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Abstract. Computer vision is a task of information processing that can
be modeled as a sequence of subtasks. A complete vision process can
be constructed by synthesizing individual operators performing the sub-
tasks. Previous work in computer vision has emphasized the development
of individual operators for a specific subtask. However, the lack of knowl-
edge about other levels of processing, while developing the operators for
a specific level, makes the development of a robust operator and thus a
robust system unlikely. To obtain vision problem-solving methods that
are robust in the face of variations in image lighting, arrangements of
objects, viewing parameters, etc., we can simply incorporate all possible
sequences of image-processing operators, each of which deals with a
specific situation of input images; then an adaptive control mechanism
such as a state-space search procedure can be built into the methods.
Such a procedure dynamically determines an optimal sequence of image-
processing operators to classify an image or to put its parts into corre-
spondence with a model or set of models. One critical problem in solving
vision problems with a state-space search model is how to decide the
costs of paths. This paper details the state-space search model of com-
puter vision as well as the design of cost functions in terms of information
distortions. A vision system, VISTAS, has been constructed under the
state-space search model and its parallel version has been simulated.

Subject terms: computer vision; image processing; state-space search; vision
algorithm synthesis.
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1 Introduction

Computer vision is a task of information processing. The
goal of the task, as described by Marr,! is discovering from
images what is present in the world, and where it is. Because
of the existence of variations in the world, such as noises,
image lighting, arrangements of objects, and viewing pa-
rameters, it is usually difficult to model the distributions of
images, and therefore hard to construct a theory for prac-
titioners to follow. The lack of theory in computer vision
implies that there is no optimal or robust solution for most
problems. One can justify the validity of a method by its
empirical but not its theoretical behavior. Furthermore, any
empirically optimal or near-optimal operator at a specific
level of processing does not guarantee to give its successive
level of processing a best input. For example, almost all
existing methods for thresholding are based on heuristics
which usually ignore the knowledge about other levels of
processing.> How useful these heuristics are must be ob-
served during experiments on certain domains of images,
and the observation is applicable only to these domains.
Thus, the best method for thresholding is unknown.
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Although the literature has covered various methods, al-
gorithms, and heuristics for solving particular steps of vision
problems, any application of computer vision generally in-
volves more than one step of processing. Developing a
reliable algorithm for any application is therefore more dif-
ficult than for a specific aspect of vision because the theory
and heuristics necessary for coordinated multiple-step se-
quences of vision operations are not fully explored, in ad-
dition to the lack of robust operators.

This paper presents a methodology for solving vision
problems. Instead of searching optimal or robust operators
at each step of processing, the methodology uses state-space
search procedure to dynamically determine an optimal se-
quence of image-processing operators to classify an image
or to put its parts into correspondence with a model or set
of models. The optimality is defined in terms of least in-
formation distortion. The robustness can be achieved by
accommodating all possible sequences of image-processing
operators into the search space, each of them can deal with
a specific situation. By providing guidelines for the use of
state-space search in computer vision, we hope to simplify
the development of vision algorithms and broaden the scope
of problems these methods can handle.

The structure of this paper is as follows. Section 2 dis-
cusses the state-space search model of computer vision.
Section 3 discusses the design of cost functions based on
information distortions, which is the heart of our approach.
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Section 4 discusses an experimental system VISTAS which
implements the ideas discussed in the previous sections.
Section 5 is devoted to parallelizing the state-space search
within the context of VISTAS. The last section is the con-
clusion.

2 State-Space Search Model of Computer Vision

2.1 Vision Problems and Algorithms

The process of computer visics)n can be modeled as a can-
onical sequence of subtasks>"

1. Preprocessing. The preprocessing phase removes un-
interesting patterns and noise from the image. Pre-
processing is performed under the assumption that an
image is composed of an informative pattern modified
by uninteresting variations. Examples of operators in
this phase are filters.

2. Segmentation. The segmentation phase can be further
divided into two sub-steps.

Labeling. The labeling phase decides the attributes
of pixels and is performed under the assumption
that an informative pattern is a connected set
of pixels. Examples are edge detection, thresh-
olding and corner finding.

Grouping. The grouping phase collects connected
sets of pixels with the same attributes. The
grouping operations perform a logical change
of data structure from pixels to symbolics. Ex-
amples are region growing and edge linking.

These two steps work closely and therefore are re-
ferred to as parts of a single step.

3. Interpretation. Interpretation gives each group of pix-
els a semantic meaning. It usually contains two sub-
steps.

Extracting. The extracting operation computes for
each group of pixels a list of its properties.
Examples of properties are area, centroid, and
spatial moments. Which properties are inter-
esting depends on the world model.

Matching. The matching operation determines the
interpretation of some related set of image events
and associates these events with some given 2D
shape. There is a wide variety of matching op-
erations, such as template matching and com-
puting the Euclidean distance of property vec-
tors.

Any successful v151on system can perceive only a limited
number of data.® A computational-complexity based anal-
ysis of visual search problem showed the intractability of
the bottom-up approach.® Therefore, we assume that all
steps in the process are performed within the context of a
world model which specifies what the vision process can
see at each of the various positions of an image.

One approach to solving the vision problem is to divide
it into several steps corresponding to the vision model, and
then to select appropriate operators at each level and syn-
thesize these operators. How operators in each step are
selected and how these operators are coordinated need to
be solved in this approach.

Generally speaking, the issue of operator selection is
domain dependent. Most literature in computer vision talks
about designing an operator for specific steps; few research-
ers deal with the issue of operator coordination. The second
issue is the concern of our research. We want to present a
general approach to coordinate the operators.

2.2 From Vision to State-Space Search

State-space search has been explicitly used in some specific
aspects of computer vision. Heunstlc search was apphed to
contour tracing by Martelli.” Other researchers®® have ap-
plied search methods to image segmentatlon problems. An
extension of a graph-matching algorithm usmg state-space
search was developed by Shapiro and Harahck % The inter-
pretation tree introduced by Grimson et al.''12 s a typical
model-based approach for three-dimensional object recog-
nition. The ARGOS system developed by Rubin!? was able
to interpret certain images of downtown Pittsburgh. Our
work is much different because we intend to handle the
complete process of computer vision. 1

A vision problem can be transformed into a state-space
search problem by changing its canonical procedure into the
form of a state-space search problem. Assume the problem
has an input image / and a set of operators. Each operator
belongs to one of the five categories mentioned above. A
state can be regarded as a representation of the input image
using some format. The start state represents the input image
I in the format of a two-dimensional array. The state space
can be derived from the start state and the set of operators.

Formally, we can define the state-space search problem
(s, T, K, G) as follows.

Start state.

s=1 (1

Operators. The set of search operators is the set of image

operators:

T=t1UnUBUKUL 2)
in which

t; C {preprocessing operators} , (€)]
t, C {labeling operators} , @
t3 C {grouping operators} , 5)
14 C {extracting operators} , and 6)
ts C {matching operators} . @)

State space. All states except the start state are derived
from their parents and the operators leading to them.
An exception is that in some domains the set of goal
states can be known beforehand; this point of view is
used in our model for the reasons discussed in the
previous subsection. Thus,

K=kiUkyUksUksUksU kg 8)
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in which

ki={s} , )
k2 =t1(ky) C {preprocessed images} , (10)
k3 =t(ky) C {labeled images} , (11)
ka=1t3(k3) C {grouped images} , (12)
ks = ta(ks) C {property vectors} , and (13)
ke =1ts(ks) C {interpretations} (14)

where f;(k;) is the range of operators #; having k; as
its domain.

Goal states.
G=ke (15)

This transformation makes one simplification of the
vision process. It assumes that an operator is a
function from a representation of an entire image to
another representation of the entire image.

Some variation to this simple model may occur. First,
some operators do not transform an image to its next stage.
An example is mathematical morphological operators that
transform a labeled image to another labeled image. It is
not difficult to modify the formalization to accommodate
loops. Suppose that state k; contains a self-loop. Then k;
can be defined as

ki=jL:J0k{3 (16)
in which

K'=ti—1(ki=1) , and amn
k=t~ forj>0 . (18)

The first set k? represents the set of states derived from the
parent state of k; directly; all the other sets are obtained by
applying ¢; to the set of states that were derived previously.
A self-loop generates a potentially infinite number of states
during the search.

_ This variation can lead to several variations. First, each
k} can be a different group of states. In this case, states are
classified based not only on their type of representation but
also on how they are derived. Second, the number of times
in which ¢; is applied can be limited.

A very common situation is that an operator itself uses
a search process.”"'® We can refine the granularity of the
state space on a higher level to reflect this fact. For example,
Shapiro’s pattern match is an operator in #s. Suppose an
operator ¢ conducts a search process for a subproblem which
is expressed as (K', T', s’, G'). It is easy to accommodate
this subproblem to the entire framework by letting a new
state space be the union of the two existing state spaces
with new operators being U 7' —¢t. The start state and goal
states remain the same. Note that it is essential that the start
state s’ and the goal states g’ have a conceptually equivalent
entity with states in K; for example, if each state in K
contains the information of /, then so do s’ and G'.

1266 / OPTICAL ENGINEERING / June 1992 / Vol. 31 No. 6

The formalizations only specify the transformation of a
vision problem from one model to another. Its feasibility
needs more elaboration. The following make vision prob-
lems significant compared to other search problems:

Heterogeneous states. Clearly, the state-space K is not
homogeneous, at least at the level of the representation
of states. On one extreme, the start state s is a two-
dimensional array of pixels. On the other extreme,
the output is in the form of symbolic descriptions
(depending on the application and implementation).
The intermediate states have forms between these two
extremes. This characteristic violates one of the rea-
sons of the success of previous studies, a uniform
representation of states.

Heterogeneous operators. The set T includes various im-
age operators. Different operators need different in-
puts and have various degrees of computational com-
plexity. The characteristic also violates the
homogeneity.

Causal orders between operators and states. Although
operators and states are heterogeneous, there exist
certain relations between operators and operators, op-
erators and states, and states and states. Operators
must be applied in certain orders and have certain sets
of states as their inputs and outputs.

An immediate observation is that the state-space search model
is not strong enough to completely specify vision problems.
On the other hand, we can utilize the characteristics of vision
problems to deal with some of the concerns of state-space
search problems such as the combinatorial explosion. The
modified model is described in the next subsection.

2.3 Algorithm Graph

The state-space search model can be modified with a new
component to specify the characteristics of vision algo-
rithms. A requirement of this new component is that it must
reflect the causal relation and heterogeneity of vision al-
gorithms. Because it is convenient to specify these char-
acteristics using a graph-like structure, the term algorithm
graph is used to denote such a structure. A node in an
algorithm graph corresponds to a set of states; an arc cor-
responds to a subset of the operators.

Formally, let A=(V, E) be an algorithm graph with ver-
tices V= U ;w, and edges E= U ;er,. Each vertex v; denotes
a set of states. A directed edge eTj=(vki, vkj) from node
Vi, to node vy; is a set of operators 7; that have k; as their
domains and k; as their ranges.

Suppose k; is the set of states represented by vy ; then the
following properties hold:

K=Uk; (19)

kiNkj=0, provided i#j . (20)

Note that the operators in the set are not necessarily clas-
sified into disjoint subsets by the algorithm graph. It is
possible for an operator to be used for different states.
Now a vision problem Vs in terms of the state-space
search model can be completely characterized by a vector
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Fig. 1 Example of an algorithm graph.

with five components: start state s, operators 7T, state space
K, goal states G, and an algorithm graph A. Or

Vs=(s, T, K, G, A) . @21

In this formalization, the information contained in a state
is more than the image data. The corresponding node in the
algorithm graph is another piece of information contained
in a state.

An algorithm graph may be regarded as a problem-solv-
ing process for a given vision problem. It specifies the order
that the operators must follow. A very general example of
an algorithm graph is shown in Fig. 1. This graph represents
a sequential problem-solving process that captures the es-
sential steps of image understanding. Besides specification,
an algorithm graph serves another important purpose: It
represents a move generator for the given vision problem.
Because any state has associated information about the cor-
responding nodes in the algorithm graph, we can apply the
class of operators corresponding to the arcs emanating from
the node. It is necessary to associate with each state a status
to indicate which node in the algorithm graph to which the
state corresponds. This association is required because
sometimes we cannot tell the status of a state from the
representation of the image only. For example, the same
binary image might have a different status and involve the
use of different operators to generate its successors. This
situation occurs when a specific algorithm graph is used
rather than a general one.

Conceptually, any vision problem has a most general
algorithm graph that is implied by the causal relations be-
tween operators. Since each operator has its specific range
and domain, the most general algorithm graph can be ob-
tained by gathering all operators with the same domain and
range together. Besides the two properties of all algorithm
graphs, the following property also holds for the most gen-
eral graphs:

er;,N eTj=0, provided i#j . 22)

The property states that operators are classified into disjoint
subsets corresponding to vertices in a most general algorithm
graph.

The most general algorithm graph gives no information
except the data types accepted and generated by operators.

A more specific algorithm graph can reveal more structure
of the problem. A user can specify an algorithm graph to
be used by the system, or alternatively, the system can try
to solve a problem through the most general algorithm graph.
The selection of individual operators at each state is con-
trolled by the search strategy as well as the cost function
defined in the previous subsection. In specifying the algo-
rithm graph, the user can use heuristics or domain knowl-
edge to select the operators. For example, planning'® and
Bolles’ operator-suggestion mechanism!” are good methods
that can be used in the stage of algorithm specification.

3 Information Distortion as Cost Function

The design of cost functions plays a key role in modeling
vision problems as state-space search problems. Cost func-
tions are defined based on the information distortions. De-
tails are discussed in this section.

3.1  Why Information Distortion?

Computer vision is a process of information retrieval and
transformation. The output of an image recognition process
should present what the input image has. The only difference
between the input and output is that they use different rep-
resentations of the information. Unfortunately, during the
course of information transformation, some distortions will
occur. Consider the preprocessing phase. Noises are re-
moved under the situation that no information about the
image has been retrieved. The result is that interesting pat-
terns are modified, although the intention is to remove noises.
Another example is the matching phase. We usually need
to guess which model most resembles the data because an
exact match is unlikely.

Since we want the output to have the exact information
that the input has, the best way to judge the appropriateness
of different outputs is to compare their information differ-
ence from the input. The information difference between
an output and the input comes from two sources. The first
category comes from the changes in image content made
by operators on the input image. The second category is the
difference between models and data. Both categories of
information difference are referred to as information dis-
tortion and are treated uniformly in the design of cost func-
tion.

Cost functions are ideally defined in terms of the infor-
mation distortion introduced by an operator or a sequence
of operators. However, there are two major difficulties in
this approach:

1. Irrelevance of information. Because computer vision
itself is a task of information processing, operations
at earlier stages of computer vision are usually done
without the knowledge of what the final interpretation
will be. It is therefore impossible to design cost func-
tions that are applicable at these stages and that are
based on the correct interpretation, an interpretation
that cannot be known until the last step of the vision
process has been completed. This difficulty is referred
to as the ‘‘potential’’ irrelevance of information be-
cause one attempts to find useful information at the
steps where that information is not immediately avail-
able.
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2. Heterogeneity of information. The second difficulty
comes from the diversity of information sources in
computer vision. On one end we have images in the
form of two-dimensional arrays. On the other end,
we have the representations in the form of symbolic
structures. Furthermore, an inappropriate granularity
of operators may result in states that represent dif-
ferent objects and it is difficult to define the difference
between a pixel and an object. It is even meaningless
to compute the difference of two numbers if they
represent different ranges of quantities, such as the
difference of a gray-value pixel and a binary pixel.
It is unlikely that a unique cost function can exist in
such a diverse domain. Because it is obvious that we
need more than one type of distortion function, the
difficulty of heterogeneity is reduced to how different
measurements of information distortion are unified.

3.2 Information Distortion at the Iconic Level

One method for solving the difficulty of irrelevance of in-
formation is to delay the computation of the information
distortion occurring at the preprocessing and labeling steps
to later steps.

3.2.1 Delayed computation

Vision itself is a process of information retrieval. We can
obtain the information contained in an image only after we
process the image. Obviously, if the computation of infor-
mation is delayed to the last step of machine vision, we can
get exact information in the input image. Doing this results
in an unrealistic situation: We need to execute several steps
to decide the next step. A compromise between this extreme
and computing the pure difference pixel by pixel is to com-
pute the information distortion at the grouping step. An
appropriate selection of the compromise should allow the
decision to be made early enough and should provide an
accurate measurement of the information distortion.

The image is segmented into several groups after the
grouping step. At this point the attributes of pixels are de-
cided and we can have better measurements of the distortions
resulting from the sequence of image operations. For sim-
plicity we assume that each group is a region. Other types
of groups, such as edges, can be analyzed in the same way.
These groups are used as the information units for computing
the information distortion. The information units of the input
are defined with respect to the information units of the
output.

Formally, let I(r, ¢) be the very first input image, and
let R =(R;---Ry) be a segmentation of the output image of
a sequence of operations that have I(r, c) as the first input.
Define a segmentation $; on I(r, ¢) to be the same as R.
That is, after a segmented image is obtained after the group-
ing step, the input image is segmented using the identical
segmentation. The information distortion resulting from pre-
processing, labeling, and grouping is computed based on
the information units formed after the grouping step. Since
the computation can be done only after the image is seg-
mented, the method is referred to as ‘‘delayed computa-
tion.”” The information distortion can be defined as

>, PR); , (23)
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in which dg; denotes a measurement of difference of two
corresponding regions, R;ER; and R,ER. A single sub-
script R; is used because the two regions in both images
have the same set of pixels. P(R;) represents the weight of
region R; in the image.

Before defining &g, let’s first define an ideal image
A(r, ¢) as an image in which each pixel has an ideal value.
The ideal value of a pixel is defined as the value that can
yield the exact attribute used in the grouping phase. How
ideal values are computed is discussed in the next subsec-
tion.

Several measurements of the function 8z can be defined
from A(r, ¢). Two of them are the total difference Tk of a
group and the average difference A of the group. The total
difference of a group R is defined as the summation of the
square of the differences between A(r, ¢) and pixels be-
longing to same group in I(r, ¢). The average difference is
the total difference normalized by the size of the group.
Formally, they are defined as

Tr= >, U, )= A, OP= D, [d(r, o), and

(r, ©OER (r, ©)ER
(24)
Tr
AR=—, 25

in which |R| is the size of R, or the number of pixels in the
group |R|.

Intuitively, the definition is based on the assumption that
the groups used after the grouping step have their values
presented on the very first input image. However, these
values are idealized so they can be processed by the later
steps. The machine ‘‘hallucinates’’ some ideal groups that
are not presented by the very first input image. For example,
if the foreground pixels should have their gray values higher
than 200, then all values higher than 200 are ideal. Some
preprocessing procedures might increase some pixels to the
ideal value, or the grouping phase might merge some pixels
with gray values lower than 200 to a larger foreground
region. No matter what the values are after grouping, the
machine ‘‘sees’” an image I(r, ¢), which is the input and
“‘hallucinates’’ an image A(r, c¢), which is an ideal image.

An example is shown in Fig. 2. In this figure, (a) is the
input image and (b) is the image after processing. A seg-
mentation of the image is shown in (c) with ideal values in
two regions. In this example, we assume that all pixels in
region R; have the ideal value 7, pixels at region R have
the ideal value 6, and pixels at region R3 have the ideal
value 0. The differences between pixels of I(r, ¢) and
A(r, c) are shown in (d). The total differences and average
differences of all groups are

Try=10(1)+4+4+4=22 (26)
22
=55 27
AR, 77 27
Tz, =0 (28)
Ag,=0 (29)
Try=149+49=59 (30)
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(g) segmented input image (h) |A(r,c) = I(r,c)?
Fig. 2 Example of information distortion at the iconic level; a blank denotes 0.
Ap = 59 31) Notice that the groups used in defining the information
R3™Ho11 - distortion are the groups input to the extracting step. When-

The average difference is a better measurement of infor-
mation distortion than the total difference because it has
been normalized by the size of the group. The total differ-
ence Tr does not provide any useful measurement because
it is actually the pure difference pixel by pixel. However,
we show later that its probability distribution is a useful
measurement.

ever there is a change of groups, A(r, ¢) as well as the
distortion must be recomputed. For example, in the same
figure, (e) is another possible segmentation, for which the
ideal values of pixels are shown in (f). Because regions
may be merged or split several times in the grouping phase,
the ideal values may vary. If (e) is used, then Rj; is the
group (region) used for the extracting step and Tg;, or Ag;,
should be used. A new R; is shown in (g), and (h) is the
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difference between I(r, ¢) and the new A(r, c¢). Based on
these values, we have

Triy=4+4+4+28(1)=40 (32)
40
AR12=E . (33)

Tr; and Ag; remain the same.

Although regions are used to derive the information dis-
tortion throughout this section, we want to point out that
this approach also applies to other types of groups such as
edges. As long as we can decide the ideal value of a pixel,
we can calculate the difference between the data and its
ideal model. This approach is practical because most vision
processes have only one operator for each of the steps of
preprocessing, labeling, and grouping. The delay should
not cause many unnecessary searches.

3.2.2 Deciding ideal values

An assumption used in the previous subsection is that the
ideal values of pixels are known. This subsection is devoted
to deriving ideal values. The idea behind the use of ideal
values is to dynamically decide the models of groups. In
Martelli’s edge detection,’ low curvature and high contrast
are the models of edges. The models of groups are hard to
define statically because they vary with the standard to eval-
uate the groups as well as the grouping methods.

There are two cases in the decision of ideal values, direct
mapping and spectrum analysis, which needs more elabo-
ration.

Direct mapping. In some situations, the attribute of a
pixel is defined in terms of a numerical function. The ideal
value of a pixel can be derived exactly in these cases. An
example is the facet model of image,'® which declares that
the ideal value of a pixel is a linear function of its row and
column:

A(r, o)=IXr+mxc+n (34)

in which [, m, and n are constants. One special case of the
facet model is that in which all pixels in a region have an
identical value:

A(r, ©)=k (35)
in which % is a constant.

Spectrum analysis. Direct mapping is not very common
in computer vision. In most situations the attributes of pixels
are defined symbolically. We need to define a mapping from
these symbolic terms to their corresponding numerical val-
ues. For example, suppose thresholding is used in labeling
pixels, and the image is segmented by grouping foreground
pixels and background pixels. The attributes used in the
grouping phase can be interpreted as ‘‘dark’’ and ‘‘bright.”’
We need to decide the corresponding gray values of the two
attributes in order to compute the distortion. In general, the
mapping is one-to-many: An attribute corresponds to a range
of numerical values. Pixels that fall in the range and are
labeled with the corresponding attribute are considered ideal
and contribute no distortion.
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The approach is to analyze the range of the mapping, or
the spectrum of corresponding numerical values. In the pre-
vious example, the histogram of the gray values can be
analyzed and used to decide which range contributes to dark
pixels and which range contributes to bright pixels. This
decision process is called quantification of attributes.'® It
can be considered an inverse transformation of information
processing, as opposed to the vision process. A conceptually
similar process is that of computing the projection of three-
dimensional objects.

The steps for deciding the ideal values of a set of two
attributes are as follows:

1. Construct the spectrum of numerical values from the
data.

2. Detect the valleys of the spectrum. A valley is a flat
range between two local maxima.

3. Use the lower (higher) bound of the valley as the ideal
value of the symbolic terms assigned to the range of
numerical values left (right) of the valley.

An example is shown in Fig. 3. The figure is a hypoth-
esized spectrum of gray values used for quantifying two
attributes, dark and bright. The spectrum has two obvious
peaks and a valley. The ideal value of the bright pixels that
are left of the valley is 45, while the ideal value of the dark
pixels is 50. If a pixel is grouped in a foreground object
and its gray value is larger than 45 then it will contribute
positively to the amount of distortion measured.

Windowing is necessary in any complex scene to con-
struct an appropriate spectrum, because different areas in a
complex scene usually have the same attributes mapping to
different ranges of numerical values. A similar approach is
to use a mask to decide thresholding values for different
parts of an image.?°

3.3 Information Distortion at the Symbolic Level

Methods used to measure the information distortion occur-
ring at the symbolic level are highly domain dependent.
Distortions occur when a model is used to interpret the data
and there are differences between the model and the data.
These differences contribute to the information distortion.
Although the idea is straightforward, the measurement is
not because we need to use numerical values to represent
the differences between two symbolically described objects.
Moreover, the differences appear at all levels of the rep-
resentation of objects, such as component, structural, and
relational differences.

The measurement of differences certainly depends on the
representation of objects. The simplest representation of an
object is a vector of features, and therefore the information
distortion can be defined as a weighted-Euclidean distance
between two vectors. A system that uses such measurement
is the ARGOS system.'?

Feature vectors are not enough for computing the dif-
ferences between two objects with complex shapes. Objects
with complex shapes are usually described by primitive
components and their relationships. To compute the differ-
ence, both the feature vectors of components and the re-
lationships between components are considered. A similar
example is the structural description of objects and the inex-
act match between them.'® The degree of inexactness is
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Fig. 3 A hypothesized spectrum of gray values used for attributes bright and dark.

computed by summing the differences between two objects.
The differences consist of the following:

1. The summation of differences between primitive
components.

2. The errors of missing components. When two objects
are compared, it is possible that a primitive compo-
nent of one object does not have a corresponding
component on the other object.

3. Relational errors, which have only two possibilities:
match or no match. Two objects match and have no
relational error if the errors of corresponding com-
ponents and missing parts are smaller than some
thresholds.

A cost function can be designed by modifying the relational
errors to have a value O if the summation of component
error and missing component error is smaller than a thresh-
old, and to have an arbitrary large value otherwise.

The measurement of information distortion in interpret-
ing images with more than one object should include two
more quantities:

1. Adjacency constraint. The interpretation of one region
as being an object may affect the interpretation of its
adjacent regions. For example, when a region is in-
terpreted as a river then it is unlikely that its adjacent
regions will be sky in the domain of outdoor scenes.
A high cost must be added to the region interpreted
as sky when its adjacent region has been interpreted
as river.

2. Location constraint. When the world model is re-
stricted, certain portions of the image cannot be in-
terpreted as some objects. An example of impossible
interpretation that violates the location knowledge of
the world model is a region on the bottom of an image
being interpreted as sky. In this case a high cost must
be added to the cost function.

Nearly all vision systems use a model-based approach in
the high-level vision part. To compute the information dis-
tortion at this level is to compute the difference between
the data and its interpretation, which is a model known to
the system. The computation depends completely on the
representation methods of the models.

3.4 Unification of Cost Functions

Different categories of information distortions need to be
unified to have a simple control mechanism in the state-
space search model.

3.4.1 The approach

One approach for unification is to find each of the probability
distributions. If the distributions can be found, each kind
of information distortion can be normalized to a number
between O and 1. Let X denote the random variable of
information distortion introduced by image operation T.
Suppose that the information distortion is x. Because the
distribution of X is known, the probability that X>x can be
found. This value can be interpreted as the ‘‘likelihood of
similarity’’ of the output Or of T with respect to its input
It. Therefore, we can define the confidence level of Or with
respect to It as P(X>x), where P(y) is the probability of
the event y.

A benefit of using probability-like confidence levels is
that tradmonal reasoning methods such as Bayesian decision
theory?! have developed to a rather mature level in providing
the probability of correct interpretation at the pattern rec-
ognition level. Two types of probabilities can be easily
combined. Instead of using the weighted sum XZ;w;d; of
information distortion as the cost of paths, we can define
the confidence level of the path as I1,C;, in which d; and C;
are information distortion and confidence level of arc i, and
w; is a weighting factor. The computation of the probability
of correct interpretation is easier than that of the probability
of errors or weighted sum of errors. Various confidence
values are derived in the following.

3.4.2 Confidence values at the iconic level

Let us assume that each d(r, c¢) [see Eq (24)] has a normal
dlstnbutlon with mean 0 and variance o2, denoted as
n(0, o). Based on this assumption, the distribution of TR
and Ag can be derived. Because d(r, c¢) has n(0, o?),
[d(r, c)] has a gamma distribution with parameters 1/2 and
1/26* (Ref. 22), denoted as I'(1/2, 1/20?). Then, T is the
summation of |R| independent random variables with
I'(1/2, 1/26*) distribution; therefore, Tx has a gamma
distribution w1th parameters |R|/2 and 1/202, denoted as
L(R|12, 1/26%).
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The probability distribution of Ag can be derived too.
Since

—Z(r, oerd(r, 0)2_ d(r, c)?
IR| .9k IR|

and d(r, ¢)/(|R|)"? has a normal distribution with mean 0
and variance o%/|R|, the random variable d(r, ¢)%/|R| has a
gamma distribution with parameters 1/2 and |R|/2¢?, de-
noted as I'(1/2, |R|/20?). Finally, =d(r, ¢)*/|R| has a gamma
distribution with parameters |R|/2 and |R|/20?, denoted as
T'(R)/2, |R|/26®), which is the distribution function of the
average difference Ag.

Now we can give the probability that R is ideal, or equiv-
alently, the confidence level for the image operations that
transform R to its ideal. Once the value of Tk or Ag has
been computed, let this value be x. The probability that
Tr=x can be found; the confidence level of the hypothesis
that Tg is 0, or R is perfect, will be 1 — P(Tg=x), or

R (36)

1—-P(Tg=x)

1-F(x) (37)

confidence of R= {

in which F(x) is the cumulative distribution function of x.

Because the gamma function is actually a family of func-
tions and their values cannot be computed by evaluating a
formula, a further simplification is required. The value
TR/O‘Z, which is the total difference normalized by the factor
o”, can be used if we assume that the variance o is fixed
in a certain domain, that is, TR/0'2 is a measurement of
distortion. Its distribution is simpler than T and Ag. The
random variable d(r, ¢)/o has a standard normal distribution
with mean O and variance 1, or n(0, 1). The square of
d(r, ¢)/o has a gamma distribution with parameters 1/2 and
1/2, or I'(1/2, 1/2). The summation of the normalized pixel
distortion over the entire group having |R| pixels has a gamma
distribution with parameters |R|/2 and 1/2; this special case
of the gamma function has a chi-square distribution with
degree of freedom |R|, or

R| 1
F("z" 5>=x2(IRI> : (38)

Figure 4 gives T/a? versus group size under various con-
fidence levels. The region (0 region) above the curve de-
noting the confidence level O is the region in which all points
have the confidence level 0. All points in this region are
small groups having large distortion. Similarly, the region
(1 region) below the curve denoting the confidence level 1
is the region in which all points have the confidence level
1. All points in this region are large groups having small
distortions.

3.4.3 Confidence values at the symbolic level

Various methods can be used to compute the confidence
levels for transformed images at the symbolic level. Ex-
amples of these methods include the use of Dempster-Shafer
methods®® and Bayesian decision rules.?! Both methods
compute the degree of confidence in a prediction or guess
under some given pieces of evidence. In computer vision,
items of evidence are generally features of an image, and
the guess is to which model the image belongs.
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Fig. 4 An illustration of normalized distortion versus region size.

An important assumption in applying these methods is
that the distortion resulting from gathering evidence from
data can be ignored. This assumption might not be true for
two reasons:

1. Operators for feature extraction are not accurate, es-
pecially when they discretize the continuous data.

2. The transformation from image data to features is a
many-to-one mapping; information is lost during the
transformation.

These distortions can be ignored under the condition that
the number of training instances used to construct the models
is large enough to cover all possible outcomes. Instead of
using a single model for a known object, the Bayesian
approach constructs the a priori probabilities by considering
as many instances as possible. All possible outcomes of
features should be taken into account. We assume that the
distortions resulting from evidence collection or feature ex-
traction can be ignored. That means the confidence level of
the extracting step is 1.

Confidence values at the scene level depend on the pur-
pose of the vision process. In purposive vision, ' the goal
is to locate an object in an image, and therefore the con-
fidence level would be the same as for a single pattern’s
recognition as we have presented above. If the goal is to
label the entire image, the confidence level will be the prod-
uct of confidence levels of each region’s labeling, multiplied
by the numbers representing the modifications of other
knowledge, such as that of location and adjacency.

It is sometimes difficult to maintain a pure probability
form because the location knowledge and adjacency knowl-
edge are hard to represent as probabilities. In the ARGOS
system, for example, the term *‘likelihood’’ is used instead,
because the values used to represent the adjacency knowl-
edge are assigned without justifications.

4 Building a Vision System

A vision system, VISTAS (for VISion as STAte-space Search),
is constructed based on the state-space search model.

4.1 The Philosophy of Design

It has been pointed out that complex Al systems are often
built on intensive knowledge or general methods.>* The
former approach is useful in solving a particular problem
but cannot be used as a general problem-solving method-
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ology. Because our goal is to develop a general approach
to solving vision problems, the latter method is adopted to
design our prototype system.

The success of systems based on general methods must
satisfy two requirements:

1. The system must be able to provide problem-solving
techniques when it lacks domain knowledge.

2. The system must be easily combined with domain
knowledge to have more powerful problem-solving
techniques when the domain knowledge is available.

An example of systems based on this principle is SOAR .

The most fundamental problem-solving method in the
state-space search model is the generic search procedure.
Based on the generic search procedure, some more specific
methods such as depth-first search strategy and breadth-first
strategy can be constructed and put into the system because
these methods need little domain knowledge. Cost functions
should be included in the basic general methods, because
they are defined in terms of the type of images. Once the
cost functions are built in, the best-first search strategy can
be put into the system.

The basic strategy of designing a move generator is to
have all operators typed, or categorized into classes cor-
responding to the steps of the vision process. This cate-
gorization allows the system to use the most general algo-
rithm graph to expand a search tree. At each step, the control
will generate all possible successors of a node by applying
operators if the type of the node is consistent with the input
type of the operators.

Domain knowledge is consulted through specific algo-
rithm graphs defined by users. When an algorithm graph is
specified, it restricts the availability of operators as well as
the order in which the operators are applied. The second
method of consulting domain knowledge is to parameterize
operators. An example is the thresholding operator. When
domain knowledge is available, the thresholding values are
selected by consulting the heuristic routines based on do-
main knowledge; otherwise all possible values are used.

4.2 System Organization

The VISTAS system is based on the philosophy discussed
in the previous subsection. The system is implemented in
Kyoto Common Lisp (KCL) under UNIX. It can solve search-
based vision problems when little knowledge about the do-
main is known. The method it uses is to apply all possible
operators and parameters to generate a complete search tree
under the control of the cost functions.

Figure 5 shows the organization of VISTAS. The heart
of the system is the control module which is essentially a
generic search routine with cost functions. Various search
techniques can be set by users.

The database module has two parts. One is the long-term
memory, which stores the models of the world recognized
by the system. In the context of character recognition, models
consist of feature vectors of characters and their a priori
probabilities. The second part of the database is the short-
term memory, which is the working space when the system
is running. Usually, the short-term memory stores a search
tree and related information such as an open list and a closed
list.

operators control heuristics

utility database

Fig. 5 System organization of VISTAS.

The operators module is a collection of image operators.
There are two types of operators. One category of operators
can directly be applied as search operators; i.e., their domain
and range are consistent with the states used in search. The
second category of operators does not correspond with the
states either at their range or domain or both. An example
of the latter is the histogram computation routine. To dis-
tinguish these two categories, the former are called operators
and the latter are called functions.

The heuristics module is a collection of methods for
operator selection, such as those in Ref. 26. The outputs of
these methods are plausible operators or parameters of op-
erators for use in state-space search. The existence of domain-
specific knowledge does not affect the functionalities of
other components. This knowledge is used to increase the
power of the problem-solving techniques. An example of
heuristics is the selection of thresholding values based on
the histogram analysis.

The utility module is a collection of serv1ce routines,
mcludmg a Lisp interface to WFF file format,?’ some low-
level image-processing routines for generating images, and
a database interface for computing a priori probabilities of
models. The system is able to accept an algorithm graph as
its generic search tree. The space of search is generated by
expanding the generic search tree.

4.3 Experiments on Character Recognition

To test the feasibility of VISTAS, we have performed ex-
periments on simple character recognition. Although the
domain is restricted, it did explore some characteristics of
the state-space search model as well as the VISTAS system.

4.3.1 Informal description

The mput for the character recogmtlon problem is a gray-
value image consisting of a 327 array of 8-bit pixels. Each
image contains one character, which may occur at one of
various sizes. Characters are in the foreground with darker
pixels. Figure 6 shows some examples of input images. The
output is the classification of the input image.

Characters are selected from the first few pages of the
novel Moby Dick, published by The New American Library
of World Literature in 1961, thirteenth prmtmg Image data
are generated and stored in WFF format,?’ which is written
in C. A KCL to C interface has been implemented for calling
the WFF package from VISTAS.
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Fig. 6 Examples of input data used in the experiment of character
recognition.

4.3.2 Problem decomposition

The character recognition problem can roughly be decom-
posed into several steps, as shown in Fig. 7. The left side
is the character recognition problem and the right side is
the process of general vision problems, which was described
in Sec. 2.

To simplify the experiment, the preprocessing phase is
ignored because it is relatively problem independent. Noise
removal operations can be done at a higher level when more
information about the image has been retrieved. Cost func-
tions are evaluated after a sequence of image operations but
not after a single operator has been applied. These situations
allow us to perform the experiment without including the
preprocessing step.

Because the classification is based on the geometry of
the character, either edge detection or region growing can
serve as the operator for segmentation. Therefore, the la-
beling phase can be done by labeling pixels as either edge
and nonedge or dark and bright.

The extracting phase is effected by feature-extraction
routines. The matching phase is served by matching the
feature vector of data to prestored feature vectors. In VISTAS
the extracting phase and the matching phase are combined
for computational efficiency.
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Fig. 7 Character recognition versus computer vision.

Table 1 Experimental results of character recognition (a) without
validation and (b) with validation in classification.

best-first | depth-first | breadth-first
average open nodes at first level 4.2 3.3 6.6
average total open nodes 11.2 79 16.9
recognition rate 43/48 41/48 41/48

(2

best-first | depth-first | breadth-first
average open nodes at first level 4.1 3.2 5.9
average total open nodes 19.1 15.2 28.2
recognition rate 43/48 40/48 40/48

(b)

From the comparison of the character recognition prob-
lem and the process of computer vision, we can see that the
former follows most steps of the latter, which is what we
want to explore. What the character recognition problem
does not present is mostly in the matching step. However,
since the cost function of this step is model-based, a simple
matching step does not affect our major concern of the state-
space search model and the design of cost functions.

4.3.3 Experimental result

We have performed three search strategies on the top level
and two strategies on the second level, so their combinations
have six different search strategies. Details about these strat-
egies can be found in Ref. 15. Table 1(a) shows the results
without validation in classification; Table 1(b) shows the
results with validation in classification.

The recognition rate shown in Table 1(b) needs some
explanation. In all three strategies, three test data are clas-
sified as belonging to no class. Therefore, the probability
of correct classification should be higher than the values
shown in the table. Some characters are missing because
the feature space is sparse or the training data are incom-
plete. We suggest that in this case strategies with validation
should be used. After a set of enough training data is gath-
ered, then strategies without validation can be used to save
computational cost.

4.4 Extensibility

The VISTAS system is not a complete vision system because
currently only operators for simple object and character
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recognition are implemented. Also, the long-term memory
of the database contains models for characters only. It is
our goal that the programs for handling character recognition
problems need to be changed only minimally for other ap-
plications. The achievement of this goal relies on the gen-
erality of the state-space search model as well as the design
of the VISTAS system.

It has been emphasized in Sec. 2 that one reason for
using the state-space search model is its generality. The
model allows different problems to share the same coor-
dination scheme and possibly many common operators. The
coordination scheme is the search routine encoded in the
control module of VISTAS; therefore, the most robust com-
ponent in VISTAS is its control module.

The possibility of future extension has been taken into
account in the design of all components of VISTAS. The
organization does not need any change for further extension;
the extension affects only the content of each component.
For example, adding models to the database or adding in-
telligent methods to the heuristics can broaden the scope of
the VISTAS system, while the functionality of each com-
ponent remains the same.

5 Parallel Execution of Multiple Paths

One benefit of structuring the vision algorithm as a state-
space search is that a multiplicity of paths toward goal nodes
in the state space can be explored concurrently. There are
essentially three ways to introduce parallelism into a se-
quential search problem28:

1. The loop can be performed by several processors con-
currently; that is, they can expand more than one node
at a time. This is the standard way for parallelizing
a search algorithm.

2. The successors of a node can be generated by several
processors concurrently.

3. Parallel searching and sorting methods can be applied
to manipulate the open list.

The third method does not gain much speedup because in
the domain of vision the time spent in expanding a node is
much longer than that in manipulating the open list. The
former is actually an image operation. The time spent in
the latter can be ignored compared to any image operation.

Based on these observations, we developed a new method,
the V* algorithm, which, unlike earlier parallel search al-
gorithms, generates the successors of a state in parallel. In
machine vision, this part of the search process is very ex-
pensive, and thus V* permits substantial speedup. An ex-
perimental evaluation of V* has been done based on a sim-
ulation of a character recognition algorithm. The parallel
programs were developed on the Sequent Balance 21000
system, under the PRESTO parallel programming environ-
ment.26 Balance 21000 uses a UNIX-like operating system
and has up to 30 physical processors. However, PRESTO
limits the number of processors to 16.

There are two metrics showing the performance of the
algorithm V*, as shown in Fig. 8. One shows the ‘‘real’’
speedup using n processors, S(n), which is computed by
the following formula:

running time of sequential program
S(n)=

running time of parallel program using n processors
(39)

S'(n)=
running time of parallel program using one processor

running time of parallel program using n processors
(40)

This measure is inappropriate because it does not tell the
speedup gained by parallelizing the algorithm. However,
we can learn how the parallel algorithm is scalable using
the number of processors and how synchronization affects
the performance by comparing two figures.

Theoretically, the speedup cannot increase without lim-
itation. It is restricted by both the available hardware and
the software structure.” The former is the number of pro-
cessors used in parallel. Let us define Uy[S(n)] to be the
hardware upper bound; then we have

UnlS(n)]=n . 41

The latter is the inherently sequential part of the program.
In the context of a best-first search problem, it is the exe-
cution time from the start state to the goal state. The time
spent in the solution path is inherently sequential and any
search instance must execute the operators along the solution
path, no matter how many processors the system has. Let
U;[S(n)] be the software upper bound; we have

running time of sequential search program

UsIStm1= running time on the solution path

42)

which is a constant, independent of n.

The upper bound of the speedup, U[S(n)], of the parallel
algorithm is the minimum of the hardware upper bound and
the software upper bound. The details of the V* algorithms
and its experimental results can be found in Ref. 31.

6 Conclusions

The development of image processing at the individual op-
erator level is rather mature in the sense that many optimal
or near-optimal operators for specific types of images have
been developed. However, the lack of knowledge about
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other levels of processing while designing these operators
makes them far from robust. The development of an al-
gorithm for the specific application of computer vision is
more difficult.

This paper presented a promising approach to synthesize
vision process based on the state-space search model. The
model is able to find the best solution path from the available
image operators. The appropriateness of a solution path is
judged in terms of information distortion, which is a measure
of difference between the input image and the interpretation
made by the system. Robustness can be achieved when all
possible sequences of image operators have been accom-
modated.

One limitation of the approach presented in this paper is
that the cost of a path can be evaluated only after certain
steps of operators have been executed. This is an inherently
hard problem in the research of computer vision, but not a
specific limitation of our model. Exact cost cannot be found
at the earlier stages of computer vision unless we can really
model the distributions of images at these levels.
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