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A Flexible Parallel Architecture for Relaxation 
Labeling Algorithms 

Shaw-Yin Lin and Zen Chen 

Abstract-The design of a flexible parallel architecture for 
both the discrete relaxation labeling (DRL) algorithm and the 
probabilistic relaxation labeling (PRL) algorithm is addressed. 
Through the analysis of parallelism in the computational models 
of both algorithms, the parallel execution of the algorithms on 
a flexible parallel architecture i s  presented. Three basic types 
of parallel operations are performed in the architecture: simul- 
taneous, pipeline, and systolic. An illustrative example is used 
to show how the DRL algorithm can be executed on the parallel 
architecture. In doing so the processing element (PE) organi- 
zation and the combiner organization of the architecture are 
described. The same architecture with programmable func- 
tional units is shown to be able to execute the PRL algorithm, 
too. The performance comparisons between the proposed ar- 
chitecture and some other existing ones are also given. 

I. INTRODUCTION 
ELAXATION labeling algorithms have been applied R successfully to a number of applications, for in- 

stance, signal restoration, language identification, graph 
homomorphism, image segmentation, and scene interpre- 
tation [1]-[8]. One of the major issues of using this type 
of algorithms is that it is computationally intensive and 
requires typically an exponential execution time on a sin- 
gle processor architecture [9]. Many researchers have tried 
to build fast architectures [9]-[15] for executing the re- 
laxation labeling algorithms. Uresin and Dubois [ 101, 
Zenios and Mulvey [7], and Kamada et al. [ l l ]  proposed 
the multiprocessor approaches. They were faced with the 
difficulties in task partitioning, scheduling, and synchro- 
nization among multiprocessors. Resis and Kumar [ 121, 
and Derin and Won [13] used mesh connected computer 
(MCC) architectures to approach the relaxation problems. 
Their techniques have an appealing run time performance 
from a theoretical viewpoint, but suffer from physical re- 
alization problems such as data communication conges- 
tion and 110 routing complexities. Most of the above 
approaches remain in the phase of virtual software simu- 
lations [9]. Lately, there has been an increasing interest 
in implementing relaxation operations by using dedicated 
hardware architecture that can be built in a modular fash- 
ion, for instance, in the form of systolic arrays. Several 
preferential factors of the systolic approach, such as the 
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feasibility of pipelining, high degree of parallelism, and 
avoidance of global communication, make the arrays suit- 
able for VLSI fabrication. Among these architectures are 
the works by Derin and Won [13], Gu et al. [14], Guerra 
[ 151, and Bridges et al.  [ 161. The underlying idea behind 
these methods is the application of suitable transforma- 
tions to the relaxation algorithms to obtain a representa- 
tion that can be easily mapped onto their proposed archi- 
tecture. Thus, different relaxation labeling algorithms give 
rise to different array designs. However, the function of 
resultant systolic array is somewhat restricted simply be- 
cause the applied architecture is too fixed to cover differ- 
ent applications. 

In this paper, we consider the relaxation labeling al- 
gorithms in two different forms: discrete relaxation label- 
ing (DRL) and probabilistic relaxation labeling (PRL). 
Both of them are executable on our proposed architecture. 
The arrays of the architecture use one-dimensional, one- 
way communication lines between adjacent PE’s and in- 
teract with the external environment through a single 
U0 port. Because of the hardware simplicity and program- 
mability features of the PE’s, the architecture is well 
suited for VLSI implementation and is flexible enough to 
be adaptable to a number of applications. Moreover, the 
proposed architecture will run in a linear time for each 
iteration of labeling process. It is also able to check the 
consistency status of the DRL algorithm and the conver- 
gence condition of the PRL algorithm at the hardware 
level without the host involvement. On the other hand, 
the use of one-way flow through the arrays simplifies the 
circuit design and the system can be converted to self- 
timed arrays to avoid the clock skew problem for large 
labeling processes [ 181. 

The paper consists of five sections. Section I1 presents 
the overview of the two relaxation labeling algorithms: 
DRL and PRL. In Section 111, parallelism in the two re- 
laxation mathematical models is the key to our design of 
a flexible parallel architecture. Three basic types of par- 
allel operations are used: simultaneous, pipeline, and sys- 
tolic. The processing element organization of the systolic 
array and the combiner organization are then introduced. 
An illustrative example is used to show how the DRL al- 
gorithm is executed on the architecture. The same archi- 
tecture with programmable functional units is also shown 
to be able to execute the PRL algorithm. Section IV cov- 
ers the performance comparisons between our architec- 
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ture and some other existing ones. The final section is a 
summary. 

11. OVERVIEW OF Two RELAXATION LABELING 

G i v e n a s e t o f N o b j e c t s U =  { U l , U 2 ,  e . .  , U N }  and 
a set of M labels A = { XI, A2, , A, } , a relaxation 
labeling algorithm attempts to assign iteratively the labels 
to all objects such that these object-label assignments are 
consistent with a set of prespecified compatibility con- 
straints (or coefficients) between the pairs of object-label 
assignments. We shall consider two types of algorithms: 
discrete relaxation labeling (DRL) and probabilistic relax- 
ation labeling (PRL). 

ALGORITHMS 

* 

A .  Discrete Relaxation Labeling (DRL) 
In this case the labels are assigned to objects in an all- 

or-none fashion. The prespecified compatibility coeffi- 
cients CC = {C,,J( A,, A,), i , j  E [ l ,  N I ;  t ,  p E [ l ,  MI} 
are such that Cl.,(  A,, A,) = 1 if the assignment of label 
A, to objects U, is compatible with the assignment of label 
A, to object U, and 0 otherwise. In the iterative relaxation 
labeling process for each object U,, i E [ l ,  NI, let L f ( A )  
= [L f (  A I ) ,  L f (  A,), * * , L f (  A,)] denote the vector of 
the label assignments given to ob‘ect U, at the kth itera- 
tion, k = 1, 2, 3 ,  * * , where Li( A,) = 1 if label A, is 
assigned to U, and 0 otherwise. The complete list of 
object-label assignments, called a labeling zk,  is indi- 
cated by L k  = {,$(A), G(A),  , L h ( A ) } .  Initially, 
each object U, is assigned to have all labels in A, i.e., 
L:( A,) = 1 f o r k  = 0, i E [ l ,  NI and t E [ l ,  M I .  Ob- 
viously, these initial assignments may not be consistent 
with the prespecified compatibility coefficients, so the la- 
beling will be updated through the following formula: 

N M  

L:+’(A,) = Lf( A,) * rI [ C,,,(A,, A,) * L:(Ap)] 
5’1 p = l  

k = 0, 1, 2, 3, * - * (1) 
where *, U, and C denote the Boolean AND, PRODUCT, 
and SUM operations, respectively. When there exists 
some finite constant K such that k 2 K ,  L f f l (  A,) = 
Lf ( A,) for all i E [ 1, N] and t E [ 1, M I ,  then the labeling 
process is said to satisfy the consistency condition and the 
process stops. 

B. Probabilistic Relaxation Labeling (PRL) 
The PRL algorithm can be thought as a generalization 

of the DRL algorithm. The algorithm assigns different 
probabilities, instead of the zero-or-one fashion, to the 
object-label pairs. The probabilistic labeling estimates of 
object Ui E U ,  denoted by Pi( A t ) ,  t E [l ,  MI, are ranged 
in the interval [0, 13 and will be updated during each it- 
eration. The heuristic knowledge embedded in what are 
termed compatibility coefficients CC = {Ci , j (  A,, A,), i, 
j E [ l ,  N I ;  t ,  p E [l ,  M I }  is to control the contribution 
that the probability of assigning label A, to object Vj made 

to the probability of assigning label A, to object U;. His- 
torically, Ci, j (  A,, A,) is so defined that it takes a value in 
the range of [ - 1, 11 where - 1, 0 and 1 indicate “totally 
incompatible,” “independent,” and ‘‘totally compat- 
ible,” respectively. The initial labeling estimate of 
P:( A,), fork = 0, i E [ l ,  NI and t E [ l ,  MI,  is estimated 
based on the information available on hand. The iterative 
updating of the labeling of object Ui, i E [ 1, NI, is given 
by 

P f + ’ (  A,) 

for i E [ l ,  N I ,  t E [ 

$(A,)  = 

, MI, and k = 0, 1 , 2 , 3 ,  * . , where 

N M  

The updating of these labeling estimates stops if the es- 
timates are unchanged or nearly unchanged after a certain 
finite number of iterations. In this case, it is said a con- 
vergence condition is reached. 

111. PARALLEL EXECUTION OF RELAXATION LABELING 
ALGORITHMS 

A. n e  DRL Algorithm 

In the following we shall examine the parallelism in the 
computation models of both DRL and PRL algorithms. 
From this analysis of parallelism we shall determine three 
basic types of parallel operations for hardware execution 
of these algorithms. We shall first describe the architec- 
ture for the DRL algorithm, then point out the necessary 
modifications of the DRL architecture needed in order to 
execute the PRL algorithm. 

To illustrate the idea more explicitly, let us consider a 
region color labeing problem [13]. Suppose that we are 
analyzing a picture with five regions which are to be col- 
ored in red, green, and blue, subject to certain compati- 
bility constraints. The DRL formulation for this problem 
is given below: 

I 

1) A set of five regions U = { U l ,  U,, U,, U,, U,} 
where Ui = region i. The object set size is N = 5. 

2) The coloring labels A = { A I ,  A2, A,} where A I  is 
red, A2 is green, and A3 is blue. The label set size is M = 
3. 

3) The compatibility coefficients (or constraints) be- 
tween any two region label assignments Cj, j(  A,, A,) 
i , j  E [ l ,  51 and t ,  p E [ I ,  31. 

Let us rewrite (1) as follows: 
For i , j  E 11, 51 and t ,  p E [ l ,  31 

3 

S!,j(At) = Ci,j(Ar, * ~ ; ( x p )  (3a) 
p =  I 
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-4 The main module 4 The combiner module I-+-- 
Fig. 1 .  The organization of the proposed architecture 

TABLE 1 
THE LIST OF DATA S T R E A M S  DURING EACH CLOCK C Y C L E  FOR THE DRL EXAMPLE: THE INPUT DATA STREAMS AT THE Y,, A N D  x,, ENDS 

Clock 0 1 2 3 4 5 6 7 8 9 l o l l . . .  25 26 27 

LF+'(A,) = &A,) * $(A,) 

All computations in (3) will be executed in parallel on 
a parallel architecture to be introduced below. There are 
totally N X M = 15 supporting evidences, i.e., Si( A,), i 
= 1, 2, 3, 4, 5 and t = 1, 2, 3. They are divided into 

{SI< S A  A d ,  S3( A d ,  Sd A d ,  Sd A d } ,  and (SI( A3) 
S2( A3), S3( A3), S4( A,), S,( A3)}. These three groups are 
to be executed, respectively, by three linear rows of pro- 
cessing elements (PE's). The physical arrangement of 
these computations is shown in Fig. 1. All computations 
are done in three different ways: 

1) Simultaneous computation. The computations of 
$ ( A I ) ,  Ss( h ~ ) ,  and S f ( A 3 ) ,  i E [ l ,  51, specified by (3b) 
are simultaneously executed in the three rows of PE's. 

2) Pipeline computation. The computations of SI( A,) ,  
Sz( A t ) ,  S3( A,), S,( A,) ,  and S,( At) ,  are computed in a 
pipeline order in the tth row where t E [ l ,  31. Also the 
new labeling estimates L';' I ( A,), L i f '  (A , ) ,  Li+ I (A , ) ,  
Lt+'(A,), and L : + ' ( A , ) ,  specified by (3c) are generated 
in a pipeline order in the combiner module, too. 

3) Systolic computation. The Boolean product speci- 
fied by (3b) for some i E [ 1, 51 is executed in a systolic 
manner, because it involves the input stream of labeling 
estimates ~ ! ( * ) , j  = 1, 2 ,  , 5 ,  in (3a). The detailed 
description will be given later. One the other hand, since 

three groups: {SIC AI),  SZ( A I L  Sd AI) ,  S4( AI),  S,( AI)},  

all variables SF,,( A,), C , J (  A,, A,) and L,k( A,) in (3a) are 
1-b wide, we can use the logic gates with 1-b inputs to 
implement (3a). However, we shall pack M 1-b labels A I ,  
A2, * * - , AM(M = 3) into an M-bit label vector A to rep- 
resent all labels. So (3a) will be executed by a Boolean 
circuit with M-bit inputs. From now on, we use Lf(A) to 
represent the 3-b vector [L;( A,) ,  L:( A2), L:( A?)]. 

Next we shall describe, in more detail, i) how the sys- 
tolic computation of Si ( A,)  is done in the first row of five 
PE's in the main module, and ii) how the pipeline com- 
putation of L;" (A) is done in the combiner module. We 
shall introduce the required hardware architecture, too. 

First of all, the input data streams at the Y,, and X,,  ends 
of the first PE's of all the three rows are given in Table 
I. These input streams will step through the PE's in each 
row simultaneously. The three pipeline stages of a PE, as 
shown in Fig. 2(a), are so designed that: 

1) The first PFIFO stage is to delay the input stream at 
XI, end of the first PE for N - 1 = 4 clocks in order to 
synchronize the Lf(A) stream with the SF(A) stream gen- 
erated at the output end of the last PE for computing the 
new labeling estimate L;+'(A) stream specified in (3c). 
The delayed Lf (A) stream is fed to the W line. 

2) The I stage is to compute Si,,( A , )  of (3a) for some 
j E [ I ,  51. 

3) The A stage is to compute some partial product of 
S:( A,)  of 3(b). 
4) The Z buffer is to adjust the data flow rate on the 

X,,, line such that it is one clock behind that on the Y line. 
This synchronization is needed in the systolic operation 
for executing (3b). 
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the PFIFO stage the I stage the A stage 

AND operation ,---t To the next Yi, - To the next Win 

Y i n L  NOP NOP 
--. 

NOP NOP 

I I 

I I A 
I I 

I I 

(b) 

Fig. 2. (a) The three pipeline stages of a PE. *Z is a one-clock delay buffer. (b) The hardware organization of the PE for the 
implementation of the DRL algorithm. *1: The multiplexer selects the input from PFIFO in  the first PE of each row, and it 
selects the W,,  input in all the subsequent PE's. *2: For the DRL mode, this multiplexer always selects the bottom input. 

Let us see how the actual systolic operation takes place 
in the first row of PE's. For instance, 

All the partial Boolean products of S'; ( A,) will be gen- 
erated one at a PE in a fixed order from PEI - to PE, - 5 r  

as shown above. The first partial product is S i , , (  A,)  in 
which we need L : ( A ) .  L: (A)  arrives at the Xi, end of 
PE1 - during clock 4 and passes through the PFIFO stage 
at clock 5 .  The computation of S';,5 ( A,)  = E; = I C , ,  , ( A I ,  

A,) * Lt(  A,) is performed at the I stage by a two-level 
NAND circuit during clock 6. In the cycle of clock 7, the 
first partial product II;=, S f , j (  A,) is computed at the A 
stage of PEI - I by an AND gate. The result is output 
through the Yo,, line. This time-space diagram is shown in 
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TABLE I1 
THE TIME-SPACE SNAPSHOTS OF PE CONTENTS IN EACH CLOCK CYCLE FOR COMPUTING T H E  PARTIAL PRODUCTS OF S:(  hi ) I N  PE, ~ I A N D  PE, 2 

Clock 3 4 5 6 7 8 9 10 

I 
Stage 

A 
Stage 

PE, -, 

TABLE 111 
THE LIST OF DATA STREAMS DURING EACH CLOCK CYCLE FOR THE DRL EXAMPLE: THE GENERATFD St (  XI ). S:( A?) ,  S:(  A,), AT THE Y,,,, ENDS OF THREE 

LINEAR ARRAYS 

Clock 19 20 21 22 23 24 25 . . .  44 45 46 

Table 11. Similarly, St,,( X I )  = c1.4( X I ,  A,) * 
L:( X p )  is computed at the I stage of PE, - during clock 
9.  The partial product n;,, St,,( X I )  is then generated at 
the A stage during clock 10. The growth of the partial 
product continues to take place at PEI - 3, PE, -,, and 
PE, - S.  And the final result of S'; ( X I )  = IIl= I Si,, ( X I )  is 
obtained during clock 19, as indicated in Table 111. 
Si ( A,) and Si ( A,) are simultaneously generated in the 

second and third rows, when S!( X I )  is generated in the 
first row. The subsequent supporting evidences Sf ( A,) for 
i = 2 , 3 ,  - - , are generated in the same way during the 
clock cycles given in Table 111. 

The correct values of supporting evidence generated 
above in each row rely on the proper pairing between the 
compatibility coefficients and the labeling estimates, as 
given in (3a). The compatibility coefficients are arranged 
in a circular shift register in the five PE's of the first row 
and are ordered according to the required timing relations 
needed to compute SI( X I ) ,  S,( A,) ,  S3( A,),  S4( A,) ,  and 
S5( A,)  in the first row of Fig. 3. 

The compatibility coefficient arrangements in the PE's 
of other rows in Fig. 3 can be obtained by simply chang- 
ing X I  to X2 for the second row, and changing X I  to A3 for 
the third row. 

Next, consider (3c) for computing the new labeling es- 
timates. The generated new labeling estimate stream at 
the R,,, end is shown in Table IV. Let us see how L:+ ' (A) 

is generated during clock 24 in the combiner module. The 
combiner organiztion consists of five pipeline stages, as 
shown in Fig. 4. It takes five clocks to generate a new 
labeling estimate. At clock 20, the generated S';( X I ) ,  
S:( A,), and S i (  A3), are output as S!(A), by a parallel- 
in-and-parallel-output (PIPO) G registers at the PIPO 
stage. The labeling estimate L i ( A )  passes through the 
PIPO stage via H registers at clock 20, too. At clock 21, 
$(A) passes through the A stage without any operation. 
At clock 22, the Boolean ANDing operation of L!(A) * 
S! (A) = Lit '  (A) is performed at the I stage. At clocks 
23 and 24, the result L$+'(A) steps through the last two 
stages without any operations. Thus at the end of clock 
24, L!' I (A) appears at the R,,, end. The reason for using 
the NOP (no operation) mode of A ,  ACC, D stages in the 
combiner is to allow this same combiner structure to be 
used in a programmable mode to handle the probabilistic 
relaxation labeling (PRL) algorithm. The other new la- 
beling estimates are generated similarly in a pipeline or- 
der, as shown in Table IV. At clock 25 the new stream of 
L!+~(A), i = 1, 2 ,  , and the old stream of Lf;(A), 
i = l , 2 ; * *  , obtained at the R,,, and Po,, ends are com- 
pared at the hardware level to determine the consistency 
condition. At clock 26 the new stream of Lf" (A), i = 1, 
2, 

This completes our description of the parallel execution 
(or mapping) of the given DRL algorithm on our parallel 

. 

. . , starts to appear at X,,end. 
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A I ACC D 
Stage Stage Stage Stage 

TOP 
(at clock 6) 

TOP 
(at clock 9) 

TOP 
(at clock 12) 

TOP 
(at clock 18) 

TOP 
(at dock 15) 

The compatibility coefficient arrangements in  the PE's of the first 
row. 

Fig. 3 

TABLE 1V 
THE LIST O F  DATA STREAMS D U R I N G  EACH CLOCK CYCLE FOR T H E  D R L  EXAMPLE:  T H E  NEW A N D  OLD L A B E L I N G  E S T I M A I E  STREAMS 4T I?,,,,, ANI) P,,,, ENDS 

Y,  
M=3 

5 
M = 3  

Rout 

/M- 
Pout 

Fig. 4 .  (a) The five pipeline stages of the combiner module. (b) The hardware organization of the combiner module. * I :  The 
constant buffer is not used in the D R L  mode. *2: Both PFlFOl and PFIF02 are short circuited in  the DRL mode. *3: The A ,  
ACC, and D stages are set to the no operation mode; the input data pass through intact. 
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PIS0 

Y - .  
- Accumulator - 16 

Adder 

L r ACC - ‘ 16 
- Divider 

- PFIFOl 
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16 

Multiplier C 

PIS0 

w - .  PFIF02 
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1 WRout ’ 16 

1 ,Pout 
‘8 

Yin 

Win 

A 
/ L  / 

‘16 1 ’ 16 Adder 

/ M  I I 

To the next Y;, 

k 
6- 
To thenextW, 

To the next X, 

G 

architecture. Next, we shall modify this parallel architec- 
ture so that it can execute the PRL algorithm, too. 

B. The PRL Algorithm 

lows: 
Let us rewrite a 5-object, 3-label PRL algorithm as fol- 

5 

Sf;(A,) = j =  c I S;,j(A,) 

for i, j E [ l ,  51 and 

In (4a) S:,,(X,), Cl,,(Af, A,), and P,”( A,) are real numbers 
instead of 1-b-wide binary numbers as in the DRL case. 
A real number here is represented by 8 b. We shall not 
pack M 8-b labeling estimates P i (  A I ) ,  P,”( A2), P i  (A,) into 
one 3 x 8-bit datum as before, because it is not practical 
to use such a 24-b-wide data at the input line. Instead, we 
will use the 8-b-wide data to represent our input stream. 
We shall implement S:,, ( A , )  in (4a) by a linear systolic 
array of three PE’s. On the other hand, Sf ( A , )  in (4b) is 
again computed through a systolic operation as in the DRL 
case. In total, we need 3 x 5 = 15 PE’s in order to obtain 
the final result of S:( A,)  for each i E [ l ,  51. 

The necessary modifications of the previous DRL ar- 
chitecture for executing the PRL algorithm are as follows. 
The architecture modifications are shown in Fig. 5. 

1) The I stage is configured as a multiplier. 
2) The A stage is configured as an adder. 
3) The number of PE’s in each row is extended to 15. 
4) The lengths of the PFIFO buffer in the first PE’s of 

the three rows are 14, 13, and 12, respectively, where 14 
= N  X M - 1. 
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TABLE V 
THE LIST OF DATA STREAMS DURING EACH CLOCK CYCLE FOR THE PRL EXAMPLE: THE INPUT DATA 

STREAMS AT THE k',, AND x,. ENDS 

Clock 0 1 2 3 14 15 16 . . .  

TABLE VI 
THE LIST OF DATA STREAMS DURING EACH CLOCK CYCLE FOR THE PRL EXAMPLE: THE GENERATED sf (  A , ) ,  

sl( A>), sr( A,) A T  THE Yo,, ENDS OF THREE LINEAR ARRAYS 

. . .  71 . . .  Clock 59 60 61 62 

TABLE VI1 
THE LIST OF DATA STREAMS DURING EACH CLOCK CYCLE FOR THE PRL EXAMPLE: THE NEW AND OLD 

LABELING ESTIMATE STREAMS AT R,,, A N D  P,,,, ENDS 

TABLE VI11 
THE DIFFERENT MODES OF THE FUNCTIONAL UNITS FOR THE EXECUTION OF THE DRL A N D  PRL ALGORITHMS 

PE The Combiner Module 

I A G H  A I ACC D 

DRL NANDckt AND PIP0 NOP AND NOP NOP 
PRL Multiplier Adder PIS0 Adder Multiplier Accumulator Divider 

The computation of a new labeling estimate P f +  I (A, )  
according to (4c) using the combiner is more complicated 
than before. The modifications include 

1) The first pipeline stage is changed to parallel-in-and- 

2) The constant buffer C is set to 1 .O to get the term of 

3) The A stage is configured as an adder. 
4) The I stage is configured as a multiplier. 
5) The ACC stage is configured as an accumulator with 

6) The lengths of PFIFOI and PFIF02 are set to M = 

7) The D stage is configured as a divider. 

Tables V-VI1 show the data streams at the clock steps 
for the generation of new estimates P';+l ( A l ) ,  Pt" ( A2), 
. . .  . Let us take a look at a snapshot of clock steps for 

where 59 = 3 X N x M + N x M - 1 ,  the result of 
SB ( A , )  is available at Yo,, end and the Pt  ( A,)  is available 
at WO,, end. During the next four clock cycles, the terms 
[ l  + Si ( A , ) ] ,  [ l  + S: (A , ) ]  x P ! ( A , )  and the partial 

serial-out (PISO) registers. 

1 + $(A,). 

a buffer length of M = 3. 

3 .  

pkf l  I ( A , )  generated in the combiner. During clock 59, 

sum of 0 and [l + S'; (A, ) ]  x P t  ( A , )  are obtained with 
adder, multiplier, and accumulator units. Similarly, in the 
clock cycles 62, 63, and 64, the terms [ 1 + S'; ( h2)], 
[ 1 + St  ( A2)] x P'; ( A2) and partial sum of [ 1 + S'; ( A,)] 
X P'; ( A , )  and [ l  + S'; ( A2)] x P'; ( A2) are obtained, and 
then the E; = [ 1 + S:  (A,,)] X P: (A,) is obtained in clock 
65. Finally, the new labeling estimate P ; + l (  A , )  is pro- 
duced by the divider and is output at the R,,, end in clock 
66. The above process operates in a pipeline fashion, so 
the succeeding new estimates of P' ;+ l (  A2), P f + I (  h3),  
P;+' ( A l ) ,  * . * will be produced consecutively on R,,, line 
at the rate of one per clock cycle. Totally, it takes 80 
clock cycles to finish one iteration of the PRL agorithm. 

C. The General Parallel Architecture for  DRL and PRL 
Algorithms 

From above, we can see a common parallel architecture 
can be used for executing DRL and PRL algorithms. The 
differences in the PE and combiner hardware organiza- 
tions for these two cases can be settled by using program- 
mable units in the organizations. The different modes of 
these functional units for the DRL and PRL cases are 
shown in Table VIII. 
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TABLE IX 
COMPARISONS OF PROPOSED ARCHITECTURE WITH Two OTHER ARCHITECTURES FOR THE DRL ALGORITHMS 

Item of Architecture by Architecture by Our 
No. Comparison Gu et al. Resis et al. Architecture 

1) Type of 

2) Time complexity 

3) Space complexity 
4) I/O bandwidth in 

bits 
5 )  Configurability 
6 )  Adaptibility to 

architecture 

per iteration 

varying problem 
sizes 

checking 
7) Consistency 

2-D, 2-Wt 
systolic array 

OW x M ) t  

O(N x M )  
O(M x M )  

No 
limited 

Yes 

2-D mesh connected 
computer 

O(N X M 2 )  

OWz) 
O(N x M )  

No 
No 

No 

1-D, 1-W 
systolic array 

O(N x M )  
O W )  

Yes 
Yes 

Yes 

t2-D, 2-W = two-dimensional, two-way; M = the number of labels; N = the number of objects 

TABLE X 
COMPARISONS OF PROPOSED ARCHITECTURE WITH Two OTHER ARCHITECTURES FOR THE PRL ALGORITHMS 

No 
Item of 

Comparison 

Type of 
architecture 

Time complexity 
Space complexity 
I / O  channel 

number 
Configurability 
Adaptibility to 

varying problem 
sizes 

status checking 
Convergence 

Architecture by 
Kamada et al. 

Architecture by Our 
Guerra et al. Architecture 

Round robin 

O(N x M ) t  
OW) 

multiprocessor 

No 
difficult 

No  

1-D, 1-Wt 
systolic array 

O(N2 x M j  
O(N x M )  
O(M 1 

No 
Yes 

No 

1-D, 1-W 
systolic array 

O(N x M j  
O(N x Mz) 
1 

Yes 
Yes 

Yes 

~ ~~ 

t l - D ,  I-W = one-dimensional, one-way; M = the number of labels; N = the number of objects. 

IV. PERFORMANCE EVALUATION 
To evaluate the proposed architecture, we shall con- 

sider several evaluation factors including the time com- 
plexity, space utilization, and input channel bandwidth. 
The comparisons of our architecture with other relevant 
architectures for both DRL and PRL cases are shown in 
Tables IX and X, respectively. 

A .  The DRL Algorithm 
Table IX summarizes the differences between our ar- 

chitecture and those by Gu et al. [14] and Resis and Ku- 
mar [ 121 for the execution of the DRL algorithm. Assum- 
ing the clock cycle time is T,  the time complexity per 
iteration of our architecture is estimated as follows: 

1) The time to produce the first new labeling estimate. 
It consists of two parts: a) ( N  - 1) T which is the time 
required to wait for the arrival of L i ( A )  in order to com- 
pute the first partial result of a supporting evidence, and 
b) (3 X N + 5 )  T which is the time to get through both 
the main module and the combiner module. 

2) The time for computing the subsequent labeling es- 
timates. There are N - 1 subsequent labeling estimates 
to be generated at the rate of one per clock cycle, so it 
takes ( N  - 1) T to complete. 

As a result, the time complexity for a single iteration 

is O ( N ) .  This indicates that the computation time depends 
only on the number of objects N ,  not on the size of classes 
M ,  while the other two architectures require O(NXM) and 
O ( N X M ~ ) ,  respectively. 

Table IX also lists several advantageous features of our 
architecture, such as the communication with the external 
environment through only one single I/O port, the sim- 
plicity of the architecture using one-dimensional, one-way 
systolic arrays and, the programmability of the functional 
units. 

B. The PRL Algorithm 
Table X summarizes the differences between our archi- 

tecture and those by Kamada et al. [l  l ]  and Guerra [15] 
for executing the PRL algorithm. The time complexity 
per iteration is estimated as follows, assuming T is the 
clock cycle time: 

1) The time to produce the first new labeling estimate. 
It consists of two parts: a) (N  X M - 1 )  T which is the 
time required to wait for the arrival of p i (  A,) in order to 
compute the first partial result of a supporting evidence, 
and b) ( 3  x N x M + M + 4) T which is the time to get 
through the main module and the combiner module. 

2) The time for computing the subsequent labeling es- 
timates. There are N X M - 1 subsequent new labeling 
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estimated to be generated at the rate of one per clock 
cycle, so it takes ( N  x M - 1) T to finish. 

Therefore, the total time complexity for a single itera- 
tion is O(N x M). Although it is of the same order as the 
multiprocessor architecture proposed by Kamada et al . ,  
yet the multiprocessor system takes a much longer clock 
cycle time than ours due to its complicated task schedul- 
ing and synchronization. On the other hand, ours is su- 
perior to the architecture proposed by Guerra as far as the 
time complexity is concerned. However, our architecture 
needs more PE’s than the other two architectures. Never- 
theless, our PE circuit is simpler and can be implemented 
in a high density VLSI chip. Furthermore, the conver- 
gence condition can be checked in our architecture at the 
hardware level without the host involvement, while the 
other two systems cannot do so. 

V.  SUMMARY 
We have presented a flexible parallel architecture for 

executing the DRL and PRL algorithms. The architecture 
is designed based on the analysis of the parallelism in the 
mathematical models of the algorithms. We preload the 
compatibility coefficients into the PE’s so that only the 
stream of labeling estimates need to step through the PE’s. 
The one-dimensional, one-way layout of systolic arrays 
is suitable for VLSI fabrication. The performance evalu- 
ations listed in Tables IX and X show that the proposed 
architecture is generally better than the existent architec- 
tures. 

In order to verify the design of the proposed systolic 
array and the combiner module, a simulation software 
package called DAISY system [ 191 has been used to check 
the specification. We have finished the logic simulation 
to check the timing sequence for the architecture opera- 
tion and the signal simulation to verify the intermediate 
processing results. The experiments show that the pro- 
posed architecture is working properly. Future work in- 
cludes the development of the VLSI customer chip and 
proper architecture modifications to cover a wide spec- 
trum of related algorithms. 
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