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A Hardware Implementable Two-Level Parallel 
Computing Algorithm for General 

Minimum-Time Control 
Shin-Yeu Lin 

Abstract-In this paper, we propose a hardware imple- 
mentable two-level parallel computing algorithm fo r  general 
minimum-time control. We  first discretize and  t ransform the 
minimum-time control problem fo r  a continuous-time system 
into a parameter optimization problem which is large dimen- 
sional and  nonseparable. Then,  the proposed two-level algo- 
rithm decomposes this parameter optimization problem in to  a 
master-slave problem. The master problem can be easily solved 
by a one-dimensional gradient method,  and  the slave problem 
will be solved by the proposed parallel computing method which 
combines recursive quadratic programming with the dual  
method. Furthermore, we have proved the convergence of this 
iterative two-level parallel computing algorithm under some 
conditions. Based on the VLSI array processor technology, we 
present a dedicated hardware computing architecture to  realize 
this algorithm. The corresponding time complexity is also ana-  
lyzed. Finally, several practical problems including the mini- 
mum-time orbit  transfer problem and the minimum-time robot  
control problem have been simulated. The results show tha t  the 
algorithm is well-suited fo r  real-time application of minimum- 
time control. 

I. INTRODUCTION AND PROBLEM STATEMENT 
INIMUM-time control is an important class of optimal M control problems. For such problems, numerous se- 

quential computing techniques have been developed [1]- [5]. 
In general, these techniques take considerable computation 
time for complicated constrained minimum-time control 
problems, and special care is needed for the systems with 
discontinuities, for example, the bang-bang problem [3, p. 
1901, [61. 

The purpose of this paper is to present a hardware imple- 
mentable two-level parallel computing algorithm for gen- 
eral minimum-time control. The idea of this algorithm is 
novel. The problem under consideration can be any compli- 
cated nonlinear, multivariable constrained minimum-time 
control problem. The realizability of this algorithm by VLSI 
array processors has great appeal to real-time processing 
systems. 

Mathematically, the general minimum-time control prob- 
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lem can be expressed as 

u(t),O< min t s ff t f  

subject to 

where U E R are control variables; x E R are state vari- 
ables; f': R"+p+' -+ Eln is the vector function of the state 
equations; T:  R"+' -+ Rm,  m I n is a vector function, and 
the surface T ( x ( t f ) ,  t f )  = 0 denotes the target set; g: 
--t Rq is the vector function of the inequality constraints. 

The problem is to find a p-component control u( t ) ,  0 I t 
I t f  to transfer the system from the initial state x, at t = 0 
to the target set T( x( t f ) ,  t f )  = 0 in minimum time t f  , while 
satisfying the constraints. 

In our approach, we first discretize the above minimum- 
time control problem, then transform the resultant discretiza- 
tion problem by adding slack variables si, i = 0, * , N to 
the equality constraints and penalizing those slack variables 
in the objective function with a large positive penalty coef- 
ficient M.  The final parameter optimization problem as shown 
in (2) will well approximate the original minimum-time con- 
trol problem if the time interval At  = t f  /N in the discretiza- 
tion is small enough and the penalty coefficient M in the 
transformation is sufficiently large [7]. 

N 
min t f  + M E  si'si 

i = O  

In (2), the vector function f ( x i ,  u i ,  i, t f )  = 
f ' ( x i ,  u i ,  iA t )  or f ' ( (x i  + ( t f  /2N)f'), U;, ( i  + +)At)  de- 
pending on whether the first-order or the second-order 
Runge-Kutta method is used in discretization. Similarly, for 
the fourth-order Runge-Kutta method, the relationship be- 
tween f and f' can also be easily derived [9]. 
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The optimization problem (2) is difficult to solve due to its 
nonseparability and large dimension. However, if we fix 
the t,, (2) becomes separable. The separability of a large- 
dimension optimization problem can be exploited to develop 
efficient computational procedures. Therefore, like 
Dantzig-Wolfe or Benders' decomposition techniques [lo], 
the two-level approach naturally lends itself to solving (2). 

The proposed two-level algorithm begins by decomposing 
(2) into a master-slave problem. The solution of the master 
problem is an estimate of the minimum final time t, which 
will be passed down to the slave problem. The slave prob- 
lem, which is (2) with t, fixed in the constraints and omitted 
in the objective function, will determine that the given t, is 
less or more than the minimum t, depending on whether the 
target set T(x(t,),  t,) = 0 can be reached by the available 
control at the given t, or not. Taking the solution obtained 
from the slave problem into account, the master problem will 
generate a better estimate of the minimum final time t,. Then 
the iterative procedures of the two-level algorithm continue 
until convergence occurs. The advantages of this two-level 
algorithm are that the master problem can be easily solved by 
a one-dimensional gradient method, and the slave problem 
can be solved by the developed parallel computing method 
which combines recursive quadratic programming with the 
dual method. Furthermore, we prove that the two-level 
algorithm will converge to the optimal solution of (2) under 
some conditions. The computational steps for the slave prob- 
lem are completely decomposed, and the needed operations 
are only simple arithmetic addition, subtraction, multiplica- 
tion, and division. Furthermore, the computations needed for 
solving the master problem also consist of only simple arith- 
metic operations. Therefore, with slight modifications on the 
step-size and the convergence checks of the iterative meth- 
ods, we present a VLSI array processor based hardware 
computing architecture to realize the two-level parallel 
computing algorithm. The corresponding computation time 
complexity in terms of the number of algorithmic iterations, 
additions, and multiplications as well as the communication 
time is also analyzed. 

Based on the analyzed time complexity and the progress of 
VLSI technology in fabricating multipliers, adders, and com- 
munication links [ l l ] ,  [12], we can estimate the computation 
time of the algorithm from simulation results. To demon- 
strate the applicability of our algorithm, we have tested 
several kinds of practical minimum-time control problems for 
which either an exact solution from Pontryagin's maximum 
principle or an approximate solution reported in the litera- 
ture was available. The simulated results are very satisfac- 
tory; moreover, the estimated computation time is less than 1 
ms (= s). This strongly suggests that our algorithm 
is very suitable for real-time application of minimum-time 
control. 

II. THE TWO-LEVEL ALGORITHM AND ASSUMPTIONS 
A .  Preliminaries 

Let Q(t,) denote the set of points (x, U, s) that satisfy 
the constraints of (2) under a given t,, where x = 

(3) 

is equivalent to (2) because the optimal solution of (2) must 
be an optimal solution of (3), and vice versa. For a given t,, 
we define the slave problem of (2) as 

N 

which is the minimization problem within the bracket in 
(3). Let (i( t,), ii( t,), SI( t,)) denote the optimal solution of 
the slave problem at a given t f ,  then the optimal objective 
value of the slave problem can be expressed as 
A4 EEo$:(t,)3i(tf) which is a function of t,. Based on (3), 
the master problem of (2) is defined as 

I N 
t f+MESIT(t , )SI i ( t f )  . 

' J  i=O 

Remarkl: Let tf* = min{tfIME~oS^~(t,)s^i(tf) = O}. 
It then denotes the solution for the minimum time of the 
discretized minimum-time control problem. Furthermore, t; 
can also be expressed as min { t, I CE,$,?(tf)$i(t,) = 0}  
because M is a constant. 

B. Assumptions 

1) The optimal solution of (2) is unique. 
2) The functions f, T ,  and g are three times continuously 

differentiable. 

C. The Two-Level Algorithm and Its Convergence 
Property 1: Let (a, U, s^, $.) be the optimal solution of 

(2). Suppose (i, ii, s^) is a regular point, then i(t,): k ( t f ) ,  
O( t, ) , and M 1 Eo $T( t,) Si( t,) will be twice continuously 
differentiable in an open interval containing 2,. 

Remark 2: A regular point is a point at which the 
gradient of the active constraint functions are linearly inde- 
pendent [ 131. 

Property 1 has been verified in [8, p. 391 based on 
previous assumptions. Because of space limitations, we will 
not include the complete proof here; however, a rough sketch 
of the proof is provided in the following. Because of As- 
sumption 1, we have ( 2 ,  k ,  i) = ( i ( i f ) ,  k(:,), $(if)). Then, 
according to (4), let ( d i ,  dk, ds^) denote the deviation from 
(a(?,), k(?,), $(if)) induced by the deviation dt, from 3,. 
Thus, (d2,  dk, dO) can be considered as a function of dt,. If 
dt, is sufficiently small, the values of the corresponding 
( d i ,  dk,  dO) can be obtained approximately from a quadratic 
programming problem which approximates (2) at the point 
( i( lf), k( 2,) , O( if), 3,). This quadratic programming prob- 
lem has a positive definite Hessian matrix with dt, as the 
given driving function, (dx ,  du, ds) as the minimizing vari- 
ables, and ( d i ,  dii, dO) as the optimal solution. By Assump- 
tion 1, if dtf.= 0, the corresponding ( d i ,  dk, d i )  = 0. Thus, 
we may justify Property 1 by showing the twice continuous 
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differentiability of (d2,  du, d$) at dt, = 0. To proceed with 
the proof, we first show the existence of a solution for the 
Lagrange first-order necessary conditions of the quadratic 
programming problem when dt, = 0. This solution is 
( d i ,  du, d$) = 0. Secondly, we show that the Jacobian of 
the left-hand-side functions of the Lagrange first-order neces- 
sary conditions with respect to (dit, du, d$) is nonsingular at 
(d2, du, d$) = 0 based on the positive definiteness of the 
Hessian matrix of the quadratic programming problem and 
(i(f,), &(?,), $(?,)) ( =  ( 2 ,  l i ,  $)) being a regular point. 
Finally, we apply the implicit function theorem to complete 
the proof by showing that (d2, du, d$) is twice continuously 
differentiable at dt, = 0 if Assumption 2 holds. 

tf)Si( t,) is jus- 
tified by Property 1, the master problem can be solved 
iteratively by the following one-dimensional gradient method: 

1 

Since the existence of ( d  / dt,) M XL 

(6)  
where the derivative (d/dt,)M X~os^T(t,(j))s^l(t,(j)) in 
each iteration j can be calculated from the solution of the 
slave problem as described later in Section 111, and the 
a (0 < a I 1) is a constant step-size parameter. Thus, the 
structure of this two-level algorithm is shown in Fig. 1, and 
the detailed algorithm procedures are described below. 

Step OG: Pick up tf(0), N ,  M and set j = 0. 
Step ZG: Solve the slave problem, and output the value of 

(d/dt,)M CE,s^T(t,(j))s^i(t,(j)) to the master problem. 
Step 2G: If 11 + (d/dt,)MCfl,J~(t,(j))irict,cj,,  I e 

E~ (a preselected accuracy), stop and output the optimal 
control k(t,(j)) from the solution of the slave problem; 
otherwise, go to Step 3G. 

Step 3G: Compute t,(j + 1) = t f ( j )  - a[ l  + (d/dt,) 

Step 4G: Set j = j + 1 and return to Step 1G. 
Remark 3: The notation G at the end of each step is used 

to indicate that the master problem is solved by the gradient 
method in the above two-level algorithm. 

Sufficient conditions required for the convergence of the 
two-level algorithm are stated below. 

Theorem I :  Suppose a is small enough and t,(O) is 
sufficiently close to ?,, then the sequence {(it( t ,( j)) ,  
h(t,(j)), i( t ,( j)) ,  t,(j)); j = 0, 1, * * } generated from the 
two-level algorithm will converge to (a, G ,  8, 2,). 

The proof of Theorem 1 partially appeared in [7] and its 
complete details can be found in [SI. However, we will 
highlight the procedures of the proof in the following. Be- 
cause (2, h, $) = ( i ( f f ) ,  $(?,)), it is enough to show 
Theorem 1 by showing that the sequence { t,(j)} converges 
to ?,. Let c(t,) = t f +  MCE,s^T(t,)s^,(t,). First, we de- 
rived in [8, Lemma 41 an important property of nonnegative 
second derivative which implies that there exists an E > 0 
such that v t,E(?, - E ,  if+ E ) ,  (d/dt,)c(t,) < 0,  if t,< 
ff, and (d/dt,)c(t,) > 0, if t, > if, however, 
(d/dt,)c(?,) = 0. This property also indicates that the solu- 
tion set of the two-level algorithm consists of a single point 

MCEos^T(t,c~,,s’,ct,(~))I, 0 < 5 1. 

MASTER 

1 I 

1 P E q  

Fig. 1.  The structure of the two-level algorithm. 

only. Then, we prove the convergence by showing the satis- 
faction of three sufficient conditions of the global conver- 
gence theorem (GCT) [13, p. 1871. Based on the property of 
nonnegative second derivative, using Taylor’s theorem, we 
show that the sequence { t,(j)} generated by our algorithm is 
contracting with respect to ?, provided that t,(O) is suffi- 
ciently closed to and a is small enough. Therefore, the 
sequence { t,(j)} lies in a compact set, and thus the first 
condition of GCT is satisfied. Based on the property of 
nonnegative second derivative, we also show that c( t,( j + 
1)) < c ( t f ( j ) )  if ( d / d t f ) c ( t f )  # 0, and c ( t f ( j  + 1)) = 
c(t,(j)) if (d/dt,)c(t,) = 0. Since c(t,) is the objective 
function of the considered problem, this indicates that every 
iteration of our algorithm reduces the objective value 
before the solution is obtained. Hence, the second condi- 
tion of GCT is satisfied. For the last condition of GCT, it is 
easy to show that our algorithm is a closed mapping because 
a is a constant. 

D. Processing of Initial Guess 

As indicated in Theorem 1, the initial guess t f (0)  being 
close enough to f, is one of the sufficient conditions for the 
convergence of the two-level algorithm. Basically, no prior 
knowledge of ff is available; however, f, is close to tf* 
which is defined in Remark 1. Thus, [,(O) can be chosen 
near t; and, consequently, is close to t f .  According to the 
definition of t;, we may characterize it as follows: 
CKoi,T(t,)Ji(t ) > 0, if tf  < ts; C ~ , ~ T ( t f ) ~ i ( t , )  = 0, 
if t, = t;; Ci=,2:(tf)Qi(tf) 1 0, if t, > tf*. Thus, for 
a suitable tolerance E *  > 0, if t f ( 0 )  < tf* and 
X~,$~(t,(O))s^,(t,(O)) < e l ,  we may consider that t,(O) is 
close enough to tf* as required. To obtain such tf(0), we 
may employ Newton’s method to solve the single-variable 
nonlinear equation M CE,s^T(t,>i,(t,> = o as the master 
problem in the two-level algorithm. The initial guess T f ( O )  of 
this two-level algorithm based on Newton’s method should be 
less and can be much less than tf* as evidenced by our 
numerical examples. The two-level a1 orithm based on New- 
ton’s method will stop when MCi,,B:(tf)3i(tf) < Me1 
(i.e., C ~ o S ~ ( t f ) s ^ i ( t f )  < cl)  is satisfied, and the final value 
of t, will be taken as t,(O). It is important to note that we do 
not intend to solve the exact tf* from the two-level algorithm 
based on Newton’s method because the existence of 
(d/dt,)MCKos^~(t,)~l(t,) at t, = t; is questionable un- 
der the current assumptions, and accordingly, the two-level 

& 

% 
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algorithm based on Newton’s method may not converge in 
the large. Therefore, the tolerance cl  is an experienced 
value, and it should be chosen such that the two-level algo- 
rithm based on Newton’s method will not diverge before 
M C E O $ ( t f ) S i ( t )  < M E ,  is satisfied, and t f (0)  can be 
close enough to t f .  In general, the selection of c l  is not as 
difficult as it seems. When the two-level algorithm based on 
Newton’s method stops, the convergence criteria 11 + 
( d / d t f ) M  C ~ , S ~ ( t f ( 0 ) ) S i ( t f ( O ) )  I < e2 of the two-level al- 
gorithm based on the gradient method will be checked first. 
If it is satisfied, then the output ( a (  t f (0) ) ,  a( t,(O)), s (̂ t,(O))) 
of the slave problem is considered to be the optimal solution 
of (2), and this is very likely to happen for reasonably small 
e l .  If it is not satisfied, the two-level algorithm based on the 
gradient method will continue the solution process from 
t f(0).  Summarizing the above discussions, we may describe 
the two-level algorithm based on Newton’s method for the 
processing of initial guess as follows. 

Step ON: Pick up ?‘’(O), N ,  M and set j = 0. 
Step ZN: Solve the slave problem, and output the values 

of M C E O S T ( t f ( j ) ) S i ( t , ( j ) )  and ( d / d t , ) M  C E O  
Si’< t f ( j ) )S i (  t,(j)) to the master problem. 

Step2N: If M C ~ , S ~ ( t f ( j ) ) S i ( t f ( j ) )  2 M e I ,  go to Step 
3N; if M C ~ , S f ( t r ( j ) ) S i ( t f ( j ) )  < Me1,  but 11 + ( d / d t f )  
M x E o S R t f ( j ) ) S i ( t f ( j ) )  1 2 c2 go to Step IG; if M xE0 
S T ( t f ( j ) ) S i ( t f ( j ) )  < M e I ,  and 11 + ( d / d t f ! M  
Cf ioST( t f ( j ) )d i ( t f ( j ) )  I < e 2 ,  stop and output the optimal 
control a(t,(j)) from the solution of the slave problem. 

Step 3N: Compute t f ( j  + 1) = t ,(j) - [ M I ? = ,  

Step 4N: Set j = j + 1 and return to Step IN. 
Remark 4: The processing of initial guess accomplished 

by Newton’s method will speed up the two-level process 
significantly because of the fast computational performance 
of Newton’s method. 

Remark 5: Suppose at t f  = t ,(j),  ( -  l / ( d / d t f )  
CEoST( t f )S i ( t f ) )  = M’ > M ,  then 11 + (d /d t , !M’CE,  
ST( tf)Si( t f )  I I e2 holds. This indicates that (x( t f (  j ) ) ,  
a( t f (  j ) ) ,  SI( t f (  j ) ) ,  t f (  j ) )  satisfies the convergence criteria 
of the two-level algorithm based on the gradient method 
corresponding to a larger penalty coefficient M’, and hence, 
it is a better solution. Therefore, we may use ( - 1 /( d / d t f )  
CEoS,’ctf)Si(tf)) > M as an alternative test of convergence 
to replace 11 + ( d / d t f ) M C E o S T ( t f ) S i ( t f )  I < e2 in Step 
2G and 2N. This alternative convergence criterion has more 
flexibility. 

$3 t f (  j ) )  Si( t f (  j > )  /( d / dtf ) M c E 0 Si’< t f  < j > )  Si( tfC All. 

III. PARALLEL COMPUTING METHOD FOR THE SLAVE 
PROBLEM 

A .  Preliminaries 
It is well known that a large-dimension separable optimiza- 

tion problem can be solved efficiently by the dual method 
provided the Hessian matrix of the associated Lagrangian 
function is positive definite [13]. Thus, although the slave 
problem looks as complicated as (2), it is simpler than (2) 
because it is separable but (2) is not. However, for a nonlin- 
ear slave problem, the direct application of the dual method 

may fail due to the nonpositive definiteness of the Hessian 
matrix of the associated Lagrangian function. Although the 
augmented Lagrangian method [ 131 can guarantee the posi- 
tive definiteness of the corresponding Hessian matrix, it will 
destroy the separability of a separable problem. 

Therefore, in order to maintain separability while ensuring 
a positive definite Hessian matrix, we use a combination of 
recursive quadratic programming with the dual method. 

We first convert the expression of the slave problem into a 
problem with equality constraints only while all the variables 
are within simple bounds. The simple bounds of a variable 
(.) are given by (I) I ( - )  I (:), where (I) and (;) are 
the lower and upper bounds, respectively. The bound (I ) = 
-w if ( a )  is unbounded from below, and (:) = +w if ( a )  

is unbounded from above. Thus, any bounded or unbounded 
variable can be expressed within simple bounds. For the 
inequality constraints that cannot be expressed in the above 
form of variables within simple bounds, we define them as 
nonsimple inequality constraints. Let the nonsimple in- 
equality constraints among the qN inequality constraints 
g(x , ,  U,) I 0,  i = 0; * * ,  N - 1 be denoted by h’(x,, U,) 
I 0,  i = 0; * e ,  N - 1, where the vector function h’: 
+ R ‘( r I q). These rN nonsimple inequality constraints 
can be converted to equality constraints by adding to them the 
nonnegative variables z , ,  i = 0, * - , N - 1, z,  E W‘, i.e., 
h’ (x , , u , )+z ,=O,  z , 2 0 ,  i = O ; . * , N - l .  For nota- 
tional convenience, we define the vector yf = ( x f ,  U[, z , )  E 

R n + p + r  and y = ( ( y O , y l ; - * , y N )  by taking uN=O and 
zN = 0. We also define the set Y = { y I yf I y ,  I J, ,  i = 
O * - . , N } ,  wherey,=(_x,,_u,,O)and J ; = ( X , , G , , + w ) .  
Then the expression-of the slave pmblem (4) can be rewritten 
as follows: 

N 
min M E  SITS, 

Y C Y , S  ,=O 

subject to 

T ( x N , t f )  + s N = O , h ( y i )  = 0 ,  i = O , l ; . . , N -  1 

where h(y i )  = h’(xi, ui) + zi  and f ( y i ,  i ,  t,) = f ( x i ,  ui, 

B. The Recursive Quadratic Programming Method 
Let y ( k )  E Y and let ( y ( k ) ,  s (k ) )  denote an estimated 

solution point of the slave problem in (7),where k denotes an 
iteration index. Moreover, we define the set Y - y‘ = { y - 
y’ I Y E  Y } .  Then for any y” E Y - y’, y” + y’ E Y.  Ac- 
cording to Han’s work [14], (8) describes a quadratic sub- 
problem of (7) at ( y ( k ) ,  s (k ) ) .  Let (dy*(k) ,  ds*(k)) = 
(dy,*, 9 e ,  dy:, ds:, * e ,  ds;) denote the solution of (8). 
Then (dy*(k) ,  ds*(k)) is a descent direction of (7) at 
( y ( k ) ,  s (k ) )  in the sense of the absolute-value penalty 
function of (7) [14], [13, p. 4391. 

(7) 

i ,  t f ) .  

N 
min { Mds,?( k )  ds, ( k )  

d Y ( k ) € Y - Y ( k ) ,  ds ;=o 
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subject to 

E , ( k )  + & + , ( k )  - % ( k )  - ; .f ,(Y,(k),  i ,  t,) 

* dy , (k )  + ds , (k)  = 0 ,  

xo(k)  = xo? E N ( k )  + TxN(xN(k) 3 tf) 

h ( Y , ( k ) )  + h, (Y l (k ) )dJJ l (k )  = 0 ,  

dxN( k )  + dsN( k )  = 0 

i = O , l ; . * , N -  1 (8) 

where E,(k)  = x l+Ak)  - x,(W - ( t f  /N)f(y,(Q,  i, t f >  
+ s , ( k ) ,  for i = 0, l ; . . ,  N - 1 and E,(k)  = 
T( x N ( k ) ,  t,) + s,(k); the scalar y is a positive real num- 
ber; and fy,  h,, TxN denote the partial derivatives of f ,  h, 
and T with respect to y and x,, respectively. Note that 

The recursive quadratic programming method applied to 
fy = U*, f,) and hy = ( h x ,  h,, hz) .  

(7) is to solve (8) recursively with updating procedures 

Y ( k  + 1) = Y ( k )  + P ( k ) d Y * ( k ) ,  

s ( k  + 1 )  = s ( k )  + p ( k ) d s * ( k )  (9) 

until convergence occurs. The step-size p(k)  in (9) is deter- 
mined by the exact line search method to minimize the 
absolute-value penalty function of (7) while subject to 
y ( k  + 1) E Y [14], [13, p. 4391. Note that once p(k )  is 
determined, all components of y (  k )  and s( k )  can be updated 
in parallel. 

Convergence of such a recursive quadratic programming 
method under some conditions has been proved by Han [14] 
and has also appeared in [13, p. 4411. Here, we state the 
relevant theorem as a lemma for our problem. 

Lemma 2: [14, Theorem 3.21, [13, p. 4411 Assuming 
that: i) there exist two positive numbers 6 and 4 such that 
6 I min { y, M }  I max {y, M }  I 4 ;  and ii) there exists a 
unique solution (dy*( k ) ,  ds*( k) )  to (8) for any (U( k ) ,  s( k) ) ,  
and the corresponding Lagrange multiplier vector is bounded. 
Then, the bounded sequence { y ( k ) ,  s (k ) }  generated from 
(9) will converge to a point that satisfies the Kuhn-Tucker 
condition of (7). 

Remark 6: The Kuhn-Tucker condition is the first-order 
necessary condition of an optimal solution. 

Remark 7: In [14] and [13], although they only explicitly 
treat the problem with inequality constraints, they have indi- 
cated that the above result also applies to the problems 
including equality constraints. 

Remark 8: It seems that there is almost no restriction on 
the value of y except for positivity. However, large y / M  
will cause slow convergence, while very small y / M  will 
induce numerical difficulties in solving (8). Thus, y is usu- 
ally chosen by experience, and a recommended value for y is 
0.02 M. 

The iterative procedures of (9) are simple as long as 
(dy*( k ) ,  ds*( k ) )  is given for each k .  Therefore, the difficult 
part of the recursive quadratic programming is to solve (8) 
for each iteration k .  Clearly, (8) is ideally suited to the dual 

method because it is separable and has a positive definite 
Hessian matrix [13, p. 4041. 

C. The Dual Method 

the dual problem of (8) below 
To solve (8) by the dual method, we begin by describing 

max @ (A) (10) x 

where the dual function 
N 

dy(k)  and ds(k).  
The dual method we employed to 

gradient ascent method to solve (10). 
procedures are 

A $ , i ( l +  1) = A $ , i ( l )  + P(l)vA+,?(l), 

i = 0, -  

A i , i ( l +  1) = A i , i ( l )  + P(l)vA*,?(l), 
i = O , l ; . . , N -  1 ,  

solve (8) uses the 
Its simple iterative 

where Ai, I and Ai,  I are the jth components of A,, I and A,,, I ,  

respectively; the step-size P( I )  is obtained from the exact line 
search method, i.e., P ( 1 )  = arg {maxpao @(A + PVA@(1))}, 
and all components of the gradient VA+(Z) can be computed 
according to the following formula: 

VAj,? ( I )  = e'( dxi+ 1 9 9 9 

i = O , . . . , N , j =  l ; . - , n  

i = O , . . - ,  N -  l , j =  l , . . . , r  vAA,?( l )  = H:( d y ~ )  2 

(13) 
provided the minimum solution dy and ds  of (11) with 
A = VI)  are obtained [13]. Note that 4' and H: in (13) 
denote the jth component of 4 and H,, respectively. 
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q j ( y , ( k ) ,  i) = 1 

Due to the separability of (8), for any given X, (11) can be 
completely decomposed into ( N  + 1)(2n + p + r )  indepen- 
dent minimization subproblems, and each subproblem can be 
analytically solved. Thus, the minimum solution dy and ds 
of (11) with h = h(1) can be obtained from the formula in 
Lemma 3 by setting X = NI). The derivation of Lemma 3 is 
described in the Appendix. 

Lemma 3: For a given A, let 

‘A: + E:=, fff;!(yi(k), N i ,  t,>x,,;, 

for0 I i I N - 1; 

for i = N 
- c:= lTXKX,xf,N> 

. 1  

2Y 
dxf  = - [ ( -A$,;- + qj( y j (  k ) ,  i )  

(14) 
where 
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A . X $ , ; + 2 M  dsj = - i = 0 ,  l ; . . ,  N ,  j = l ; . . ,  n .  
2 M  ’ 

The above dual method will converge to the solution 
(&*(IC), ds*(k)) needed in (9). Thus, we have successfully 
combined the recursive quadratic programming method with 
the dual method to solve (7), which is the slave problem. An 
advantage of this combination is that the computations of (9), 

(12)-(16) are fully parallel except for the determination of 
the step-size p (  k )  and /3( I). 

D. The Parallel Computing Method 

will replace Steps 1G and 1N in the two-level algorithm. 
Following are the details of the algorithmic steps which 

Step 1.0: Select (y(O),  s(O)), and set k = 0. 
Step 1.1: Compute in parallel E i ( k ) ,  h ( y , ( k ) ) ,  

h.(Yi(k)), h,(yi(k)>, i = 0;.  e ,  N - 1, and EN(k), T’., 

Step 1.2: Select WO), and set l =  0. 
Step 1.3: Compute in parallel dx;, dui ,  dzi, and ds!, V 

i ,  j from (14), (15), and (16) with A = %I). 
Step 1.4: Compute in parallel Vk$,,@(l) and Vki,,@(l), V 

i ,  j from (13). Then if I Vk@(l) 1 < 7 (a preselected accu- 
racy), go to Step 1.6; otherwise, go to Step 1.5. 

Step 1.5: Determine the step-size p(1) and update in 
parallel all components of N I +  1) according to (12), and set 
1 = 1 + 1, then return to Step 1.3. 

Step 1.6: Determine the step-size p(k)  and update in 
parallel all components of (U (  k + l ) ,  s( k + 1)) according to 
(9). If max ( I dy(k )  I m ,  I W k )  I ,I < 7, set ( y ( t f ) ,  s ( t f ) )  
= ( ~ ( 4 ,  s (k ) ) ,  ( Y ( O ) ,  ~ ( 0 )  = ( y ( k ) ,  s (k ) ) ,  k = 0,  and go 
to Step 1.7; otherwise, set WO) = X I ) ,  1 = 0, k = k + 1, 
and return to Step 1.3. 

Step 1.7: Compute -A~(l)(a/at , )[w(y,(k) ,  i ,  t,)] and 
Mj:(k)S,(k) and go to Step 1.8. 

Step 1.8: Perform the summation E L o  - h:(t,) 
( a / a t f ) w ( Y i ( k ) ,  i ,  t,) and MCE,s^T(k)Si(k), and go to 
Steps 2N or 2G. 

Remark 9: From the sensitivity theorem in [13, p. 3131, 
we see that the negative value of a Lagrange multiplier 
associated with an equality constraint can be interpreted as 
the incremental rate of change in the value of the objective 
function per unit change in that equality constraint require- 
ment. Furthermore, the derivative of a constraint function 
with respect to its parameter can also be interpreted as the 
incremental rate of change in the value of the constraint 
requirement per unit change of that parameter. Therefore, 
using the chain rule, (d/dt,)M ~ ~ o S i ( t , ) T ~ i ( t , )  can be 
calculated by Ito - A:( t,)(d /a  t,) w( yi( t,), i, t,), where 

( t f / N ) f x ( ~ j ( k ) ,  i, t,), ( t f / N ) f u ( y i ( k ) ,  i ,  

(x,(k), $1. 

hx(Yi(k)), 

w(Y;(t,), i 7  tf) 

and the values of y ( t f ) ,  Wt,) are the convergent solution 
and the corresponding Lagrange multiplier of the slave prob- 
lem under a given t,. 

Remark IO: The notation 1 ( e )  1 denotes the value of the 
largest magnitude of the components in (.). 

Remark ZZ: Normalizing (8) by dividing all the terms in 
its objective function by M ,  the solution of the resultant 
normalized problem will be the same as (8). However, the 
associated Lagrange multiplier will be scaled by 1/M. 
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Nonetheless, the values of the objective function of (8) and 
its derivative with respect to t f  can be obtained by multiply- 
ing M by the corresponding values in the normalized prob- 
lem. Thus, this normalization technique will not add an extra 
computation load, but will speed up the convergence [8, 
p. 401. 

Henceforth, we will call the two-level algorithm with the 
above parallel computing method as the two-level parallel 
computing algorithm. 

E. Convergence Analysis 
Based on the duality theorem [13, p. 3991, if the mini- 

mum solution of (8) exists, the convergence of the dual 
method is well established. Indeed, the minimum solution of 
(8) always exists because of the slack variables, and is unique 
because of the positive definite Hessian matrix. Moreover, 
the corresponding Lagrange multiplier at the solution must be 
finite since the optimal objective value of (8) is always 
bounded. Thus, condition ii) of Lemma 2 is completely 
satisfied. Furthermore, condition i) in Lemma 2 is obviously 
satisfied because M and y are constant positive real values. 
Thus, the developed parallel computing method will con- 
verge to a point that satisfies the Kuhn-Tucker condition of 
(7) which is the slave problem. Therefore, we have the 
following theorem. 

Theorem 4: Any bounded sequence { y ( k ) ,  s (k ) }  gener- 
ated from the parallel computing method will converge to a 
point that satisfies the Kuhn-Tucker condition of the slave 
problem. 

It has been indicated in Section 11-C that because of 
Assumption 1 ,  (a(?,), a(?f), $(if)) = ( a ,  a ,  3) and is 
unique. Thus, the convergent point achieved above when 
tf = fr must be (i(f,), fi(f,), 8(?,)) due to the uniqueness. 
Therefore, combining Theorem 4 with Theorem 1 shows the 
convergence of the two-level parallel computing algorithm. 

I v  . HARDWARE COMPUTING ARCHITECTURE AND TIME 
COMPLEXITY 

A .  Preliminaries 
It can be observed from the two-level parallel computing 

algorithm that (9), (12)-(16) consist of almost all the compu- 
tations needed in the algorithm. The computations in each 
equation are composed of independent sets of arithmetic 
operations. Each set corresponds to calculating the value of a 
single component in one time interval, for example, the 
calculation of dxj in (14). Based on such a complete-decom- 
position property, it is possible to use VLSI array processors 
to realize the algorithm. For example, we may assign N + 1 
processors to carry out the computations in one algorithmic 
step, such that the ith processor only takes care of the 
computations corresponding to the time interval i .  However, 
it seems that there are difficulties in performing the summa- 
tions M CE,ST(t,)S,(t,) and ( d / d t , ) M  Cf"_,ST(tf)S,(t,) 
(i.e., If"=, - A:(t,)(d/dt,)w(y,(t,), i ,  t,)) in the slave 
problem, and passing the results to the master problem. In 
fact, this can be solved by using log, (N + 1) stages of 
processors in between the master and the slave problems. 
These processors will work as two-input adders in the up- 
ward direction to perform the summations. Furthermore, 

they will serve as registers in the downward direction to 
propagate the computed value in the master problem to the 
slave problem. As a matter of fact, the true obstacles are the 
determination of the step-size and the convergence checks in 
Steps 1.4, 1.5, and 1.6. For example, to determine &I) in 
Step 1.5, we should input the data VAj,@?(l), VA,,,+(l), i = 
0,  - - , N computed in N + 1 processors to a single proces- 
sor to perform the exact line search method. Such data 
transfer requires very complicated communication techniques 
under the consideration of dedicated VLSI array processors. 
For convergence checks, we take the determination of 
I VA+(I) 1 o1 C 7 in Step 1.4, for example, in which, we have 
to determine whether max { I VAj,@?(l) I m, I VAh,@?(I) 1 m) < 7, 
0 I i I N.  This may require log (N + 1) stages of two-in- 
put logical AND gates and communication links to determine 
the convergence. Thus, it will consume much communication 
overhead and destroy the regularity of the hardware architec- 
ture. 

To cope with the above two difficulties, we make two 
algorithmic modifications as follows. 

B. Two Algorithmic ModiJications 
In general, a constant step-size p̂  is acceptable to the 

gradient ascent method. Also, the employment of p ( k )  = 1 
in the recursive quadratic programming method was justified 
by Powell in [15]. Moreover, the above choice of p ( k )  does 
not violate the requirement that y ( k  + 1) E Y for each k .  
Therefore, these constant step-sizes will circumvent the exact 
line search. 

For convergence checks, it is common that a sufficiently 
large number of iterations is enough to ensure the conver- 
gence of a convergent iterative method. Therefore, we may 
assign two arbitrary numbers of iterations, lmx and k,,,, to 
the dual method and the recursive quadratic programming 
method, respectively. Then the convergence of each method 
will be detected by the iteration counter in the individual 
processor. 

Based on the above modifications, we may rewrite Steps 
1.4, 1.5, and 1.6 as follows. 

Step 1.4(m): Compute in parallel VAf, $(I) and VAi L+( I), 
v i , j ,  from (13). Then, if I = I,,, go to Step 1:6(m); 
otherwise, go to Step 1.5(m). 

Step 1.5(m): Update in paralle!all components of A(/ + 1) 
according to (12) with P(l) = 0, and set I = I + 1 ,  then 
return to Step 1.3. 

Step I .  6(m): Update in parallel all components of ( y( k + 
l),  s(k + 1)) according to (9) with p(k)  = 1.  Then, if k = 

( y ( k ) ,  s (k)) ,  k = 0, and go to Step 1.7; otherwise, set 
NO) = N I ) ,  I = 0, k = k + 1 ,  and return to Step 1.3. 

C. Characteristics of the Processing Elements 
Before presenting the architecture of the dedicated VLSI 

array processors for our algorithm, we first describe the 
characteristics of the eight types of processing elements 
needed. 

Table I shows the characteristics of each processing ele- 
ment (PE). In the first column, we indicate the type and the 

k,,,, set ( y ( t f ) ,  s(tfN = W k ) ,  s (k ) ) ,  ( ~ ( 0 ) ~  ~(0))  = 
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corresponding time interval of a PE by its superscript and 
subscript, respectively, except that the log, ( N  + 1) stages 
of the PE7 processors and the single PE8 do not correspond 
to any particular time interval. Moreover, for the sake of 
simplicity but without losing generality, we restrict 1 I i 5 
N - 1 in the table. The second column lists the correspond- 
ing algorithmic step of each PE. However, each PE except 
PE7 and PE8 will only take care of the computations of one 
time interval. For example, PE; will compute Vk$,,@, j = 
l; . . ,  n and Vki,2@, j = l ; . . ,  r. The third column shows 
the output data of each PE. The output data of a PE are its 
computed data. Thus, the output data of PE: are VA$,2@, j = 
1, e ,  n and V.+@, j = 1, - * , r. The fourth column indi- 
cates the destinations of the output data of each PE. As can 
be seen from the algorithm, the computation of each algorith- 
mic step may require data computed from previous steps. 
Therefore, the description of the data flow as shown in 
column 4 is necessary for the construction of the architecture 
of VLSI array processors. Apparently from column 2, Step 
ON, Step 1.0, and Step 1.2 concerning the initial guesses are 
not associated with any PE. However, PE; and PE: will 
output commands to PE: and PE: to request the data of 
initial guess, respectively, and PE: and PE: will respond 
upon request. These actions will take care of Steps 1.0 and 
1.2. In Step ON, the constants M and N should be built in 
the PE’s which need these constants for computations. How- 
ever, the value of ?,(O) will be supplied from PE8 once the 
algorithm starts execution. Furthermore, it is seen from 
column 4 row 2 of Table I that the output data of PE: will 
output to PE: if 1 = I,,, is detected in PE:. This implies that 
the PE: should send a command of convergence to PE: 
when 1 = l,,,, and PE: will respond by sending data to 
PE:. Similar situations occur for PE: and PE8. PE: will 
command PE: to send data to PE: if the convergence of the 
recursive quadratic programming method, i.e., k = k,,, is 
detected. Furthermore, when PE8 detects convergence of the 
two-level algorithm, it will command PE: array processors 
to output the optimal control solution through the com- 
mand path PE8 -+ PE7s -+ PE:, i = O;..,  N - t  PE:, i = 

0, - - , N. Therefore, we have the output command and the 
associated destinations of each PE shown in columns 5 and 6, 
respectively. Column 7 corresponds to the time complexity of 
each PE; this will be explained later. 

D. VLSI Array Processors Architecture 
Based on the characteristics of the PE’s shown in Table I, 

Fig. 2 shows an overall data-driven computing architecture 
to realize the two-level parallel computing algorithm. For the 
sake of clarity, we let N = 3. Each square block in Fig. 2 
denotes a PE. It should be noted that the PE’s lying in the 
same array will perform the same algorithmic step. The 
structure is very regular, modular, and locally intercon- 
nected. Therefore, to implement it by VLSI array processors 
would be beneficial. 
D.1 Communication Links: Each directed link in Fig. 2 

is associated with an asynchronous handshaking communica- 
tion link. The arrows indicate the direction of the data or 
command flow. The directed solid links denote the data 

transfer path. Therefore, the data-driven computation 
means that the computations in each PE begin after the 
completion of all the data transfer from solid links. The 
directed dashed links denote the command path for request- 
ing initial guess or notifying convergence. The directed 
dash-dotted links also denote the data transfer path. They 
differ from the solid links because the receiving PE’s will not 
use the transfer data for computation immediately. 

0 .2  Major Functions: According to row 2 of Table I, the 
PE2, PE3, and PE4 array processors constitute the dual 
method. The recursive quadratic programming method is 
formed by the PE1 and PE5 array processors along with the 
dual method. Furthermore, the PE6 array processors, the 
pyramid-like log, ( N  + 1) stage PE7 array processors, and 
the single PE8 together with the recursive quadratic program- 
ming method form the iterative two-level algorithm. 
D.3 Synchronization: The local synchronization concern- 

ing the operation within each PE is controlled by the self- 
timed clock in the PE. However, the computations in the 
PE’s lying in the same array in Fig. 2 will be carried out 
asynchronously simultaneously due to the asynchronous 
handshaking communication link and the data-driven compu- 
tation. Thus, the presented overall computing architecture 
will achieve the parallel computation and avoid the necessity 
of a global reference clock which has several drawbacks 
u21. 

E. The Realization and Time Complexity of Each PE 
Basically, each PE consists of a self-timed clock, control 

logic unit, counter(s), and a dedicated arithmetic unit. The 
typical structure of a PE is shown in Fig. 3. The self-timed 
clock is used to control the synchronization of the operations 
within the PE. The dedicated arithmetic unit may consist of 
multipliers, adders, various types of registers, and/or some 
simple combinatorial logic. The registers include read only 
registers, read/write registers, and general-purpose registers. 
The read only registers are used to store some algorithm 
constants such as M ,  7, CY, 0, cl, E * ,  etc. The read/write 
registers are used to store some values which will last for a 
while before being replaced, such as ( t , /N)  f x ( y i ( k ) ,  i ,  t,), 

etc.; while the general-purpose registers are used to store the 
temporary data after each arithmetic operation in the dedi- 
cated arithmetic unit. Counter # 1 in Fig. 3 is used to count 
the clock pulses in order to indicate the completion of the 
arithmetic operations. The functions of the control logic unit 
include the control of the sequence of arithmetic operations 
and the timing of activating the right communication link for 
sending out the data, and the reactions to the input command. 
However, counter # 2  is avdable only in PE: and PE: for 
each i to detect whether I = I,, and k = k,,, in the dual 
method and the recursive quadratic programming method, 
respectively. 

According to column 2 of Table I and the details of the 
algorithmic steps,, the structure of the dedicated arithmetic 
units of PE:, PE:, and PE: are similar but much simpler 
than PE:. The arithmetic unit of PE7 only consists of an 
adder and registers. Moreover, PE: as well as PE: are 

( t , / N ) f u ( ~ i ( k ) ,  i ,  and h x ( ~ i ( k > ) ,  hu(Yi(k)), h,(yi(k)) 
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PE8 1 
t + :  

t 
PE' PE' 

LEGEND: - - S O L I D L I N K  

- - m  - DASHED LINK 

-. - . DASH-DOTTED LINK 

Fig. 2. The architecture of the dedicated VLSI array processors. 

TABLE I 
THE CHARACTERISTICS OF PE 

Destination of Destination of 
PEi:i',p,e Algorithm Step Output Data Output Data Output Command Output Command Time Complexity 

PE: &PE) 

PE: if I = lmax 
in PET; else, 
PET & PET- ;,, 

PE; 

PE: if k = k,, 
in PE:; else, 
PE; & PE;+;,, 

PE: if k = 
k,,, in PE:; 

else, PE) 

request 
initial 
guess 

request 
initial 
guess 

convergence 

convergence 

PE: unknown 

2 @ &  
[4 + log, (n + r + 2)] Q 

l @ &  
log,(n + P + 3) Q 

PE: 

PE: 

l @ &  
1 Q  

PE; 1Q 

PE7s 4Nor4G down: t f  down: PE: - __ 

2N & 3N, or 
PE8 2G & 3G t f  PE7 convergence PE: 4 @ & 5 8  

involved with the functions of f and h which are not 
specified unless the system is given. Therefore, we will 
analyze the realization and the time complexity of PE;, PE:, 
and PE8 explicitly, while the rest can be similarly obtained. 

We start from PE: first. For the sake of simplicity, we 
choose n = 3, p = 2, and r = 1. Based on (14), (15), and 
(16), the details of the arithmetic unit of PET is shown in Fig. 

4(a). The square blocks denoted by AX:, AX:, AX), AU!, 
AU:, AZ:, and AS, correspond to_the computations of dx!, 
dx?, dx) ,  duf, du:, dzf, and ds,, respectively, and the 
square blocks denoted by CC represent the c2nstrai;nt check- 
ers wkich are uted to obtain the values of dx;, dx?, dx), 
duf ,  du:, and dz,' based on (15). From (14) and (16), it is 
clear that the structure of AX: is the same as AX: and AX:, 
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I I 

LEGEND:  
DAU- dedicated a r i t h rne t l c  u n l t  
CLU- con t ro l  l o g l c  u n l t  
CNI- counter  * I  
CN2- counter  '2 
O X -  oscillator 

Fig. 3 .  A typical structure of a PE. 

and is more complicated than AU,', AU?, AZ:, and AS,. 
Thus, we only show the structure of AX: in Fig. 4(b), and 
the rest can be similarly obtained. In Fig. 4(b), the multiplier 
and the adder are denoted by 0 and $, respectively. The 

h,(y;(k)) ,  h , (y i (k)) ,  and h,(y,(k)) input from PE: are 
stored in the read/write registers. The arithmetic operations 
have been parallelized as much as possible, and the structure 
is self-explanatory [according to (14)]. Concerning the styc- 
ture of CC, we will only explain the one which computes dx) 
since all the CC's in Fig. 4(a) are functionally the same. 
First, xf(k) + dx; should be performed, then the sign bits 
of the values of (xf(k) + dxf) - 2)  and (xf(k) + dxf) - 
_xf can be used to determine dx,' = dx) or (X) - x)(k)) or 
_xi' - x,'(k) by a simple 3 to 1 multiplexer. Details of the 
above description are shown in Fig. 4(c). 

Based on Fig. 4(a) and (b), the time complexity of the 
longest serial path of !omputations to obtain the general 
dxi, dui, dzj, and ds, will be 2 C3 + max [log, ( n  + 
r ) ,  log, ( p  + r ) ]  $. Because n 2 p ,  in general, the above 
expression can be taken as 2 0 + log, ( n  + r )  e .  Further- 
more, the time complexity of the CC will be less than four 
@ since the combinatorial logic of the 3 to 1 multiplexer is 

simpler than a full adder. Altogether, it takes 2 0 and 
[4 + log, ( n  + r ) ]  to complete the arithmetic operations 
of PE;. This time complexity is also shown in column 7 of 
Table I. 

The time complexity for PE: is unknown (in column 7 of 
Table I) unless the functions f and h are specified. If f and 
h are polynomial functions, the way to get ( t f / N )  

h, (y , (k ) ) ,  h , (y , (k) )  is similar to obtaining dxj in PE;. 
However, if they are special functions such as trigonometric 
functions, a look-up table built in ROM is needed to cooper- 
ate with the interpolation method to generate the trigonomet- 
ric values. 

In PE8, a single bit S is used to represent the mode 
of computation in solving the master problem: Newton's 
method ( S  = 0) or the gradient method ( S  = 1). Let A 
and B denote the values of M Z E o i , ? ( t f ) i j ( t f )  and 
( d / d t f ) M  CEoST(t f ) i i ( t f ) ,  respectively. Then the two- 
level algorithm converges i f  i) S = 0, A - MeI < 0, 11 + 
B I < E,; or ii) S = 1, 11 + B 1 < E, holds, where i) and ii) 
correspond to the convergence criteria of Newton's method 
and the gradient method, respectively. Detection of the above 

data ( t f / N ) f , ( Y , ( k ) >  i, t f ) ,  ( t f / N ) f , ( Y j ( k ) ,  i, t f )>  

f ,(Y;(k), i ,  t f) ,  ( t f / N ) f , ( Y j ( k ) ,  i ,  t f )  and h,(Y,(k)>, 

'9' 

dx,' 

(b) 

dx: 

MULTIPLEXER 

I 

(C) 
Fig. 4. (a) The structure of the dedicated arithmetic unit of PE;. (b) The 
structure of the AX) in (a). (c) The structure of the constraint checker CC 
in (a). 

conditions i) and ii) can be easily implemented by a simple 
decoder. However, if none of the above conditions holds, a 
calculation of the new tf will be carried out, which is either 
t,-- ( A / B )  if S = 0, or t r -  a(l + B )  if S = 1. Further- 
more, the state of S will change from 0 to 1 if S = 0, 
A - MeI < 0, and 11 + B 1 1 E ,  is true. Again, detection 
of the above condition can also be implemented by a decoder. 
Taking all possible parallelization into account, the time 
complexity of the above design for PE8 takes around 4 8 
and 5 $. 

Finally, the time complexity corresponding to PE: - PE' 
can be similarly analyzed. The values are also shown in 
column 7 of Table I. 
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F. Overall Time Complexity 
The two-level parallel computing algorithm consists of 

three nested loops. They are the iterative two-level algo- 
rithm, the recursive quadratic programming method, and the 
dual method from the outer to the inner loops, respectively. 
Let ms denote the actual number of iterations that the 
iterative two-level algorithm takes to converge. Then the total 
number of iterations of the recursive quadratic programming 
method and the dual method required by the complete pro- 
cess are ms * k,,, and ms * k,,, - I,,,, respectively. The 
time complexity of the array PE's should only count as that 
of one PE since they are executed asynchronously simultane- 
ously. Let TpE, denote the time complexity of PEj, which is 
shown in column 7 and row j of Table I in terms of numbers 
of 8 and $. Moreover, we let TcL denote the time com- 
plexity of the asynchronous handshaking communication link 
which is equal to 3 clock pulses according to the design in 
[12, p. 3471. Similarly, the time complexity of the array 
communication links should just count as one TcL. Then, 
based on the above notations and the computing architecture 
in Fig. 2 ,  the overall computation time complexity is derived 
as shown below. 

ms * kmax * 'ma, [ TPEZ + T P E 3  + TPE4 + 3TC,i 

+ ms ' kmax[ TPEl + T P E 5  + 3TCL] 

+ mS[2(10g2 + l )  ( TpE7 + Tc,) 

+ Tp~6 + Tp~8 + ~ T c L ]  . (17) 
Usually, the communication overhead due to the asyn- 
chronous effect of the communication links is negligible, and 
hence is not included in (17). 

At the current stage, we have not yet developed an analysis 
of the convergence rate of the complete two-level algorithm. 
However, the linear convergence of the dual method is well 
known; and based on our numerical experience, the recursive 
quadratic programming method also converges linearly, while 
the mixed Newton's and gradient methods in solving the 
master problem converge almost quadratically. Furthermore, 
it is worth noting that k,,, and I,,, relate to the number of 
discretized time intervals, N ,  linearly. 

V . SIMULATIONS 

Three minimum-time control problems are described in 
this section. These examples are: 1 )  a problem with an 
inequality constraint on a function of the state variables; 2) a 
problem with simple control inequality constraints; and 3 )  a 
problem with simple inequality constraints on the control and 
state variables, also with an equality constraint on a function 
of the state variables. 

Referring to the work of Sharma et al. [ l l ] ,  T,= 6.75 ns 
for a 16 x 16 bit multiplication, T,I 0.35 ns for an addi- 
tion, and the period of a clock pulse equal to 67 ps were 
reported. We may calculate that TPE2 = [14.9 + 
0.35 log, ( n  + r + 2)] ns, TpE3 = [6.75 + O.351og2 (n + p 
+ 3) ]  ns, T P p  = 7.1 ns, TpE5 = 0.35 ns, TpE7 = 0.35 ns, 
TpE8 = 28.75 ns according to column 7 in Table I, and 

T,, = 0.2 ns. Then (17) becomes 

msk,,,1,,,[29.35 + 0.3510g2 ( ( n  + r + 2 ) ( n  + p  + 3 ) ) ]  

+ msk,,,( TpE, + 0.95) 

+ m s [ l . l l o g 2 ( N +  1 )  + Tp~6i-29.751 nS. ( 1 8 )  
For any given system, the functions f and h are already 
specified, and the dimensions n ,  p ,  and r are also given. 
Therefore, we may estimate the computation time of the 
algorithm in each example from ( 1  8 )  as long as the values of 
N ,  m,, k,,,, and I,, are known from the simulated results. 

For all examples, the second order Runge-Kutta method is 
used in discretization. However, the transformed parameter 
optimization problem is explicitly expressed only in Example 
1 but neglected for the rest. Moreover, some of the algorithm 
constants have been set the same for all three examples; they 
arey = 0.02M, a! = 0.005, p = 1, /3 = 0.01, c l  = 0.0005, 
e2 = 0.0001, where M is the penalty coefficient used for the 
problem under consideration. 

Example 1. The Classical Brachistochrone Problem: 
The System [l, p .  811: Consider a bead slide on a fric- 

tionless wire in a constant gravity field as shown in Fig. 5. Its 
state equations are 

i' = V C O S O ,  i2 = Vsino, V =  gs ino  

where the positions x' ,  x2 and the velocity V of the bead 
are the state variables, and 8 ,  the angle of the wire with 
respect to the horizon, is the control variable. g = 32 ft/s2 is 
the gravitational acceleration constant. The value of ?r is 
taken to be 3.14 rad. 

The Problem: The minimum-time control considered for 
this system is to determine the shape of the wire which is the 
bead's positional trajectory so that the bead starting from 
(0,O) with velocity 0 will hit the line x' = 1 in minimum 
time while satisfying the following inequality constraint: 

x2 - 0 . 3 ~ '  - b I O  
where b is a given real value. Three cases of b are consid- 
ered, and they are: i) b = 0.3; ii) b = 0.15; and iii) b = 0.1, 
respectively. 

Transformation: Using the transformation given in Sec- 
tion I with a second-order Runge-Kutta method for dis- 
cretization, and converting the nonsimple inequality con- 
straint to an equality constraint, the considered problem is 
transformed into the following: 

min t f  + M E  sTsl 
N 

r = O  

subject to 

cos oi  + sf = 0 ,  X: = o 
N 

- x' - - V,  + -g sin ei sin oi + s' = 0 ,  x i  = o 
N " [  2 N  t f  1 
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Fig. 6 .  Simulation result of the brachistochrone problem. 

Fig. 5. The brachistochrone problem. 
dinate system 

Algorithm Constants: N = 30, M = 100, k,,, = 40, j1 = u1 - Kxx2x3,  X 2  = u2 - K,x'x3, 
I,,, = 40. 

Initial Guess: We tested all three cases starting from the 
X 3  = u3 - K,x'x*, 

" 
same initial guess which is Tf(0) = 0.25, and B i t  i = 

respectively. The rest were arbitrary. 

2 4  = (x1x7 - x2x6 + x3x5)/2, 

i5 = ( x1x6 + x2x7 - ~ ~ ~ ~ ) / 2 ,  

i 6  = (-xlx5 + x2x4 + x3x7)/2, 

X7 = - (x1x4 + x2x5 + x3x6)/2 

O ; . . , N -  1 and x f ,  i = O , l ; - . , N a r e o n t h e l i n e s e g -  
ments from B o  = 90" to 13, = 0 and from x: = 0 to xh = 1, 

Results and Estimated Computation Time: The test re- 
sults are shown in Fig. 6. We obtained the minimum t ,  = 
0.32124, 0.32258, 0.32541 s, m, = 6 , 7 , 8  for the three 
cases, respectively, and the order of the magnitudes of the 
final values of the slack variables was The first three of 
the m, iterations were found in Newton's method, and the 
rest were in the gradient method. Since the state functions 
contain trigonometric functions, a ROM is needed to cooper- 
ate with the interpolation method to calculate the trigonomet- 
ric values. The time complexity of these operations takes 
around 2 8 and 2 @ which makes TpE, = 14.2 ns. Simi- 
larly, TpE6 is 4 8 +(2 + log, n)  @ which takes 28.4 ns. 
Moreover, for this system, n = 3, p = 1, r = 1. Then 
according to (18), the estimated computation time for the 
three cases are: i) 0.26 ms; ii) 0.30 ms; iii) 0.34 ms, 
respectively. 

Discussions: It is easily seen from Fig. 6 that the inequal- 
ity constraints are clearly satisfied; in fact, the result of case 
i) is the same as the unconstrained problem. As we expected, 
the minimum t f  increased as the constraints become more 
restrictive. However, the analytical solution for uncon- 
strained continuous system is t f  = 0.31325 s which is smaller 
than the minimum t f  = 0.32124 s of case i) by 0.00799 s. 
This is due to the discretizing effect which is unavoidable for 
most of the methods implemented on a digital computer. By 
solving case i) with N = 60, k,,, = 80, I,,, = 80, the 
solution comes out as t f  = 0.31708 s which differs from the 
analytical solution of the continuous system by only 0.00383 
s. However, the increase of N ,  k,,,, and I,,, increases the 
hardware cost. Compared to the next two examples, the M 
chosen here is much smaller because this system is very 
sensitive to the t f  at the solution point, as can be checked 
from the state equations, the velocity is greatest at the final 
time. 

Example 2: Minimum-Time Control of an Orbiting 
Body: 

The System [3, p.  1901: Consider an orbiting body with 
equations of motion described in a three-axis Cartesian coor- 

The states x l ,  x2 ,  and x3 are the angular velocities with 
respect to the body coordinate system whose origin is the 
center of mass, and the states x4, x5, x6, and x7 are the 
variables describing position with respect to the inertially 
fixed coordinate system. The control variables are denoted by 
u l ,  u2 ,  and u3, and the parameters K,, K,, and K,, which 
are functions of the moments of inertia of the body, are taken 
as - 0.35125, 0.86058, and - 0.73000, respectively. 

The Problem: We consider the problem of changing the 
overall altitude of the above orbiting body. It is intended to 
find a solution for the controls u l ,  U*, and u3 to drive the 
system from an initial state of 

x1 = x2 = 1/57.3 rad/s, x3 = 2/57.3 rad/s, 

x4 = 0.4, x5 = x6 = 0.8, x7 = 1.6 
to the following desired final state: 

x l ( t f )  = 1/57.3rad/s, x j ( t f )  = O , j = 2 ; . . , 6 ,  

X7(tf) = 2 

so that t f  is minimum and the constraints on control 

j = 1 , 2 , 3  I u J J  I 0.412/57.3rad/s2, 

are satisfied. This problem is modified from a minimum-fuel 
expenditure problem treated by Dyer and McReynolds [3, p. 
1901. 

Algorithm Constants: N = 40, M = 1O00, k,, = 50, 
I,,, = 50. 

Initial Guess: We initially set ?'(O) = 16 s and U{ = 0, 
j =  1,2,3,  i = O ; . . , N -  1. Thestates xi, j =  1;-.,7, 
i = 0; * - , N were on the line segments from xi to XL, 
j = 1;*.,7. 

Results and Estimated Computation Time: The optimal 
control solution is plotted in Fig. 7; and the minimum time 
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Fig. 7. Optimal control solution of the minimum-time orbit transfer 
problem. 

obtained was t f  = 19.5981 s. The order of the magnitudes of 
the final values of the slack variables was We obtained 
m, = 2, and they are all in Newton's method. The state 
function of this example is a simple function of the states and 
controls which takes only one multiplication to obtain in 
parallel the derivative f , ( y , (k ) ,  i ,  t,), f , ( y , (k ) ,  i ,  t f ) .  
Therefore, TpE1 = 6.75 ns. By a similar analysis, we get 
TpE6 as 3 (8 + log, n @ which takes 21.3 ns. Moreover, 
for this system, n = 7, p = 3, r = 0. Then by (181, the 
estimated computation time is 0.16 ms. 

Discussions: According to Pontryagin's maximum princi- 
ple, the optimal control solution of this example should be 
the ideal bang-bang type of control. However, the solution 
obtained as shown in Fig. 7 is not an ideal one because u1 
and u2 do not abruptly change to their maximum values at 
their respective switching moments. The switching of u1 and 
u2 is delayed by one time interval as shown in Fig. 7. 
Nonetheless, our solution will get close to the ideal one 
provided N is large enough. This is justified by the tests of 
the example with N = 50, 60, 70, and 80 associated with 
appropriate values of k,, , I,,, , because our test results 
show that the value of each control component changing to its 
maximum is at most delayed by one time interval which 
becomes smaller as N gets larger. One of the advantages of 
our method is that we do not assume prior knowledge of the 
bang-bang control solution. 

Example 3: Minimum-Time Control of Robot Arm 
with Path Constraints: 

The System: Fig. 8 shows a two-degrees-of-freedom robot 
arm which was presented in [16]. It consists of a revolute and 
a prismatic joint. Its rotating fixture is with moment of inertia 
Je through which slides a uniformly dense rod of length L, 
and mass M,. The payload has mass Mp and moment of 
inertia Jp ,  and its center of mass is at the point (x', x 2 )  
which is L, units of length from the end of the sliding rod. 

Suppose that the robot operates on a horizontal plane, then 
there will be no gravitational loading and the following 
dynamic equations are easily derived based on [16] and 
Lagrange's equation [17, p. 1581. 

60 1 

4 Lr  

Fig. 8. The two-degree of freedom robot arm. 

8 = a, 
i~ = ( -  k e a  + Kwu - 2Mtwru + U')/( Jt - Kr + M t r 2 ) ,  

i =  U ,  i = ( - k , u - 0 . 5 K w 2 + M t r w 2 + u r ) / M t  

where r ,  U, 8, and w are the state variables, and U' and U' 
are the control variables representing the force and torque on 
the r and 8 joints, respectively; k,  and k ,  are the friction 
coefficients of 8 and r joints, respectively, and the constants 
Mt = M, + M,, K = M,(L, + 2L,), Jt = Je + Jp  + 

The Problem: It is intended to find the optimal control U' 
and U' so that the robot will move from (1, l )  to (1, - 1) 
along the straight line connecting these two points in mini- 
mum time while satisfying the control constraints that I uJ 1 
I 1, j = 8, r .  Note that the problem assigns a path con- 
straint which is r = sec 8,  - (n/4) s 8 I n / 4  in terms of 
polar coordinates. 

Algorithm Constants: N = 30, M = 1000, k,,, = 4u, 
I,,, = 40. 

Initial Guess: Initially, we set the following values: rf(0) 
= 5.5 s, 8,, i = 0; -, Nand ri ,  i = 0,. e ,  N were on the 
line segments from 80 = n /4 to O N  = - n /4 and from 
ro = 1.414 to r, = 1.414, respectively; w i  = 0, i = 
O;..,N,u:=u~=O,i=O,...,N-l. 

Results and Estimated Computation Time: The solution 
of minimum time we obtained was t ,  = 6.2014 s; the order 
of the magnitudes of the final values of the slack variables 
was the optimal trajectories of 8 and w are shown in 
Fig. 9(a) and (b), respectively. We obtained m, = 2, and 
they are all in Newton's method. Since the state functions are 
trigonometric; the time complexity TpE1 = 14.23 ns and 
TpE6 = 28.4 ns are obtained. Furthermore, for this system, 
n = 4, p = 2, r = 1. Then according to (18), the estimated 
computation time is 0.091 ms. 

Discussion: Fig. 10 is an optimal 8 versus optimal w plot 
obtained from Fig. 9(a) and (b). Although the minimum t, 
was not indicated explicitly in [16], we found that the results 
shown in Fig. 10 agree with Fig. 8 in [16] if the 8 and w are 
converted to the parameters used in [ 161. 

M'(L2, + L,L, + L2,/3). 

VI. CONCLUSION AND FURTHER RESEARCH 
We have developed a theoretically sound, hardware imple- 

mentable two-level parallel computing algorithm for generql 
minimum-time control problems. This algorithm has good 
numerical properties as demonstrated by the simulations of a 
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min Zi( dYj 9 dsi) (b) 

salution of the rotating angular velocity w ( t ) .  
Fig. 9. (a) The optimal solution of the rotating angle O(t).  (h) The optimal d y , ~ [ x , - y ( k ) ,  y , - y (k ) ] ,  ds, 

+ e A i ,  dyi ,  dsj) + A;,jHi(dyj). (A2) 

Each term in (A2) is linear in (dy j ,  dsj) except Zi(dyj, dsj). 
Moreover, all the quadratic terms in Z(dyi, dsj) are decou- 
pled. Therefore, (A2) can be further decomposed into ( 2 n  + 
p + r )  minimizationA subproblems, and the solution of each 
component of (dy ,  ds) shown in Lemma 3 is the solution of 
the corresponding decomposed subproblem. This completes 
the proof of Lemma 3. 

8 (rad) 
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number of practical problems. Its realizability via VLSI array 
processors points to a direction of implementing the control 
algorithms. Its computational efficiency as evidenced by the 
simulated results recommends itself to real-time applications. 
Moreover, the parallel computing method for the slave prob- 
lem can be extended to solve general optimal control 
problems. MA: Blaisdell. 1969. 
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