(7) for arbitrary x. After some algebraic manipulation, we 
see using also equation ( 5 )  that 

Integrating both sides of the above equation between 
x = 0 and x = W, and dividing by - J , / q  gives the 
average base transit time for the transfer of the minority 
carriers (electrons) across the base. 

Equation (14) is the generalized form of the base transit- 
time relation (2). In the case of low current level, non- 
degeneracy and uniform base, the new relations (1 I) or 
(12) and (14) reduce to the classical conventional limits 
(I) and (2), respectively. 

Now, a simple example for the effects of the minority- 
carrier density and of the base built-in field on the 
minority-carrier base transit time is illustrated. For sim- 
plicity, we consider the electron mobility as constant and 
assume that the velocity saturation can be neglected. 

I 

Substituting (16) into the first equation (14), the electron 
base transit time can be written as 

(17) 
,W.p(x)exp( - A E , ( x ) / k T )  dx 
p(O)exp( - AE,(O)/kT) dx 

where V, ( = k T / q )  is the thermal voltage. Here we have 
separated the base transit time ,into three individual 
effects. The first term on the right-hand side is from the 
electron mobility contribution. Clearly, the higher mobil- 
ity will reduce the transit time. The second term describes 
the minority-carrier effect, while the last term includes 
the shape of the base doping profile (or majority-carrier 
density) and the overall bandgap narrowing (or built-in 
field) effects. 

As shown in figure 2(a) and (b)  for the compositional 
graded band structures, it is important to note that the 
effects of minority carrier density and the compositional 
graded bandgap narrowing occur simultaneously but in 
the opposite contribution because the minority carrier 
density increases as the energy gap of the semiconductor 
decreases or vice versa. For the case of figure 2(a), the 
bandgap narrowing effect (energy band graded up) 
causes a retarding built-in field which increases the base 
transit time, while the second term (minority-carrier 
density effect) simultaneously tends to reduce it because 
the minority-carrier density decreases as the bandgap 
increases. On the other hand, for the case of figure 2(b), 
the bandgap narrowing effect (energy band graded 
down) leads to an 'assisting' (or accelerating) built-in 
field which reduces the base transit time, while the 
minority-carrier effect simultaneously tends to increase it 
because the minority-carrier density increases as the 
handgap is getting smaller. In the case of figure 2(b), the 
value of the second term can be greater than W,. Basical- 
ly, both effects are in opposite directions. However, the 
bandgap narrowing effect on 7," is generally larger than 
that of the minority-carrier density effect because it 
affects the exponential term. 

Also shown in figure 2(c) and ( d )  are bases with the 
the same host semiconductor but with graded doping 
densities in the opposite directions. The built-in field 
behaviours are similar to the cases ( a )  and (b )  as dis- 
cussed above. However, the value of the second term for 
these cases is typically smaller than W, in the case of low 
injection. Figure 2(e)  shows the uniformly heavily doped 
base. In this case, AE8 is constant and the third term 
reduces to W,. No built-in field effect exists in this case, 
while the minority-carrier density is greater than that of 
the lightly doped case. Quasi-Fermi levels E,, and E,, 
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(e) 
Figure 2. Base band structures: (a) and (b )  are for the uniformly 
compositionally graded heavily doped base, (c) and (d )  are tor the non- 
uniformly heavily doped base, and (e) is tor the uniformly heavily doped 
base. AE,, in (a) and (b ) ,  AEc in (e) and AEv in ( a ) ,  (b )  and (e) are for the 
actual bandgap narrowing due to uniformly heavily doped effects (high 
doping concentration), AEcz is due  to compositional graded band 
structure, e.g. AI,Ga, -,AS ( x :  0 + 1 or 1 + 0), and AEc and AEv in (c) and 
(d )  are due  to doping graded band structure. (a) and (c) cause the 
retarding fields (graded-up), while (b )  and ( d )  lead to 'assisting' (or 
accelerating) fields (graded-down). 

are also shown in figure 2 for the normal active mode 
operation under low-level injection conditions. The sit- 
uation discussed above will become more complicated 
for the case of high-level injection. 

Finally, we would like to mention that in our general 
results derived above we have included the velocity 
saturation effect which is important for operation in the 
normal active region at moderate currents. Also, the 
results presented here are valid for either homojunction 
or graded heterojunction bipolar devices including the 
complex heavy-doping and non-uniform band structure 
effects. The results, however, cannot be applied to abrupt 
heterojunction bipolar transistors if the thermionic em- 
ission mechanism for electron transport is important at 
the junction interface. The reason is quite simple- 
because we assume qV,, = EFN(0) - EFp(0), which is not 
true for the thermionic emission case. It has also to be 
noted that the similar derived expressions can be ob- 
tained forminority-carrier transport in the heavily doped 
emitter regions with non-uniform band structure. 

Appendlx 1 

Derivations of the carrier concentrations in terms of the 
function F,12 for heavily doped semiconductors are pre- 
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sented in this appendix. Only the electron concentration 
is considered here because the derivation of the hole 
concentration is similar. The concentration or number of 
electrons per unit volume in a heavily position-depen- 
dent band structure is generally represented as 

n = jE: f(E, T)g,(E, X) dE (AI)  

where g, is the density of states for the conduction band 
and the Fermi function is given by 

For mathematical tractability and simplicity, if we con- 
sider the rigid band model [17] and assume the standard 
parabolic structure under isothermal conditions, then the 
density of states can be written as 

It is extremely important to note that the density-of- 
states effective mass in; can be changed due to band 
distortion or tailing for the case of heavily doped semi- 
conductors. 
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When we introduce the dimensionless variables 

and assume m: and T to be constant, equations 
(AI)-(A4), by purely algebraic operations, give 

The Fermi-Dirac integral of order n is defined as 

With this expression the electron concentration in the 
conduction band is 

where the factor 1/2 is due to assuming g, oc ( E  - 
As an example, if the density of states is given by 

9, Ck,(E - E,)"2 + k,(E - E,) 
+ k , ( E  - E,)"'+ ...I (AS) 

then we have the form 

(A91 n = L  1 1  n = 1 C,F, 2 ,  1 2 , " "  

Appendix 2 

In this appendix, we will illustrate an application of 
equation (12) to Early voltage in narrow-base bipolar 
transistors. For simplicity, we consider a simple case of 
devices with uniformly heavily doped base, i.e. p % N: % 

N ,  = constant (completely ionized) in the quasi-neutral 
base region. This implies that the bandgap narrowing is 
independent of the position. We also assume that the 
mobility is constant. Under these conditions, equation 
(12) can be rewritten as 

The Early voltage V, is defined by convention from 
figure 3 

Figure 3. J, versus V,, characteristics including t h e  Early 
voltage V,. 

where V, is the Early voltage [IS]. To determine this 
quantity, we have to find dJ,/dW, from (A10) as 

Substituting equations (A10) and (A12) into (Al l) ,  we 
obtain 

This is the general result of the Early voltage for NPN 
transistors with uniformly heavily doped base including 
the electron saturation velocity effect. It is important to 
note that the conventional expression for V, is similar to 
the result given by equation (A13) excluding the electron 
saturation velocity term. However, the value of W, for the 
heavy-doping case is greater than for the lightly doped 
one, i.e. WF > W;. 
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