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It is well known that, from the modal theory of room acoustics, resonance will occur if the 
driving frequency of a sound source located in a room coincides with one of the natural 
frequencies of the sound field. In this study, an eigenanalysis technique based on the boundary 
element method (BEM) is developed for extracting eigenmodes of a sound field in an 
enclosure. A method of singular value search, in conjunction with a golden section 
optimization algorithm, is utilized for efficient calculation of eigenmodes. In particular, modes 
associated with repeated eigenvalues can be well resolved by the technique developed in this 
research. Enclosures of various geometries have been analyzed by using the developed 
algorithm in a numerical simulation. Satisfactory agreement has been achieved between the 
BEM results, the FEM results, and the analytical solutions if available. 

PACS numbers: 43.20.Ks, 43.55.Br 

INTRODUCTION 

Resonance phenomenon in an enclosure is one of the 
important subjects in research of acoustics. The importance 
lies in the fact that the knowledge of acoustic eigenmodes is 
essential to the analysis of dynamic responses of a sound field 
in an enclosure. For example, modal theory is employed in 
room acoustics for analyzing reverberation phenomena 
when ray acoustics does not provide, especially for low and 
intermediate frequency ranges, a complete modeling of 
sound fields in an enclosure. 1.2 Adequate distribution of res- 
onance frequencies and mode shapes is very critical in the 
optimal design of a room. Another example is the knock 
phenomenon of combustion chambers. Research 3 has 
shown that combustion knock, which is harmful to engines, 
is mainly due to acoustic resonance in combustion cham- 
bers. Proper tuning of resonance frequencies will reduce 
combustion knock to a minimum so that engine perfor- 
mance can be improved. 

While separable coordinate systems 4 are available for 
analytically calculating acoustic eigenmodes in dealing with 
enclosures of simple geometries, one has to resort to numeri- 
cal methods, e.g., the finite element method (FEM) and the 
boundary element method (BEM) for enclosures of com- 
plex geometries. Since only boundary meshes need be con- 
structed in the application of BEM, dimensionality of the 
original problem is reduced by one. This fact makes BEM a 
particularly attractive technique for eigenanalysis of enclo- 
sure resonance. 

The objective of this study is to develop a numerical 
technique for extracting acoustic eigenmodes in enclosures 
based on the boundary element formulation and to demon- 
strate how best to implement it. Problems involved in the 
implementation phase including resolution of eigenmodes 
associated with repeated eigenvalues and algorithms of effi- 
cient search for eigenmodes are investigated. In order to ver- 
ify the BEM-based eigenanalysis technique, a rectangular 
room with a known exact solution is selected as the first test 

object in a numerical simulation. Numerical performance of 
the developed method is also compared with that of another 
commonly used method, FEM. Higher accuracy has been 
achieved by using BEM than FEM. Then, both methods are 
applied to the case of a car interior. The results of eigen- 
modes obtained from these eigenanalysis methods display 
excellent agreement. 

I. THE BEM-BASED EIGENANALYSIS TECHNIQUE 

In the beginning of this section, the theory of integral 
equations for the boundary value problems of sound fields 
will be briefly reviewed. Then, a BEM-based eigenanalysis 
technique in conjunction with eigenmode search schemes 
will be presented. Some technical problems during the im- 
plementation phase will also be discussed. 

A. The BEM-based eigenanalysis of sound field in an 
enclosure 

From the theory of linear acoustics, it is well known that 
the solution of a boundary value problem (see Fig. 1 ) asso- 
ciated with a monochromatic sound field in an enclosure is 

represented by the following Kirchhoff-Helmholtz equa- 
tion: *-6 

where 

ap(xp ) = G(xp,Xq ) • (Xq) 

-- p(Xq ) • (Xp,Xq)dSq, 

tl/4sr, 

x•,•V 

x•(VUS) 

x•S, S a smooth surface 

x•S, S a nonsmooth surface 
(11 is the solid angle). 5 

(1) 

The complex variable p (x) denotes the sound pressure mea- 
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FIG. 1. Schematic diagram for the interior boundary value problem of a 
sound field in an enclosure. 

sured at the location x. The free-space Green's function 
G(xp,Xq ) = exp(ikr)/4rcr for the Helmholtz equation in a 
three-dimensional space. The parameter k is the wave num- 
ber (k = co/c, with co being the angular frequency and c be- 
ing the speed of sound). The position vector xp and Xq de- 
note, respectively, the field point and the source point. The 
distance r = Ix• -- xql. The directional directive 8/Sn =n-V 
with n being the outward normal to the surface S. 

On the basis of boundary integral equations, we are now 
in a position to develop a BEM-based technique for the ei- 
genanalysis of a sound field in an enclosure. In this study, 
triangular elements and quadrilateral elements are used to 
construct a mesh on a surface. Isoparametric transformation 
is adopted for discretizing a boundary. The same set of qua- 
dratic shape functions are used to interpolate global coordi- 
nates, sound pressures, and pressure gradients on a bound- 
ary as follows: 7 

L 

Xi (g) = Z N/(g)x,, i = 1,2,3; L = 6 or 8, (2) 
l=1 

L 

Pro(g)= • Nt(g)pm•, m=l,2,...,M; L=6 or 8, (3) 
1=1 

{•Prn L 

8% (g) = • N,(g) , m= 1,2,...,M; L=6 or 8, l= 1 •nq 
(4) 

where x, is the ith coordinate of the l th node, N• (•) are the 
quadratic shape functions, •----(• ,•2 ) are the local coordi- 
nates, pro/and t•pmt/t•rt q are the sound pressure and the pres- 
sure gradient of the ! th node on the ruth element, and M is 
the total number of elements. Substituting F_xlS. (2)-(4) and 

•nq 

into Eq. ( 1 ) gives the following discretized boundary inte- 
gral equation: 

aip(xp) 

m=l 

(5) 

where a• is the solid angle parameter of the field point x v, VG 
is the gradient of G, Sm is the surface of the ruth element, 
3(•) is the Jacobian for coordinate transformation, •m and 
(•,) m are L X 1 column vectors corresponding, respective- 
ly, to Pm• and •m•/•nq terms in the integral equations, and 
N (g) is an 1 X L row vector with N• (g) as its components. 
In terms of operator notation, Eq. (5) can be assembled into 
the following matrix form for a mesh with M elements and N 
nodes on the boundary: 

ai•(Xp) = sPq•g -- wq• q, (6) 
where •q and •g are N X 1 row vectors corresponding to the 
sound pressure p(Xq) and the pressure gradient 
•p (Xq)/•nq, respectively, of the N nodes Xq, and S vq and wq 
are both 1 X N row vectors corresponding to the integrals in 
the square brackets of Eq. (5). The superscript pq denotes 
the spatial transformation from the field point x v to the 
source points Xq. 

Now, taking the field points to the boundary S and set- 
ting a• = i or •/4v (• denotes the solid angie at the field 
point x v and i = 1,2 .... ,N), depending on whether the sur- 
face is smooth or not, one obtains 

•q = sqq•g -- Dqq• q (7) 

or 

Dp q = Sqqpg, ( 8 ) 

where a is an N X N diagonal matfix whose diagonal terms 
are composed of the parameters a i's corresponding to the N 
nodes on the boundary. D qq and S qq are both N X N square 
matrices corresponding to the integrals in Eq. (5) relating 
the N field points x v and the N source points Xq on the 
bounda• S, the superscript qq signifies that both the field 
points and source points are colocated on the boundary S, 
and D • (D qq + a). 

In some situations, care should be taken for the treat- 
ment of nonsmooth surfaces. Recall that the parameter a• in 
•. (5) equals • for smooth surfaces and •/4w for nons- 
mooth surfaces. It usually poses difficulties in direct evalua- 
tion of the solid angle •. This difficulty can be circumvent- 
ed by applying a uniform potential to the inte•or domain to 
yield 7 

= - fs W(x,Xq (g))-nq (g)IJIN dSq ]qu 
or 

Oti = -- E (Dqq)o' (9) 
j=l 

where eta is an N X 1 column vector that is composed ofai's, 
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u denotes an N X 1 column vector whose terms are all ones, 

and (D qq) ii are the components of D qq. 
In this study, the walls of enclosures are assumed to be 

rigid, which is approximately true in many cases, e.g., a 
hard-walled room. This corresponds to imposing the bound- 
ary condition •3p/•3n = 0 on $. Thus, Eq. (8) is simply re- 
duced into 

Dp = 0. (10) 

Here, Eq. (10) constitutes the main equation of the BEM- 
based eigenanalysis of a sound field in an enclosure. In prin- 
ciple, the wave numbers k's that render the matrix D singu- 
lar should be the desired eigenvalues. The eigenvectors 
associated with each eigenvalue can be obtained from find- 
ing the nontrivial solutions of Eq. (10). Nevertheless, care 
should be taken because Eq. (10) is not the usual form of the 
generalized eigenvalue problem Ax = )[ Bx and accordingly 
must be handled differently. In the case of the BEM-based 
formulation discussed herein, the eigenvalues are embedded 
in the kernel functions G or o•G/o•n and the coefficient matrix 

D is a function of the eigenparameter A. This peculiarity of 
the BEM-based formulation precludes the use of standard 
eigensystem solvers such as those widely used in the FEM. 
Therefore, special eigenmodes search schemes, e.g., the 
method of determinant search and the method of singular 
value search, are developed in this study to alleviate this 
numerical difficulty. 

B. The search schemes for eigenmodes 

In the method of determinant search, one seeks to deter- 
mine the eigenvalues by incrementally varying the wave 
number k such that the matrix D in Eq. (10) becomes singu- 
lar. 8'9 This amounts to finding the wave numbers k e, 
e -- 1,2,..., so that the determinant of D vanishes. In numeri- 
cal implementation, however, one can only search local 
minima of the determinant of D for the eigenvalues because 
it is virtually impossible for D to become ideally singular 
except for some special cases. •ø Once the eigenvalue ke's 
have been found, the natural frequency co e's can readily be 
recovered from W e = k ec. 

In addition to eigenvalues ke's, the eigenvectors pe's re- 
main to be found. The eigenvector Pe, which represents the 
eigenmode associated with the eigenvalue co e, is, by defini- 
tion, the nontrivial solution of the following equation: 

DePe --0, (11) 

where the N X N matrix De is obtained from the coefficient 
matrix D evaluated at k = ke and the eigenvector Pe is an 
N X 1 column vector. These nontrivial solutions of Eq. ( 11 ) 
can be calculated by the Gauss elimination algorithm. 

In addition to the previously mentioned determinant 
search method, another approach based on singular value 
decomposition (SYD) is developed in this study for calcu- 
lating eigenmodes. From the theory of linear algebra, the 
following decomposition of an arbitrary matrix D is always 
possible: 11 

D = UI•V h, (12) 

where h is the Hermitian conjugate operator, U and V are 

both N X Nunitary matrices and are composed of Northogo- 
nal column vectors ui's and vi's, respectively, and •; is a 
pseudodiagonal matrix (but is a diagonal matrix in our 
case)' 

0'i •0, i--j Z/•= 
O, i•:j 

(rri's are singular values arranged in descending order). If 
the matrix D is almost singular, then the rank of D tends to 
be degenerate with the last one or more singular values being 
nearly negligible in comparison with the rest of singular val- 
ues. In the initial stage of extracting the eigenvalues ke's, the 
coefficient matrix D is evaluated with the wave number k 

incrementally varied by a coarse step size Ak. In each iter- 
ation, the matrix D associated with different k is processed 
by the SVD algorithm. The minimal singular value obtained 
at the rth iteration (denoted by rr•,r ) is compared with the 
minimal singular values fry's obtained from the other itera- 
tions. If rr•,r is smaller than those obtained from the adjacent 
iterations, i.e., rr•.•_ • and rr•,• + •, then at least one eigenval- 
ue must exist within the interval (k- Ak, k + Ak). 

Having established a search interval for an eigenmode, 
one may proceed to calculate a more accurate value of a 
particular mode. Instead of using a sequential search proce- 
dure, a more efficient optimization technique termed the 
"golden section search algorithm "•2 is then utilized for lo- 
cating the eigenvalue of interest. This simple search method 
is selected because the gradient of the cost function (which is 
difficult to estimate in our case) is not required. In general it 
takes less than 10 search step to reach accuracy within two 
decimal places. 

Parallel to searching for eigenvalues, the eigenvectors 
are obtained from the SVD process without additional ef- 
fort. This is manifested by postmultiplying Eq. (12) by 
(vh) -•. 

•(V h) -• = 

or 

DV = U• ( 13 ) 

since vh= V-1 from the property of unitary matrices. 
Further partitioning of Eq. (13) yields 

D¾ i = O'ill i. (14) 

Whenever the singular value o' i • 0, Eq. (14) becomes 

Dvi = 0. (15) 

Direct comparison of Eqs. (10) and (15) reveals that the 
eigenvector ¾i in the latter equation is a legitimate nontrivial 
solution of Dp = 0. In other words, whenever cr• vanishes, 
the right singular vector vi of D can be regarded as an eigen- 
vector associated with the eigenvalue k,. 

In addition, this SVD approach for finding eigenvectors 
is particularly useful when the eigenvalue problem of con- 
cern involves nondegenerate repeated eigenvalues (which 
are frequently encountered in the cases of enclosures with 
high degree of symmetry). For instance, if the eigenvalue k, 
is of multiplicity m, then the last m singular values 
an -- rn + 1 ,an -- rn + 2 ,"-,an will be significantly smaller than 
the others. The orthogonal vectors Vn _ m + • ,Vn -- m + 2 ,...,V• 
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are accordingly the desired linearly independent eigenmodes 
associated with the same eigenvalue ke. In this regard, the 
method of singular value search has more preferable perfor- 
mance than the method of determinant search because the 

latter approach fails to provide linearly independent eigen- 
vectors for the cases involving repeated eigenvalues. Thus, in 
the following sections, the method of singular value search is 
selected in the BEM-based eigenanalysis for calculating 
eigenmodes of sound field in an enclosure. 

II. VERIFICATION OF THE BEM-BASED 
EIGENANALYSIS ALGORITHM 

In order to investigate numerical characteristics of the 
developed BEM-based eigenanalysis technique, computer 
simulations are conducted for extracting eigenmodes of a 
sound field in an enclosure. The BEM result is compared 
with the corresponding analytical solution. For a case where 
the analytical solutions is not available, FEM is selected as 
an alternative numerical approach. The formulation of the 
FEM-based eigenanalysis is omitted here because it is quite 
standard and can be found in the literture. 13-•6 

The first simulation case involves determination of 

eigenmodes of a rectangular room. Consider a rectangular 
room bounded by rigid walls lying along the planes x -0, 
x -- L,,, y = O, y -- Ly, z = O, z -- Lz, as shown in Fig. 2 (a). 
The boundary value problem can be expressed in terms of 
rectangular coordinates as 

82P + 82P + 82P +k2p-O (16) 
09x 2 09y2 09F 

subject to 8p/Sn = 0 on the walls. It can be shown4 that the 

Lx 

(b) (o) 

FIG. 2. (a) The mesh for the rectangular room used in the numerical simu- 
lation. (b) The boundary element used in the mesh. (c) The finite element 
used in the mesh. 

eigenvalues of the above boundary value problem are 

+ 
with the associated eigenfunctions 

p (x,rt • ,fly ,rt z ) = ,4 COS • 
/•/x 7TX /•/y 7Ty /•/z 7TZ 

COS COS • 

L,, Ly Lz 
(18) 

where A is an arbitrary constant. Here, an eigenmode is iden- 
tified by a particular combination of integers n,,, ny, and he. 
Each of these three integers is assumed nonnegative to avoid 
redundancy. In this simulation, a rectangular room bounded 
by rigid walls of dimensions Lx- 3 m, Ly- 2 m, and 
Lz -- 1 m is selected for testing the BEM-based eigenanalysis 
algorithm. 

The results obtained from the BEM-based algorithm are 
first compared with the corresponding analytical solutions 
to check if the algorithm is correctly implemented. Since the 
BEM used for eigenanalysis purpose is a relatively new ap- 
proach, it is worthwhile to compare its numerical perfor- 
mance with the other methods. To this end, the BEM-based 
approach is compared with another commonly used numeri- 
cal method FEM in this simulation. The mesh of BEM co- 

alesce with that of FEM on the boundary in order to achieve 
a fair comparison. In this case, 22 quadratic rectangular ele- 
ments with 68 colocation points are used for constructing 
the BEM mesh, while 6 quadratic brick elements with 70 
colocation points are used for constructing the FEM mesh 
(Fig. 2). 

The minimal singular values tr n's are computed by vir- 
tue of the SVD algorithm for different wave numbers k's 
with initially a coarse step size Ak (0.1 in this case), as 
shown in Fig. 3. Whenever a local minimum occurs, its adja- 
cent wave numbers are chosen as a search interval for the 

golden section search algorithm that gives more accurate 
eigenvalues. In addition to the BEM-based approach, the 
same case of a rectangular room is analyzed by FEM. The 
results obtained from both numerical methods are then com- 

Minimum singular value 
0.08 

0.06 

o.o,i 

0.02 

o 

o 3 o.5 i l ..5 

Wave number 

FIG. 3. The minimum singular values •r.'s calculated for each wave number 
k in the case of a rectangular room. 
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TABLE I. Comparison of eigenvalues of the sound field in a rectangular room. 

Mode Eigenvalue k e Error (%) 

(nx, %, nz ) Exact BEM FEM BEM FEM 

1 (1, 0, 0) 1.05 1.05 
2 (0, 1, 0) 1.57 1.57 
3 ( 1, 1, 0) 1.89 1.89 
4 (2, 0, 0) 2.09 2.10 
5 (2, 1, 0) 2.62 2.63 
6 (0, 0, 1) 3.14 3.18 
7 (0, 2, 0) 3.14 3.18 
8 (3, 0, 0) 3.14 3.18 

Average error: BEM 0.58% 
FEM 4.09% 

1.05 0.00 0.00 
1.57 0.00 0.00 
1.89 0.00 0.00 
2.11 0.48 0.96 
2.65 0.38 1.14 

3.46 1.27 10.2 
3.46 1.27 10.2 

3.46 1.27 10.2 

pared with the corresponding analytical solutions in Table I. 
A sharp contrast of numerical performance is immediately 
observed from the table. The BEM achieves much higher 
accuracy (with an average error ofeigenvalues 0.58% ) than 
the FEM (with an average error of eigenvalues 4.09%). 
This could be attributed to the fact that the integral formula- 
tion of BEM has well-posed numerical characteristics in 
comparison with the weak formulation of FEM. Neverthe- 
less, the higher the mode, the larger the error is, regardless of 
which method is used. In any event, to what extent one is 
able to search for eigenvalues is basically limited by sound 
wave length in comparison with the mesh spacing. 

Another interesting observation worth mentioning is as- 
sociated with the last three modes (0, 0, 1 ), (0, 2, 0), and ( 3, 
0, 0) listed in Table I. These modes correspond to the same 
eigenvalue 3.14 and are successfully detected by the method 
of singular value search. The last three singular values com- 
puted from decomposing the coefficient matrix D evaluated 
at these repeated eigenvalues 3.14 are closer to zero than the 
others (see Fig. 4). On the other hand, if there is only one 
mode associated with some eigenvalue, e.g., k = 1.05, only 
the last singular value will be nearly zero (see Fig. 5 ). 

Some representative eigenmodes obtained from the 

BEM-based eigenanalysis algorithm are shown in terms of 
profile curves and 3-D hidden line graphs from Figs. 6-9. 
Every eigenvector has been normalized with respect to the 
largest amplitude. Evidently, the calculated eigenmodes ap- 
pear to agree very well with the exact solutions. In fact, the 
same BEM technique was also applied to a rigid spherical 
enclosure. Very good agreement was achieved between the 
numerical results and the exact solutions. The BEM-based 

technique again provides much higher accuracy than the 
FEM-based technique. Since this do•s not add up any new 
conclusion, the numerical results are omitted here. 

In addition to the previously mentioned rectangular 
room, a car interior is selected as the second example for 
testing the usefulness of the BEM-based eigenanalysis tech- 
nique when applied to a more practical situation where an 
odd-shaped boundary is present. The motivation of explor- 
ing this problem stems from the need of optimizing acoustic 
performance that could be important for noise control in 
automobile design. 

Consider a car-shaped enclosure with the dimensions as 
shown in Fig. 10. Since no analytic solution is available for 
this car interior of complex geometry, comparison of eigen- 
values and eigenmodes can only be made between numerical 

Sing•lar values 
1.6 

1.4 

I o 

0.8 

0.6 

0. ,t '•"-•.._..._•,_.•_....,...••_, 
0.2 

0 
0 20 30 ,10 50 60 

Number 

I 

10 70 

FIG. 4. Singular values associated with the repeated eigenvalue 3.14 corre- 
sponding to the modes (0, 0, 1 ), (0, 2, 0), and (3, 0, 0). 

Singular values 

O. 

0. 

0. 

0. 

0 

0 10 20 30 40 50 60 70 

Number 

FIG. 5. Singular values associated with the eigenvalue 1.05 corresponding 
to the single mode ( 1, 0, 0). 

2533 J. Acoust. Soc. Am., Vol. 91, No. 5, May 1992 Mingsian R. Bai: Acoustic resonance in enclosures 2533 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  140.113.38.11 On: Wed, 30 Apr 2014 06:42:58



-0 5 X_prof•le 

Y_profile 

Z_profile 
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I I I I I ! I I 

0 01 02 0.3 0.4 0.5 0.6 07 0.8 0.9 
X/Lx ,)r Y/l,y or Z/Lz 

(a) 

(•) 

FIG. 6. Eigenmode ( 1, 0, 0) associated with the eigenvalue 1.05 in the case 
of a rectangular room. 

•o!ind presstire 

I 

-0.5 

ß i t i I z 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X/Lx or Y/Ly or Z/Lz 

(•) 

X_profile 

Y_profile 

Z_profile 

Exact 

I I 

0.l 0.2 

(b) 

FIG. 8. Eigenmode (2, 1, 0) associated with the eigenvalue 2.62 in the case 
of a rectangular room. 

pressure 

05 

-0.5 X_profile 

Y_profile 

Z_proflle 

Exact 

i i i I i i i i i 

O. l 02 0.3 0.4 0 5 0 B 0.7 0.8 0.9 

X/Lx or Y/Ly or Z/Lz 

(•) 

(b) 

FIG. 7. Eigenmode ( 1, 1, 0) associated with the eigenvalue 1.89 in the case 
of a rectangular room. 

•OHIi(l i)re•511 l'e 

0 O. 1 0 2 0.3 0.4 0 5 0 6 () 7 0 8 0.9 1 

X/Lx or Y/l,y or Z/Lz 

(•) 

FIG. 9. Eigenmode (3, 0, 0) associated with the eigenvalue 3.14 in the case 
of a rectangular room. 
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FIG. 10. The mesh and the dimensions of a car interior in the numerical 
simulation. 

methods. In this simulation, the mesh of BEM consists 90 
rectangular boundary elements with 272 colocation points 
and the mesh of the FEM consists of 54 brick elements with 

376 colocation points. The problem size is appreciably larger 
than the case of a rectangular room. 

It should be noted that the solid angles at corners and 
edges of the car interior do not have theoretical values. The 
numerical technique presented in Sec. I must be utilized to 
solve for the solid angle parameter ai associated with each 
node. 

From the simulation results, the BEM-based eigenana- 
lysis technique does exhibit its effectiveness in extracting 
eigenmodes for an enclosure of complex geometry. In Table 
II, the eigenvalues of the first five modes obtained from the 
BEM-based eigenanalysis technique are compared with 
those obtained from the FEM. Excellent agreement of eigen- 
values has been achieved between the BEM and the FEM 

(the errors are all within 2%). The corresponding eigen- 
modes are shown in terms of contour graphs from both the 
side views and the top views (see Figs. 11-15). Differences 
between the mode shapes obtained from these two numerical 
methods are barely noticeable. Except for some figures, e.g., 
Figs. 1 ! (b) and 12(b), which show wavy contours instead 
of perfect straight lines (due to discretization errors), the 
mode shapes appear to be satisfactorily computed. No con- 
tours appear in Fig. 13 (a) and (c) because, for this mode, 

(b) 

(d) 

TABLE II. Comparison of eigenvalues of the sound field in the car interior. 

Eigenvalue k e 

Mode BEM FEM 

FIG. 11. The first eigenmode of the sound field in the car interior. (a) Pres- 
sure contours in plane y = 0, obtained from the BEM. (b) Pressure con- 
tours in plane z = 0, obtained from the BEM. (c) Pressure contours in 
plane y = 0, obtained from the FEM. (d) Pressure contours in plane z = 0, 
obtained from the i•EM. 

1 0.70 0.71 
2 1.20 1.22 
3 1.40 1.38 
4 ' 1.48 1.49 
5 1.57 1.55 

the pressures of all nodes on this plane are supposed to be of a 
constant level. 

Some comments can be made from the computed results 
in regard to the nature of the mode shapes. Similarities are 
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(b) 

(c) 

(b) 

(c) 

, 
(d) 

FIG. 12. The second eigenmode of the sound field in the car interior. (a) 
Pressure contours in plane y = 0, obtained from the BEM. (b) Pressure 
contours in plane z = 0, obtained from the BEM. (c) Pressure contours in 
plane y = 0, obtained from the FEM. (d) Pressure contours in plane z = 0, 
obtained from the FEM. 

0.4. • - 0.4 • 
0,2 '--T 

(d) 

FIG. 13. The third eigenmode of the sound field in the car interior. (a) 
Pressure contours in plane y = 0, obtained from the BEM. (b) Pressure 
contours in plane z = 0, obtained from the BEM. (c) Pressure contours in 
plane y = 0, obtained from the FEM. (d) Pressure contours in plane z = 0, 
obtained from the FEM. 

found between, for example, Figs. !1 (b) and 12(b) as well 
as Figs. 11 (a) and 15 (a). This implies these two modes are 
of identical order in one coordinate surface, but of different 
order in the others (although these coordinate surfaces al- 
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ways exist, they do not have analytical forms due to the com- 
plex geometry). The higher the resonance frequency is, the 
more variations there are in the mode shapes, e.g., the sym- 
metric mode in Fig. 11 (b) versus the antisymmetric mode in 
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(b) 

(c) 

(b) 

(d) 

FIG. 14. The fourth eigenmode of the sound field in the car interior. (a) 
Pressure contours in plane y = 0, obtained from the BEM. (b) Pressure 
contours in plane z = 0, obtained from the BEM. (c) Pressure contours in 
plane y = 0, obtained from the FEM. (d) Pressure contours in plane z -- 0, 
obtained from the FEM. 

Fig. 15 (b). On the other hand, orthogonality is readily ob- 
served from some contour figures, e.g., Figs. 11 (b) and 
13 (b). This is a natural consequence of the self-adjoint and 
undamped eigenvalue problem considered herein. 

(d) 

FIG. 15. The fifth eigenmode of the sound field in the car interior. (a) Pres- 
sure contours in plane y = 0, obtained from the BEM. (b) Pressure con- 
tours in plane z- 0, obtained from the BEM. (c) Pressure contours in 
plane y = 0, obtained from the FEM. (d) Pressure contours in plane z -- 0, 
obtained from the FEM. 

Questions may be raised regarding the use of the eigen- 
modes associated with a car interior. To the author's knowl- 

edge, one possible application is optimizing the acoustical 
performance for the purpose of noise control. For example, 
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judging from the pressure distribution in Fig. 15 (a), one 
may want to apply certain sound absorption measures to the 
regions around the front end as well as the rear part of the car 
interior where pressure magnitudes reach maxima if the fre- 
quency of the major concern is around 38 Hz. In addition, if 
a hi-fi stereo system is to be installed in the car, one may 
prefer a relatively uniform distribution, e.g., the pressure 
field in Fig. 13, of the sound field over a nonuniform one. 
Under these circumstances, the BEM-based eigenanalysis 
technique serves as a useful simulation tool for extracting 
resonance frequencies and mode shapes of sound fields be- 
fore an actual prototype of a car is built. 

III. CONCLUSIONS 

A BEM-based eigenanalysis technique is presented in 
this study for extracting eigenmodes of sound fields in arbi- 
trarily shaped enclosures. Complete procedures involved in 
numerical implementation are demonstrated in details. The 
method of singular value search is utilized to determine nat- 
ural frequencies and mode shapes of sound pressure distribu- 
tion (associated with not only distinct but also repeated 
eigenvalues). 

The BEM eigenanalysis technique has been verified 
through comparisons between the numerical results and the 
exact solution if available. In addition, the BEM results are 
also compared with those obtained from the FEM in order to 
explore the numerical performance. The BEM approach, in- 
terestingly enough, achieves much higher accuracy than the 
FEM despite the fact that the errors of the higher modes are 
always greater than those of the lower ones, regardless of 
which numerical method is used. It is of no doubt that these 

numerical schemes will lose their effectiveness at high-fre- 
quency ranges due to increasing density of eigenmodes. 

The sizes of the resulting system matrices of the BEM 
are always smaller than those of the FEM because the re- 
quired meshes for the BEM are simpler than those for the 
FEM. This should become more pronounced for the enclo- 
sures of large volume-to-surface ratio in a three-dimensional 
space. This reduction of problem size facilitates generation 
of boundary meshes with reference to the design changes 
regarding boundary conditions and geometry of an enclo- 
sure. This attractive feature makes BEM-based eigenanaly- 
sis technique a useful simulation tool before an actual proto- 
type is built. Note that the BEM, while dimensionally 
smaller than the FEM, takes more CPU time than the FEM 

because of full and asymmetric nature of assembled matri- 
ces. More research is required for improving the efficiency of 
the BEM-based approach. 

Although the boundaries of enclosures have been as- 
sumed perfectly rigid in this study, the BEM-based eigenan- 
alysis technique can be easily extended to the other types of 
boundary such as the pressure-release type, the impedance 
type, and the mixed type. These aspects will be explored by 
more numerical as well as experimental investigations in the 
future research. 
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