
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 31, NO. 5, MAY 1992 5 89

A Hardware Implementable Two-Level Parallel
Computing Algorithm for General

Minimum-Time Control
Shin-Yeu Lin

Abstract-In this paper, we propose a hardware imple-
mentable two-level parallel computing algorithm fo r general
minimum-time control. We first discretize and t ransform the
minimum-time control problem fo r a continuous-time system
into a parameter optimization problem which is large dimen-
sional and nonseparable. Then, the proposed two-level algo-
rithm decomposes this parameter optimization problem in to a
master-slave problem. The master problem can be easily solved
by a one-dimensional gradient method, and the slave problem
will be solved by the proposed parallel computing method which
combines recursive quadratic programming with the dual
method. Furthermore, we have proved the convergence of this
iterative two-level parallel computing algorithm under some
conditions. Based on the VLSI array processor technology, we
present a dedicated hardware computing architecture to realize
this algorithm. The corresponding time complexity is also ana-
lyzed. Finally, several practical problems including the mini-
mum-time orbit transfer problem and the minimum-time robot
control problem have been simulated. The results show tha t the
algorithm is well-suited fo r real-time application of minimum-
time control.

I. INTRODUCTION AND PROBLEM STATEMENT
INIMUM-time control is an important class of optimal M control problems. For such problems, numerous se-

quential computing techniques have been developed [1]- [5].
In general, these techniques take considerable computation
time for complicated constrained minimum-time control
problems, and special care is needed for the systems with
discontinuities, for example, the bang-bang problem [3, p.
1901, [61.

The purpose of this paper is to present a hardware imple-
mentable two-level parallel computing algorithm for gen-
eral minimum-time control. The idea of this algorithm is
novel. The problem under consideration can be any compli-
cated nonlinear, multivariable constrained minimum-time
control problem. The realizability of this algorithm by VLSI
array processors has great appeal to real-time processing
systems.

Mathematically, the general minimum-time control prob-

Manuscript received September 18, 1989; revised December 3, 1990 and
July 24, 1991. Paper recommended by Past Associate Editor, R. V. Patel.
This work was supported in part by the National Science Council and the
National Defense Technology Foundation under Grant CS79-0210-D009-22.

The author is with the Department of Control Engineering, National Chiao
Tung University, Hsinchu, Taiwan, Republic of China.

IEEE Log Number 9107230.

lem can be expressed as

u(t),O< min t s ff t f

subject to

where U E R are control variables; x E R are state vari-
ables; f': R"+p+' -+ Eln is the vector function of the state
equations; T: R"+' -+ Rm, m I n is a vector function, and
the surface T (x (t f) , t f) = 0 denotes the target set; g:
--t Rq is the vector function of the inequality constraints.

The problem is to find a p-component control u(t) , 0 I t
I t f to transfer the system from the initial state x, at t = 0
to the target set T(x(t f) , t f) = 0 in minimum time t f , while
satisfying the constraints.

In our approach, we first discretize the above minimum-
time control problem, then transform the resultant discretiza-
tion problem by adding slack variables si, i = 0, * , N to
the equality constraints and penalizing those slack variables
in the objective function with a large positive penalty coef-
ficient M. The final parameter optimization problem as shown
in (2) will well approximate the original minimum-time con-
trol problem if the time interval At = t f /N in the discretiza-
tion is small enough and the penalty coefficient M in the
transformation is sufficiently large [7].

N
min t f + M E si'si

i = O

In (2), the vector function f (x i , u i , i, t f) =
f ' (x i , u i , iA t) or f ' ((x i + (t f /2N)f'), U;, (i + +)At) de-
pending on whether the first-order or the second-order
Runge-Kutta method is used in discretization. Similarly, for
the fourth-order Runge-Kutta method, the relationship be-
tween f and f' can also be easily derived [9].

0018-9286/92$03.00 0 1992 IEEE

590 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 31, NO. 5, MAY 1992

The optimization problem (2) is difficult to solve due to its
nonseparability and large dimension. However, if we fix
the t,, (2) becomes separable. The separability of a large-
dimension optimization problem can be exploited to develop
efficient computational procedures. Therefore, like
Dantzig-Wolfe or Benders' decomposition techniques [lo],
the two-level approach naturally lends itself to solving (2).

The proposed two-level algorithm begins by decomposing
(2) into a master-slave problem. The solution of the master
problem is an estimate of the minimum final time t, which
will be passed down to the slave problem. The slave prob-
lem, which is (2) with t, fixed in the constraints and omitted
in the objective function, will determine that the given t, is
less or more than the minimum t, depending on whether the
target set T(x(t,), t,) = 0 can be reached by the available
control at the given t, or not. Taking the solution obtained
from the slave problem into account, the master problem will
generate a better estimate of the minimum final time t,. Then
the iterative procedures of the two-level algorithm continue
until convergence occurs. The advantages of this two-level
algorithm are that the master problem can be easily solved by
a one-dimensional gradient method, and the slave problem
can be solved by the developed parallel computing method
which combines recursive quadratic programming with the
dual method. Furthermore, we prove that the two-level
algorithm will converge to the optimal solution of (2) under
some conditions. The computational steps for the slave prob-
lem are completely decomposed, and the needed operations
are only simple arithmetic addition, subtraction, multiplica-
tion, and division. Furthermore, the computations needed for
solving the master problem also consist of only simple arith-
metic operations. Therefore, with slight modifications on the
step-size and the convergence checks of the iterative meth-
ods, we present a VLSI array processor based hardware
computing architecture to realize the two-level parallel
computing algorithm. The corresponding computation time
complexity in terms of the number of algorithmic iterations,
additions, and multiplications as well as the communication
time is also analyzed.

Based on the analyzed time complexity and the progress of
VLSI technology in fabricating multipliers, adders, and com-
munication links [l l] , [12], we can estimate the computation
time of the algorithm from simulation results. To demon-
strate the applicability of our algorithm, we have tested
several kinds of practical minimum-time control problems for
which either an exact solution from Pontryagin's maximum
principle or an approximate solution reported in the litera-
ture was available. The simulated results are very satisfac-
tory; moreover, the estimated computation time is less than 1
ms (= s). This strongly suggests that our algorithm
is very suitable for real-time application of minimum-time
control.

II. THE TWO-LEVEL ALGORITHM AND ASSUMPTIONS
A . Preliminaries

Let Q(t,) denote the set of points (x, U, s) that satisfy
the constraints of (2) under a given t,, where x =

(3)

is equivalent to (2) because the optimal solution of (2) must
be an optimal solution of (3), and vice versa. For a given t,,
we define the slave problem of (2) as

N

which is the minimization problem within the bracket in
(3). Let (i(t,), ii(t,), SI(t,)) denote the optimal solution of
the slave problem at a given t f , then the optimal objective
value of the slave problem can be expressed as
A4 EEo$:(t,)3i(tf) which is a function of t,. Based on (3),
the master problem of (2) is defined as

I N
t f+MESIT(t ,)SI i (t f) .

' J i=O

Remarkl: Let tf* = min{tfIME~oS^~(t,)s^i(tf) = O}.
It then denotes the solution for the minimum time of the
discretized minimum-time control problem. Furthermore, t;
can also be expressed as min { t, I CE,$,?(tf)$i(t,) = 0}
because M is a constant.

B. Assumptions

1) The optimal solution of (2) is unique.
2) The functions f, T , and g are three times continuously

differentiable.

C. The Two-Level Algorithm and Its Convergence
Property 1: Let (a, U, s^, $.) be the optimal solution of

(2). Suppose (i, ii, s^) is a regular point, then i(t,): k (t f) ,
O(t,) , and M 1 Eo $T(t,) Si(t,) will be twice continuously
differentiable in an open interval containing 2,.

Remark 2: A regular point is a point at which the
gradient of the active constraint functions are linearly inde-
pendent [131.

Property 1 has been verified in [8, p. 391 based on
previous assumptions. Because of space limitations, we will
not include the complete proof here; however, a rough sketch
of the proof is provided in the following. Because of As-
sumption 1, we have (2 , k , i) = (i (i f) , k(:,), $(if)). Then,
according to (4), let (d i , dk, ds^) denote the deviation from
(a(?,), k(?,), $(if)) induced by the deviation dt, from 3,.
Thus, (d2, dk, dO) can be considered as a function of dt,. If
dt, is sufficiently small, the values of the corresponding
(d i , dk, dO) can be obtained approximately from a quadratic
programming problem which approximates (2) at the point
(i(lf), k(2,) , O(if), 3,). This quadratic programming prob-
lem has a positive definite Hessian matrix with dt, as the
given driving function, (dx , du, ds) as the minimizing vari-
ables, and (d i , dii, dO) as the optimal solution. By Assump-
tion 1, if dtf.= 0, the corresponding (d i , dk, d i) = 0. Thus,
we may justify Property 1 by showing the twice continuous

LIN: HARDWARE IMPLEMENTABLE TWO-LEVEL PARALLEL COMPUTING ALGORITHM 591

differentiability of (d2, du, d$) at dt, = 0. To proceed with
the proof, we first show the existence of a solution for the
Lagrange first-order necessary conditions of the quadratic
programming problem when dt, = 0. This solution is
(d i , du, d$) = 0. Secondly, we show that the Jacobian of
the left-hand-side functions of the Lagrange first-order neces-
sary conditions with respect to (dit, du, d$) is nonsingular at
(d2, du, d$) = 0 based on the positive definiteness of the
Hessian matrix of the quadratic programming problem and
(i(f,), &(?,), $(?,)) (= (2 , l i , $)) being a regular point.
Finally, we apply the implicit function theorem to complete
the proof by showing that (d2, du, d$) is twice continuously
differentiable at dt, = 0 if Assumption 2 holds.

tf)Si(t,) is jus-
tified by Property 1, the master problem can be solved
iteratively by the following one-dimensional gradient method:

1

Since the existence of (d / dt,) M XL

(6)
where the derivative (d/dt,)M X~os^T(t,(j))s^l(t,(j)) in
each iteration j can be calculated from the solution of the
slave problem as described later in Section 111, and the
a (0 < a I 1) is a constant step-size parameter. Thus, the
structure of this two-level algorithm is shown in Fig. 1, and
the detailed algorithm procedures are described below.

Step OG: Pick up tf(0), N , M and set j = 0.
Step ZG: Solve the slave problem, and output the value of

(d/dt,)M CE,s^T(t,(j))s^i(t,(j)) to the master problem.
Step 2G: If 11 + (d/dt,)MCfl,J~(t,(j))irict,cj,, I e

E~ (a preselected accuracy), stop and output the optimal
control k(t,(j)) from the solution of the slave problem;
otherwise, go to Step 3G.

Step 3G: Compute t,(j + 1) = t f (j) - a[l + (d/dt,)

Step 4G: Set j = j + 1 and return to Step 1G.
Remark 3: The notation G at the end of each step is used

to indicate that the master problem is solved by the gradient
method in the above two-level algorithm.

Sufficient conditions required for the convergence of the
two-level algorithm are stated below.

Theorem I : Suppose a is small enough and t,(O) is
sufficiently close to ?,, then the sequence {(it(t ,(j)) ,
h(t,(j)), i(t ,(j)) , t,(j)); j = 0, 1, * * } generated from the
two-level algorithm will converge to (a, G , 8, 2,).

The proof of Theorem 1 partially appeared in [7] and its
complete details can be found in [SI. However, we will
highlight the procedures of the proof in the following. Be-
cause (2, h, $) = (i (f f) , $(?,)), it is enough to show
Theorem 1 by showing that the sequence { t,(j)} converges
to ?,. Let c(t,) = t f + MCE,s^T(t,)s^,(t,). First, we de-
rived in [8, Lemma 41 an important property of nonnegative
second derivative which implies that there exists an E > 0
such that v t,E(?, - E , if+ E) , (d/dt,)c(t,) < 0, if t,<
ff, and (d/dt,)c(t,) > 0, if t, > if, however,
(d/dt,)c(?,) = 0. This property also indicates that the solu-
tion set of the two-level algorithm consists of a single point

MCEos^T(t,c~,,s’,ct,(~))I, 0 < 5 1.

MASTER

1 I

1 P E q

Fig. 1. The structure of the two-level algorithm.

only. Then, we prove the convergence by showing the satis-
faction of three sufficient conditions of the global conver-
gence theorem (GCT) [13, p. 1871. Based on the property of
nonnegative second derivative, using Taylor’s theorem, we
show that the sequence { t,(j)} generated by our algorithm is
contracting with respect to ?, provided that t,(O) is suffi-
ciently closed to and a is small enough. Therefore, the
sequence { t,(j)} lies in a compact set, and thus the first
condition of GCT is satisfied. Based on the property of
nonnegative second derivative, we also show that c(t,(j +
1)) < c (t f (j)) if (d / d t f) c (t f) # 0, and c (t f (j + 1)) =
c(t,(j)) if (d/dt,)c(t,) = 0. Since c(t,) is the objective
function of the considered problem, this indicates that every
iteration of our algorithm reduces the objective value
before the solution is obtained. Hence, the second condi-
tion of GCT is satisfied. For the last condition of GCT, it is
easy to show that our algorithm is a closed mapping because
a is a constant.

D. Processing of Initial Guess

As indicated in Theorem 1, the initial guess t f (0) being
close enough to f, is one of the sufficient conditions for the
convergence of the two-level algorithm. Basically, no prior
knowledge of ff is available; however, f, is close to tf*
which is defined in Remark 1. Thus, [,(O) can be chosen
near t; and, consequently, is close to t f . According to the
definition of t;, we may characterize it as follows:
CKoi,T(t,)Ji(t) > 0, if tf < ts; C ~ , ~ T (t f) ~ i (t ,) = 0,
if t, = t;; Ci=,2:(tf)Qi(tf) 1 0, if t, > tf*. Thus, for
a suitable tolerance E * > 0, if t f (0) < tf* and
X~,$~(t,(O))s^,(t,(O)) < e l , we may consider that t,(O) is
close enough to tf* as required. To obtain such tf(0), we
may employ Newton’s method to solve the single-variable
nonlinear equation M CE,s^T(t,>i,(t,> = o as the master
problem in the two-level algorithm. The initial guess T f (O) of
this two-level algorithm based on Newton’s method should be
less and can be much less than tf* as evidenced by our
numerical examples. The two-level a1 orithm based on New-
ton’s method will stop when MCi,,B:(tf)3i(tf) < Me1
(i.e., C ~ o S ~ (t f) s ^ i (t f) < cl) is satisfied, and the final value
of t, will be taken as t,(O). It is important to note that we do
not intend to solve the exact tf* from the two-level algorithm
based on Newton’s method because the existence of
(d/dt,)MCKos^~(t,)~l(t,) at t, = t; is questionable un-
der the current assumptions, and accordingly, the two-level

&

%

592 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 5, MAY 1992

algorithm based on Newton’s method may not converge in
the large. Therefore, the tolerance cl is an experienced
value, and it should be chosen such that the two-level algo-
rithm based on Newton’s method will not diverge before
M C E O $ (t f) S i (t) < M E , is satisfied, and t f (0) can be
close enough to t f . In general, the selection of c l is not as
difficult as it seems. When the two-level algorithm based on
Newton’s method stops, the convergence criteria 11 +
(d / d t f) M C ~ , S ~ (t f (0)) S i (t f (O)) I < e2 of the two-level al-
gorithm based on the gradient method will be checked first.
If it is satisfied, then the output (a (t f (0)) , a(t,(O)), s (̂ t,(O)))
of the slave problem is considered to be the optimal solution
of (2), and this is very likely to happen for reasonably small
e l . If it is not satisfied, the two-level algorithm based on the
gradient method will continue the solution process from
t f(0). Summarizing the above discussions, we may describe
the two-level algorithm based on Newton’s method for the
processing of initial guess as follows.

Step ON: Pick up ?‘’(O), N , M and set j = 0.
Step ZN: Solve the slave problem, and output the values

of M C E O S T (t f (j)) S i (t , (j)) and (d / d t ,) M C E O
Si’< t f (j))S i (t,(j)) to the master problem.

Step2N: If M C ~ , S ~ (t f (j)) S i (t f (j)) 2 M e I , go to Step
3N; if M C ~ , S f (t r (j)) S i (t f (j)) < Me1, but 11 + (d / d t f)
M x E o S R t f (j)) S i (t f (j)) 1 2 c2 go to Step IG; if M xE0
S T (t f (j)) S i (t f (j)) < M e I , and 11 + (d / d t f ! M
Cf ioST(t f (j))d i (t f (j)) I < e 2 , stop and output the optimal
control a(t,(j)) from the solution of the slave problem.

Step 3N: Compute t f (j + 1) = t ,(j) - [M I ? = ,

Step 4N: Set j = j + 1 and return to Step IN.
Remark 4: The processing of initial guess accomplished

by Newton’s method will speed up the two-level process
significantly because of the fast computational performance
of Newton’s method.

Remark 5: Suppose at t f = t ,(j), (- l / (d / d t f)
CEoST(t f)S i (t f)) = M’ > M , then 11 + (d /d t , !M’CE,
ST(tf)Si(t f) I I e2 holds. This indicates that (x(t f (j)) ,
a(t f (j)) , SI(t f (j)) , t f (j)) satisfies the convergence criteria
of the two-level algorithm based on the gradient method
corresponding to a larger penalty coefficient M’, and hence,
it is a better solution. Therefore, we may use (- 1 /(d / d t f)
CEoS,’ctf)Si(tf)) > M as an alternative test of convergence
to replace 11 + (d / d t f) M C E o S T (t f) S i (t f) I < e2 in Step
2G and 2N. This alternative convergence criterion has more
flexibility.

$3 t f (j)) Si(t f (j >) /(d / dtf) M c E 0 Si’< t f < j >) Si(tfC All.

III. PARALLEL COMPUTING METHOD FOR THE SLAVE
PROBLEM

A . Preliminaries
It is well known that a large-dimension separable optimiza-

tion problem can be solved efficiently by the dual method
provided the Hessian matrix of the associated Lagrangian
function is positive definite [13]. Thus, although the slave
problem looks as complicated as (2), it is simpler than (2)
because it is separable but (2) is not. However, for a nonlin-
ear slave problem, the direct application of the dual method

may fail due to the nonpositive definiteness of the Hessian
matrix of the associated Lagrangian function. Although the
augmented Lagrangian method [131 can guarantee the posi-
tive definiteness of the corresponding Hessian matrix, it will
destroy the separability of a separable problem.

Therefore, in order to maintain separability while ensuring
a positive definite Hessian matrix, we use a combination of
recursive quadratic programming with the dual method.

We first convert the expression of the slave problem into a
problem with equality constraints only while all the variables
are within simple bounds. The simple bounds of a variable
(.) are given by (I) I (-) I (:), where (I) and (;) are
the lower and upper bounds, respectively. The bound (I) =
-w if (a) is unbounded from below, and (:) = +w if (a)

is unbounded from above. Thus, any bounded or unbounded
variable can be expressed within simple bounds. For the
inequality constraints that cannot be expressed in the above
form of variables within simple bounds, we define them as
nonsimple inequality constraints. Let the nonsimple in-
equality constraints among the qN inequality constraints
g(x , , U,) I 0, i = 0; * * , N - 1 be denoted by h’(x,, U,)
I 0, i = 0; * e , N - 1, where the vector function h’:
+ R ‘(r I q). These rN nonsimple inequality constraints
can be converted to equality constraints by adding to them the
nonnegative variables z , , i = 0, * - , N - 1, z, E W‘, i.e.,
h’ (x , , u ,)+z ,=O, z , 2 0 , i = O ; . * , N - l . For nota-
tional convenience, we define the vector yf = (x f , U[, z ,) E

R n + p + r and y = ((y O , y l ; - * , y N) by taking uN=O and
zN = 0. We also define the set Y = { y I yf I y , I J, , i =
O * - . , N } , wherey,=(_x,,_u,,O)and J ; = (X , , G , , + w) .
Then the expression-of the slave pmblem (4) can be rewritten
as follows:

N
min M E SITS,

Y C Y , S ,=O

subject to

T (x N , t f) + s N = O , h (y i) = 0 , i = O , l ; . . , N - 1

where h(y i) = h’(xi, ui) + zi and f (y i , i , t,) = f (x i , ui,

B. The Recursive Quadratic Programming Method
Let y (k) E Y and let (y (k) , s (k)) denote an estimated

solution point of the slave problem in (7),where k denotes an
iteration index. Moreover, we define the set Y - y‘ = { y -
y’ I Y E Y } . Then for any y” E Y - y’, y” + y’ E Y. Ac-
cording to Han’s work [14], (8) describes a quadratic sub-
problem of (7) at (y (k) , s (k)) . Let (dy*(k) , ds*(k)) =
(dy,*, 9 e , dy:, ds:, * e , ds;) denote the solution of (8).
Then (dy*(k) , ds*(k)) is a descent direction of (7) at
(y (k) , s (k)) in the sense of the absolute-value penalty
function of (7) [14], [13, p. 4391.

(7)

i , t f) .

N
min { Mds,?(k) ds, (k)

d Y (k) € Y - Y (k) , ds ;=o

LIN: HARDWARE IMPLEMENTABLE TWO-LEVEL PARALLEL COMPUTING ALGORITHM

-

593

subject to

E , (k) + & + , (k) - % (k) - ; .f ,(Y,(k), i , t,)

* dy , (k) + ds , (k) = 0 ,

xo(k) = xo? E N (k) + TxN(xN(k) 3 tf)

h (Y , (k)) + h, (Y l (k))dJJ l (k) = 0 ,

dxN(k) + dsN(k) = 0

i = O , l ; . * , N - 1 (8)

where E,(k) = x l+Ak) - x,(W - (t f /N)f(y,(Q, i, t f >
+ s , (k) , for i = 0, l ; . . , N - 1 and E,(k) =
T(x N (k) , t,) + s,(k); the scalar y is a positive real num-
ber; and fy, h,, TxN denote the partial derivatives of f , h,
and T with respect to y and x,, respectively. Note that

The recursive quadratic programming method applied to
fy = U*, f,) and hy = (h x , h,, hz) .

(7) is to solve (8) recursively with updating procedures

Y (k + 1) = Y (k) + P (k) d Y * (k) ,

s (k + 1) = s (k) + p (k) d s * (k) (9)

until convergence occurs. The step-size p(k) in (9) is deter-
mined by the exact line search method to minimize the
absolute-value penalty function of (7) while subject to
y (k + 1) E Y [14], [13, p. 4391. Note that once p(k) is
determined, all components of y (k) and s(k) can be updated
in parallel.

Convergence of such a recursive quadratic programming
method under some conditions has been proved by Han [14]
and has also appeared in [13, p. 4411. Here, we state the
relevant theorem as a lemma for our problem.

Lemma 2: [14, Theorem 3.21, [13, p. 4411 Assuming
that: i) there exist two positive numbers 6 and 4 such that
6 I min { y, M } I max {y, M } I 4 ; and ii) there exists a
unique solution (dy*(k) , ds*(k)) to (8) for any (U(k) , s(k)) ,
and the corresponding Lagrange multiplier vector is bounded.
Then, the bounded sequence { y (k) , s (k) } generated from
(9) will converge to a point that satisfies the Kuhn-Tucker
condition of (7).

Remark 6: The Kuhn-Tucker condition is the first-order
necessary condition of an optimal solution.

Remark 7: In [14] and [13], although they only explicitly
treat the problem with inequality constraints, they have indi-
cated that the above result also applies to the problems
including equality constraints.

Remark 8: It seems that there is almost no restriction on
the value of y except for positivity. However, large y / M
will cause slow convergence, while very small y / M will
induce numerical difficulties in solving (8). Thus, y is usu-
ally chosen by experience, and a recommended value for y is
0.02 M.

The iterative procedures of (9) are simple as long as
(dy*(k) , ds*(k)) is given for each k . Therefore, the difficult
part of the recursive quadratic programming is to solve (8)
for each iteration k . Clearly, (8) is ideally suited to the dual

method because it is separable and has a positive definite
Hessian matrix [13, p. 4041.

C. The Dual Method

the dual problem of (8) below
To solve (8) by the dual method, we begin by describing

max @ (A) (10) x

where the dual function
N

dy(k) and ds(k).
The dual method we employed to

gradient ascent method to solve (10).
procedures are

A $, i (l + 1) = A $, i (l) + P(l)vA+,?(l),

i = 0, -

A i , i (l + 1) = A i , i (l) + P(l)vA*,?(l),
i = O , l ; . . , N - 1 ,

solve (8) uses the
Its simple iterative

where Ai, I and Ai, I are the jth components of A,, I and A,,, I ,

respectively; the step-size P(I) is obtained from the exact line
search method, i.e., P (1) = arg {maxpao @(A + PVA@(1))},
and all components of the gradient VA+(Z) can be computed
according to the following formula:

VAj,? (I) = e'(dxi+ 1 9 9 9

i = O , . . . , N , j = l ; . - , n

i = O , . . - , N - l , j = l , . . . , r vAA,?(l) = H:(d y ~) 2

(13)
provided the minimum solution dy and ds of (11) with
A = VI) are obtained [13]. Note that 4' and H: in (13)
denote the jth component of 4 and H,, respectively.

594

q j (y , (k) , i) = 1

Due to the separability of (8), for any given X, (11) can be
completely decomposed into (N + 1)(2n + p + r) indepen-
dent minimization subproblems, and each subproblem can be
analytically solved. Thus, the minimum solution dy and ds
of (11) with h = h(1) can be obtained from the formula in
Lemma 3 by setting X = NI). The derivation of Lemma 3 is
described in the Appendix.

Lemma 3: For a given A, let

‘A: + E:=, fff;!(yi(k), N i , t,>x,,;,

for0 I i I N - 1;

for i = N
- c:= lTXKX,xf,N>

. 1

2Y
dxf = - [(-A$,;- + qj(y j (k) , i)

(14)
where

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 5, MAY 1992

A . X $, ; + 2 M dsj = - i = 0 , l ; . . , N , j = l ; . . , n .
2 M ’

The above dual method will converge to the solution
(&*(IC), ds*(k)) needed in (9). Thus, we have successfully
combined the recursive quadratic programming method with
the dual method to solve (7), which is the slave problem. An
advantage of this combination is that the computations of (9),

(12)-(16) are fully parallel except for the determination of
the step-size p (k) and /3(I).

D. The Parallel Computing Method

will replace Steps 1G and 1N in the two-level algorithm.
Following are the details of the algorithmic steps which

Step 1.0: Select (y(O), s(O)), and set k = 0.
Step 1.1: Compute in parallel E i (k) , h (y , (k)) ,

h.(Yi(k)), h,(yi(k)>, i = 0;. e , N - 1, and EN(k), T’.,

Step 1.2: Select WO), and set l = 0.
Step 1.3: Compute in parallel dx;, dui , dzi, and ds!, V

i , j from (14), (15), and (16) with A = %I).
Step 1.4: Compute in parallel Vk$,,@(l) and Vki,,@(l), V

i , j from (13). Then if I Vk@(l) 1 < 7 (a preselected accu-
racy), go to Step 1.6; otherwise, go to Step 1.5.

Step 1.5: Determine the step-size p(1) and update in
parallel all components of N I + 1) according to (12), and set
1 = 1 + 1, then return to Step 1.3.

Step 1.6: Determine the step-size p(k) and update in
parallel all components of (U (k + l) , s(k + 1)) according to
(9). If max (I dy(k) I m , I W k) I ,I < 7, set (y (t f) , s (t f))
= (~ (4 , s (k)) , (Y (O) , ~ (0) = (y (k) , s (k)) , k = 0, and go
to Step 1.7; otherwise, set WO) = X I) , 1 = 0, k = k + 1,
and return to Step 1.3.

Step 1.7: Compute -A~(l)(a/at ,)[w(y,(k) , i , t,)] and
Mj:(k)S,(k) and go to Step 1.8.

Step 1.8: Perform the summation E L o - h:(t,)
(a / a t f) w (Y i (k) , i , t,) and MCE,s^T(k)Si(k), and go to
Steps 2N or 2G.

Remark 9: From the sensitivity theorem in [13, p. 3131,
we see that the negative value of a Lagrange multiplier
associated with an equality constraint can be interpreted as
the incremental rate of change in the value of the objective
function per unit change in that equality constraint require-
ment. Furthermore, the derivative of a constraint function
with respect to its parameter can also be interpreted as the
incremental rate of change in the value of the constraint
requirement per unit change of that parameter. Therefore,
using the chain rule, (d/dt,)M ~ ~ o S i (t ,) T ~ i (t ,) can be
calculated by Ito - A:(t,)(d /a t,) w(yi(t,), i, t,), where

(t f / N) f x (~ j (k) , i, t,), (t f / N) f u (y i (k) , i ,

(x,(k), $1.

hx(Yi(k)),

w(Y;(t,), i 7 tf)

and the values of y (t f) , Wt,) are the convergent solution
and the corresponding Lagrange multiplier of the slave prob-
lem under a given t,.

Remark IO: The notation 1 (e) 1 denotes the value of the
largest magnitude of the components in (.).

Remark ZZ: Normalizing (8) by dividing all the terms in
its objective function by M , the solution of the resultant
normalized problem will be the same as (8). However, the
associated Lagrange multiplier will be scaled by 1/M.

LIN: HARDWARE IMPLEMENTABLE TWO-LEVEL PARALLEL COMPUTING ALGORITHM 595

Nonetheless, the values of the objective function of (8) and
its derivative with respect to t f can be obtained by multiply-
ing M by the corresponding values in the normalized prob-
lem. Thus, this normalization technique will not add an extra
computation load, but will speed up the convergence [8,
p. 401.

Henceforth, we will call the two-level algorithm with the
above parallel computing method as the two-level parallel
computing algorithm.

E. Convergence Analysis
Based on the duality theorem [13, p. 3991, if the mini-

mum solution of (8) exists, the convergence of the dual
method is well established. Indeed, the minimum solution of
(8) always exists because of the slack variables, and is unique
because of the positive definite Hessian matrix. Moreover,
the corresponding Lagrange multiplier at the solution must be
finite since the optimal objective value of (8) is always
bounded. Thus, condition ii) of Lemma 2 is completely
satisfied. Furthermore, condition i) in Lemma 2 is obviously
satisfied because M and y are constant positive real values.
Thus, the developed parallel computing method will con-
verge to a point that satisfies the Kuhn-Tucker condition of
(7) which is the slave problem. Therefore, we have the
following theorem.

Theorem 4: Any bounded sequence { y (k) , s (k) } gener-
ated from the parallel computing method will converge to a
point that satisfies the Kuhn-Tucker condition of the slave
problem.

It has been indicated in Section 11-C that because of
Assumption 1 , (a(?,), a(?f), $(if)) = (a , a , 3) and is
unique. Thus, the convergent point achieved above when
tf = fr must be (i(f,), fi(f,), 8(?,)) due to the uniqueness.
Therefore, combining Theorem 4 with Theorem 1 shows the
convergence of the two-level parallel computing algorithm.

I v . HARDWARE COMPUTING ARCHITECTURE AND TIME
COMPLEXITY

A . Preliminaries
It can be observed from the two-level parallel computing

algorithm that (9), (12)-(16) consist of almost all the compu-
tations needed in the algorithm. The computations in each
equation are composed of independent sets of arithmetic
operations. Each set corresponds to calculating the value of a
single component in one time interval, for example, the
calculation of dxj in (14). Based on such a complete-decom-
position property, it is possible to use VLSI array processors
to realize the algorithm. For example, we may assign N + 1
processors to carry out the computations in one algorithmic
step, such that the ith processor only takes care of the
computations corresponding to the time interval i . However,
it seems that there are difficulties in performing the summa-
tions M CE,ST(t,)S,(t,) and (d / d t ,) M Cf"_,ST(tf)S,(t,)
(i.e., If"=, - A:(t,)(d/dt,)w(y,(t,), i , t,)) in the slave
problem, and passing the results to the master problem. In
fact, this can be solved by using log, (N + 1) stages of
processors in between the master and the slave problems.
These processors will work as two-input adders in the up-
ward direction to perform the summations. Furthermore,

they will serve as registers in the downward direction to
propagate the computed value in the master problem to the
slave problem. As a matter of fact, the true obstacles are the
determination of the step-size and the convergence checks in
Steps 1.4, 1.5, and 1.6. For example, to determine &I) in
Step 1.5, we should input the data VAj,@?(l), VA,,,+(l), i =
0, - - , N computed in N + 1 processors to a single proces-
sor to perform the exact line search method. Such data
transfer requires very complicated communication techniques
under the consideration of dedicated VLSI array processors.
For convergence checks, we take the determination of
I VA+(I) 1 o1 C 7 in Step 1.4, for example, in which, we have
to determine whether max { I VAj,@?(l) I m, I VAh,@?(I) 1 m) < 7,
0 I i I N. This may require log (N + 1) stages of two-in-
put logical AND gates and communication links to determine
the convergence. Thus, it will consume much communication
overhead and destroy the regularity of the hardware architec-
ture.

To cope with the above two difficulties, we make two
algorithmic modifications as follows.

B. Two Algorithmic ModiJications
In general, a constant step-size p̂ is acceptable to the

gradient ascent method. Also, the employment of p (k) = 1
in the recursive quadratic programming method was justified
by Powell in [15]. Moreover, the above choice of p (k) does
not violate the requirement that y (k + 1) E Y for each k .
Therefore, these constant step-sizes will circumvent the exact
line search.

For convergence checks, it is common that a sufficiently
large number of iterations is enough to ensure the conver-
gence of a convergent iterative method. Therefore, we may
assign two arbitrary numbers of iterations, lmx and k,,,, to
the dual method and the recursive quadratic programming
method, respectively. Then the convergence of each method
will be detected by the iteration counter in the individual
processor.

Based on the above modifications, we may rewrite Steps
1.4, 1.5, and 1.6 as follows.

Step 1.4(m): Compute in parallel VAf, $(I) and VAi L+(I),
v i , j , from (13). Then, if I = I,,, go to Step 1:6(m);
otherwise, go to Step 1.5(m).

Step 1.5(m): Update in paralle!all components of A(/ + 1)
according to (12) with P(l) = 0, and set I = I + 1 , then
return to Step 1.3.

Step I . 6(m): Update in parallel all components of (y(k +
l), s(k + 1)) according to (9) with p(k) = 1. Then, if k =

(y (k) , s (k)) , k = 0, and go to Step 1.7; otherwise, set
NO) = N I) , I = 0, k = k + 1 , and return to Step 1.3.

C. Characteristics of the Processing Elements
Before presenting the architecture of the dedicated VLSI

array processors for our algorithm, we first describe the
characteristics of the eight types of processing elements
needed.

Table I shows the characteristics of each processing ele-
ment (PE). In the first column, we indicate the type and the

k,,,, set (y (t f) , s(tfN = W k) , s (k)) , (~ (0) ~ ~(0)) =

596 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 31, NO. 5, MAY 1992

corresponding time interval of a PE by its superscript and
subscript, respectively, except that the log, (N + 1) stages
of the PE7 processors and the single PE8 do not correspond
to any particular time interval. Moreover, for the sake of
simplicity but without losing generality, we restrict 1 I i 5
N - 1 in the table. The second column lists the correspond-
ing algorithmic step of each PE. However, each PE except
PE7 and PE8 will only take care of the computations of one
time interval. For example, PE; will compute Vk$,,@, j =
l; . . , n and Vki,2@, j = l ; . . , r. The third column shows
the output data of each PE. The output data of a PE are its
computed data. Thus, the output data of PE: are VA$,2@, j =
1, e , n and V.+@, j = 1, - * , r. The fourth column indi-
cates the destinations of the output data of each PE. As can
be seen from the algorithm, the computation of each algorith-
mic step may require data computed from previous steps.
Therefore, the description of the data flow as shown in
column 4 is necessary for the construction of the architecture
of VLSI array processors. Apparently from column 2, Step
ON, Step 1.0, and Step 1.2 concerning the initial guesses are
not associated with any PE. However, PE; and PE: will
output commands to PE: and PE: to request the data of
initial guess, respectively, and PE: and PE: will respond
upon request. These actions will take care of Steps 1.0 and
1.2. In Step ON, the constants M and N should be built in
the PE’s which need these constants for computations. How-
ever, the value of ?,(O) will be supplied from PE8 once the
algorithm starts execution. Furthermore, it is seen from
column 4 row 2 of Table I that the output data of PE: will
output to PE: if 1 = I,,, is detected in PE:. This implies that
the PE: should send a command of convergence to PE:
when 1 = l,,,, and PE: will respond by sending data to
PE:. Similar situations occur for PE: and PE8. PE: will
command PE: to send data to PE: if the convergence of the
recursive quadratic programming method, i.e., k = k,,, is
detected. Furthermore, when PE8 detects convergence of the
two-level algorithm, it will command PE: array processors
to output the optimal control solution through the com-
mand path PE8 -+ PE7s -+ PE:, i = O;.., N - t PE:, i =

0, - - , N. Therefore, we have the output command and the
associated destinations of each PE shown in columns 5 and 6,
respectively. Column 7 corresponds to the time complexity of
each PE; this will be explained later.

D. VLSI Array Processors Architecture
Based on the characteristics of the PE’s shown in Table I,

Fig. 2 shows an overall data-driven computing architecture
to realize the two-level parallel computing algorithm. For the
sake of clarity, we let N = 3. Each square block in Fig. 2
denotes a PE. It should be noted that the PE’s lying in the
same array will perform the same algorithmic step. The
structure is very regular, modular, and locally intercon-
nected. Therefore, to implement it by VLSI array processors
would be beneficial.
D.1 Communication Links: Each directed link in Fig. 2

is associated with an asynchronous handshaking communica-
tion link. The arrows indicate the direction of the data or
command flow. The directed solid links denote the data

transfer path. Therefore, the data-driven computation
means that the computations in each PE begin after the
completion of all the data transfer from solid links. The
directed dashed links denote the command path for request-
ing initial guess or notifying convergence. The directed
dash-dotted links also denote the data transfer path. They
differ from the solid links because the receiving PE’s will not
use the transfer data for computation immediately.

0 .2 Major Functions: According to row 2 of Table I, the
PE2, PE3, and PE4 array processors constitute the dual
method. The recursive quadratic programming method is
formed by the PE1 and PE5 array processors along with the
dual method. Furthermore, the PE6 array processors, the
pyramid-like log, (N + 1) stage PE7 array processors, and
the single PE8 together with the recursive quadratic program-
ming method form the iterative two-level algorithm.
D.3 Synchronization: The local synchronization concern-

ing the operation within each PE is controlled by the self-
timed clock in the PE. However, the computations in the
PE’s lying in the same array in Fig. 2 will be carried out
asynchronously simultaneously due to the asynchronous
handshaking communication link and the data-driven compu-
tation. Thus, the presented overall computing architecture
will achieve the parallel computation and avoid the necessity
of a global reference clock which has several drawbacks
u21.

E. The Realization and Time Complexity of Each PE
Basically, each PE consists of a self-timed clock, control

logic unit, counter(s), and a dedicated arithmetic unit. The
typical structure of a PE is shown in Fig. 3. The self-timed
clock is used to control the synchronization of the operations
within the PE. The dedicated arithmetic unit may consist of
multipliers, adders, various types of registers, and/or some
simple combinatorial logic. The registers include read only
registers, read/write registers, and general-purpose registers.
The read only registers are used to store some algorithm
constants such as M , 7, CY, 0, cl, E * , etc. The read/write
registers are used to store some values which will last for a
while before being replaced, such as (t , /N) f x (y i (k) , i , t,),

etc.; while the general-purpose registers are used to store the
temporary data after each arithmetic operation in the dedi-
cated arithmetic unit. Counter # 1 in Fig. 3 is used to count
the clock pulses in order to indicate the completion of the
arithmetic operations. The functions of the control logic unit
include the control of the sequence of arithmetic operations
and the timing of activating the right communication link for
sending out the data, and the reactions to the input command.
However, counter # 2 is avdable only in PE: and PE: for
each i to detect whether I = I,, and k = k,,, in the dual
method and the recursive quadratic programming method,
respectively.

According to column 2 of Table I and the details of the
algorithmic steps,, the structure of the dedicated arithmetic
units of PE:, PE:, and PE: are similar but much simpler
than PE:. The arithmetic unit of PE7 only consists of an
adder and registers. Moreover, PE: as well as PE: are

(t , / N) f u (~ i (k) , i , and h x (~ i (k >) , hu(Yi(k)), h,(yi(k))

LIN: HARDWARE IMPLEMENTABLE TWO-LEVEL PARALLEL COMPUTING ALGORITHM 591

PE8 1
t + :

t
PE' PE'

LEGEND: - - S O L I D L I N K

- - m - DASHED LINK

-. - . DASH-DOTTED LINK

Fig. 2. The architecture of the dedicated VLSI array processors.

TABLE I
THE CHARACTERISTICS OF PE

Destination of Destination of
PEi:i',p,e Algorithm Step Output Data Output Data Output Command Output Command Time Complexity

PE: &PE)

PE: if I = lmax
in PET; else,
PET & PET- ;,,

PE;

PE: if k = k,,
in PE:; else,
PE; & PE;+;,,

PE: if k =
k,,, in PE:;

else, PE)

request
initial
guess

request
initial
guess

convergence

convergence

PE: unknown

2 @ &
[4 + log, (n + r + 2)] Q

l @ &
log,(n + P + 3) Q

PE:

PE:

l @ &
1 Q

PE; 1Q

PE7s 4Nor4G down: t f down: PE: - __

2N & 3N, or
PE8 2G & 3G t f PE7 convergence PE: 4 @ & 5 8

involved with the functions of f and h which are not
specified unless the system is given. Therefore, we will
analyze the realization and the time complexity of PE;, PE:,
and PE8 explicitly, while the rest can be similarly obtained.

We start from PE: first. For the sake of simplicity, we
choose n = 3, p = 2, and r = 1. Based on (14), (15), and
(16), the details of the arithmetic unit of PET is shown in Fig.

4(a). The square blocks denoted by AX:, AX:, AX), AU!,
AU:, AZ:, and AS, correspond to_the computations of dx!,
dx?, dx) , duf, du:, dzf, and ds,, respectively, and the
square blocks denoted by CC represent the c2nstrai;nt check-
ers wkich are uted to obtain the values of dx;, dx?, dx),
duf , du:, and dz,' based on (15). From (14) and (16), it is
clear that the structure of AX: is the same as AX: and AX:,

598 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 31, NO. 5 , MAY 1992

I I

LEGEND:
DAU- dedicated a r i t h rne t l c u n l t
CLU- con t ro l l o g l c u n l t
CNI- counter * I
CN2- counter '2
O X - oscillator

Fig. 3 . A typical structure of a PE.

and is more complicated than AU,', AU?, AZ:, and AS,.
Thus, we only show the structure of AX: in Fig. 4(b), and
the rest can be similarly obtained. In Fig. 4(b), the multiplier
and the adder are denoted by 0 and $, respectively. The

h,(y;(k)) , h , (y i (k)) , and h,(y,(k)) input from PE: are
stored in the read/write registers. The arithmetic operations
have been parallelized as much as possible, and the structure
is self-explanatory [according to (14)]. Concerning the styc-
ture of CC, we will only explain the one which computes dx)
since all the CC's in Fig. 4(a) are functionally the same.
First, xf(k) + dx; should be performed, then the sign bits
of the values of (xf(k) + dxf) - 2) and (xf(k) + dxf) -
_xf can be used to determine dx,' = dx) or (X) - x)(k)) or
_xi' - x,'(k) by a simple 3 to 1 multiplexer. Details of the
above description are shown in Fig. 4(c).

Based on Fig. 4(a) and (b), the time complexity of the
longest serial path of !omputations to obtain the general
dxi, dui, dzj, and ds, will be 2 C3 + max [log, (n +
r) , log, (p + r)] $. Because n 2 p , in general, the above
expression can be taken as 2 0 + log, (n + r) e . Further-
more, the time complexity of the CC will be less than four
@ since the combinatorial logic of the 3 to 1 multiplexer is

simpler than a full adder. Altogether, it takes 2 0 and
[4 + log, (n + r)] to complete the arithmetic operations
of PE;. This time complexity is also shown in column 7 of
Table I.

The time complexity for PE: is unknown (in column 7 of
Table I) unless the functions f and h are specified. If f and
h are polynomial functions, the way to get (t f / N)

h, (y , (k)) , h , (y , (k)) is similar to obtaining dxj in PE;.
However, if they are special functions such as trigonometric
functions, a look-up table built in ROM is needed to cooper-
ate with the interpolation method to generate the trigonomet-
ric values.

In PE8, a single bit S is used to represent the mode
of computation in solving the master problem: Newton's
method (S = 0) or the gradient method (S = 1). Let A
and B denote the values of M Z E o i , ? (t f) i j (t f) and
(d / d t f) M CEoST(t f) i i (t f) , respectively. Then the two-
level algorithm converges i f i) S = 0, A - MeI < 0, 11 +
B I < E,; or ii) S = 1, 11 + B 1 < E, holds, where i) and ii)
correspond to the convergence criteria of Newton's method
and the gradient method, respectively. Detection of the above

data (t f / N) f , (Y , (k) > i, t f) , (t f / N) f , (Y j (k) , i, t f)>

f ,(Y;(k), i , t f) , (t f / N) f , (Y j (k) , i , t f) and h,(Y,(k)>,

'9'

dx,'

(b)

dx:

MULTIPLEXER

I

(C)
Fig. 4. (a) The structure of the dedicated arithmetic unit of PE;. (b) The
structure of the AX) in (a). (c) The structure of the constraint checker CC
in (a).

conditions i) and ii) can be easily implemented by a simple
decoder. However, if none of the above conditions holds, a
calculation of the new tf will be carried out, which is either
t,-- (A / B) if S = 0, or t r - a(l + B) if S = 1. Further-
more, the state of S will change from 0 to 1 if S = 0,
A - MeI < 0, and 11 + B 1 1 E , is true. Again, detection
of the above condition can also be implemented by a decoder.
Taking all possible parallelization into account, the time
complexity of the above design for PE8 takes around 4 8
and 5 $.

Finally, the time complexity corresponding to PE: - PE'
can be similarly analyzed. The values are also shown in
column 7 of Table I.

LIN: HARDWARE IMPLEMENTABLE TWO-LEVEL PARALLEL COMPUTING ALGORITHM 599

F. Overall Time Complexity
The two-level parallel computing algorithm consists of

three nested loops. They are the iterative two-level algo-
rithm, the recursive quadratic programming method, and the
dual method from the outer to the inner loops, respectively.
Let ms denote the actual number of iterations that the
iterative two-level algorithm takes to converge. Then the total
number of iterations of the recursive quadratic programming
method and the dual method required by the complete pro-
cess are ms * k,,, and ms * k,,, - I,,,, respectively. The
time complexity of the array PE's should only count as that
of one PE since they are executed asynchronously simultane-
ously. Let TpE, denote the time complexity of PEj, which is
shown in column 7 and row j of Table I in terms of numbers
of 8 and $. Moreover, we let TcL denote the time com-
plexity of the asynchronous handshaking communication link
which is equal to 3 clock pulses according to the design in
[12, p. 3471. Similarly, the time complexity of the array
communication links should just count as one TcL. Then,
based on the above notations and the computing architecture
in Fig. 2 , the overall computation time complexity is derived
as shown below.

ms * kmax * 'ma, [TPEZ + T P E 3 + TPE4 + 3TC,i

+ ms ' kmax[TPEl + T P E 5 + 3TCL]

+ mS[2(10g2 + l) (TpE7 + Tc,)

+ Tp~6 + Tp~8 + ~ T c L] . (17)
Usually, the communication overhead due to the asyn-
chronous effect of the communication links is negligible, and
hence is not included in (17).

At the current stage, we have not yet developed an analysis
of the convergence rate of the complete two-level algorithm.
However, the linear convergence of the dual method is well
known; and based on our numerical experience, the recursive
quadratic programming method also converges linearly, while
the mixed Newton's and gradient methods in solving the
master problem converge almost quadratically. Furthermore,
it is worth noting that k,,, and I,,, relate to the number of
discretized time intervals, N , linearly.

V . SIMULATIONS

Three minimum-time control problems are described in
this section. These examples are: 1) a problem with an
inequality constraint on a function of the state variables; 2) a
problem with simple control inequality constraints; and 3) a
problem with simple inequality constraints on the control and
state variables, also with an equality constraint on a function
of the state variables.

Referring to the work of Sharma et al. [l l] , T,= 6.75 ns
for a 16 x 16 bit multiplication, T,I 0.35 ns for an addi-
tion, and the period of a clock pulse equal to 67 ps were
reported. We may calculate that TPE2 = [14.9 +
0.35 log, (n + r + 2)] ns, TpE3 = [6.75 + O.351og2 (n + p
+ 3)] ns, T P p = 7.1 ns, TpE5 = 0.35 ns, TpE7 = 0.35 ns,
TpE8 = 28.75 ns according to column 7 in Table I, and

T,, = 0.2 ns. Then (17) becomes

msk,,,1,,,[29.35 + 0.3510g2 ((n + r + 2) (n + p + 3))]

+ msk,,,(TpE, + 0.95)

+ m s [l . l l o g 2 (N + 1) + Tp~6i-29.751 nS. (1 8)
For any given system, the functions f and h are already
specified, and the dimensions n , p , and r are also given.
Therefore, we may estimate the computation time of the
algorithm in each example from (1 8) as long as the values of
N , m,, k,,,, and I,, are known from the simulated results.

For all examples, the second order Runge-Kutta method is
used in discretization. However, the transformed parameter
optimization problem is explicitly expressed only in Example
1 but neglected for the rest. Moreover, some of the algorithm
constants have been set the same for all three examples; they
arey = 0.02M, a! = 0.005, p = 1, /3 = 0.01, c l = 0.0005,
e2 = 0.0001, where M is the penalty coefficient used for the
problem under consideration.

Example 1. The Classical Brachistochrone Problem:
The System [l, p . 811: Consider a bead slide on a fric-

tionless wire in a constant gravity field as shown in Fig. 5. Its
state equations are

i' = V C O S O , i2 = Vsino, V = gs ino

where the positions x' , x2 and the velocity V of the bead
are the state variables, and 8 , the angle of the wire with
respect to the horizon, is the control variable. g = 32 ft/s2 is
the gravitational acceleration constant. The value of ?r is
taken to be 3.14 rad.

The Problem: The minimum-time control considered for
this system is to determine the shape of the wire which is the
bead's positional trajectory so that the bead starting from
(0,O) with velocity 0 will hit the line x' = 1 in minimum
time while satisfying the following inequality constraint:

x2 - 0 . 3 ~ ' - b I O
where b is a given real value. Three cases of b are consid-
ered, and they are: i) b = 0.3; ii) b = 0.15; and iii) b = 0.1,
respectively.

Transformation: Using the transformation given in Sec-
tion I with a second-order Runge-Kutta method for dis-
cretization, and converting the nonsimple inequality con-
straint to an equality constraint, the considered problem is
transformed into the following:

min t f + M E sTsl
N

r = O

subject to

cos oi + sf = 0 , X: = o
N

- x' - - V, + -g sin ei sin oi + s' = 0 , x i = o
N " [2 N t f 1

600 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 5 , MAY 1992

(0.0) XI .
0 0 5 1

21

Fig. 6 . Simulation result of the brachistochrone problem.

Fig. 5. The brachistochrone problem.
dinate system

Algorithm Constants: N = 30, M = 100, k,,, = 40, j1 = u1 - Kxx2x3, X 2 = u2 - K,x'x3,
I,,, = 40.

Initial Guess: We tested all three cases starting from the
X 3 = u3 - K,x'x*,

"
same initial guess which is Tf(0) = 0.25, and B i t i =

respectively. The rest were arbitrary.

2 4 = (x1x7 - x2x6 + x3x5)/2,

i5 = (x1x6 + x2x7 - ~ ~ ~ ~) / 2 ,

i 6 = (-xlx5 + x2x4 + x3x7)/2,

X7 = - (x1x4 + x2x5 + x3x6)/2

O ; . . , N - 1 and x f , i = O , l ; - . , N a r e o n t h e l i n e s e g -
ments from B o = 90" to 13, = 0 and from x: = 0 to xh = 1,

Results and Estimated Computation Time: The test re-
sults are shown in Fig. 6. We obtained the minimum t , =
0.32124, 0.32258, 0.32541 s, m, = 6 , 7 , 8 for the three
cases, respectively, and the order of the magnitudes of the
final values of the slack variables was The first three of
the m, iterations were found in Newton's method, and the
rest were in the gradient method. Since the state functions
contain trigonometric functions, a ROM is needed to cooper-
ate with the interpolation method to calculate the trigonomet-
ric values. The time complexity of these operations takes
around 2 8 and 2 @ which makes TpE, = 14.2 ns. Simi-
larly, TpE6 is 4 8 +(2 + log, n) @ which takes 28.4 ns.
Moreover, for this system, n = 3, p = 1, r = 1. Then
according to (18), the estimated computation time for the
three cases are: i) 0.26 ms; ii) 0.30 ms; iii) 0.34 ms,
respectively.

Discussions: It is easily seen from Fig. 6 that the inequal-
ity constraints are clearly satisfied; in fact, the result of case
i) is the same as the unconstrained problem. As we expected,
the minimum t f increased as the constraints become more
restrictive. However, the analytical solution for uncon-
strained continuous system is t f = 0.31325 s which is smaller
than the minimum t f = 0.32124 s of case i) by 0.00799 s.
This is due to the discretizing effect which is unavoidable for
most of the methods implemented on a digital computer. By
solving case i) with N = 60, k,,, = 80, I,,, = 80, the
solution comes out as t f = 0.31708 s which differs from the
analytical solution of the continuous system by only 0.00383
s. However, the increase of N , k,,,, and I,,, increases the
hardware cost. Compared to the next two examples, the M
chosen here is much smaller because this system is very
sensitive to the t f at the solution point, as can be checked
from the state equations, the velocity is greatest at the final
time.

Example 2: Minimum-Time Control of an Orbiting
Body:

The System [3, p. 1901: Consider an orbiting body with
equations of motion described in a three-axis Cartesian coor-

The states x l , x2 , and x3 are the angular velocities with
respect to the body coordinate system whose origin is the
center of mass, and the states x4, x5, x6, and x7 are the
variables describing position with respect to the inertially
fixed coordinate system. The control variables are denoted by
u l , u2 , and u3, and the parameters K,, K,, and K,, which
are functions of the moments of inertia of the body, are taken
as - 0.35125, 0.86058, and - 0.73000, respectively.

The Problem: We consider the problem of changing the
overall altitude of the above orbiting body. It is intended to
find a solution for the controls u l , U*, and u3 to drive the
system from an initial state of

x1 = x2 = 1/57.3 rad/s, x3 = 2/57.3 rad/s,

x4 = 0.4, x5 = x6 = 0.8, x7 = 1.6
to the following desired final state:

x l (t f) = 1/57.3rad/s, x j (t f) = O , j = 2 ; . . , 6 ,

X7(tf) = 2

so that t f is minimum and the constraints on control

j = 1 , 2 , 3 I u J J I 0.412/57.3rad/s2,

are satisfied. This problem is modified from a minimum-fuel
expenditure problem treated by Dyer and McReynolds [3, p.
1901.

Algorithm Constants: N = 40, M = 1O00, k,, = 50,
I,,, = 50.

Initial Guess: We initially set ?'(O) = 16 s and U{ = 0,
j = 1,2,3, i = O ; . . , N - 1. Thestates xi, j = 1;-.,7,
i = 0; * - , N were on the line segments from xi to XL,
j = 1;*.,7.

Results and Estimated Computation Time: The optimal
control solution is plotted in Fig. 7; and the minimum time

LIN: HARDWARE IMPLEMENTABLE TWO-LEVEL PARALLEL COMPUTING ALGORITHM

-z - o:::r/ t0::;f-J
a

-0.005

-0.01 -0.01

j 0 v

j -0.005

0 5 10 15 20 0 5 10 15 20

time (seconds) time (seconds)

2 -0.005

-0.01
0 5 10 15 20

time (seconds)

Fig. 7. Optimal control solution of the minimum-time orbit transfer
problem.

obtained was t f = 19.5981 s. The order of the magnitudes of
the final values of the slack variables was We obtained
m, = 2, and they are all in Newton's method. The state
function of this example is a simple function of the states and
controls which takes only one multiplication to obtain in
parallel the derivative f , (y , (k) , i , t,), f , (y , (k) , i , t f) .
Therefore, TpE1 = 6.75 ns. By a similar analysis, we get
TpE6 as 3 (8 + log, n @ which takes 21.3 ns. Moreover,
for this system, n = 7, p = 3, r = 0. Then by (181, the
estimated computation time is 0.16 ms.

Discussions: According to Pontryagin's maximum princi-
ple, the optimal control solution of this example should be
the ideal bang-bang type of control. However, the solution
obtained as shown in Fig. 7 is not an ideal one because u1
and u2 do not abruptly change to their maximum values at
their respective switching moments. The switching of u1 and
u2 is delayed by one time interval as shown in Fig. 7.
Nonetheless, our solution will get close to the ideal one
provided N is large enough. This is justified by the tests of
the example with N = 50, 60, 70, and 80 associated with
appropriate values of k,, , I,,, , because our test results
show that the value of each control component changing to its
maximum is at most delayed by one time interval which
becomes smaller as N gets larger. One of the advantages of
our method is that we do not assume prior knowledge of the
bang-bang control solution.

Example 3: Minimum-Time Control of Robot Arm
with Path Constraints:

The System: Fig. 8 shows a two-degrees-of-freedom robot
arm which was presented in [16]. It consists of a revolute and
a prismatic joint. Its rotating fixture is with moment of inertia
Je through which slides a uniformly dense rod of length L,
and mass M,. The payload has mass Mp and moment of
inertia Jp , and its center of mass is at the point (x', x 2)
which is L, units of length from the end of the sliding rod.

Suppose that the robot operates on a horizontal plane, then
there will be no gravitational loading and the following
dynamic equations are easily derived based on [16] and
Lagrange's equation [17, p. 1581.

60 1

4 Lr

Fig. 8. The two-degree of freedom robot arm.

8 = a,
i~ = (- k e a + Kwu - 2Mtwru + U')/(Jt - Kr + M t r 2) ,

i = U , i = (- k , u - 0 . 5 K w 2 + M t r w 2 + u r) / M t

where r , U, 8, and w are the state variables, and U' and U'
are the control variables representing the force and torque on
the r and 8 joints, respectively; k, and k , are the friction
coefficients of 8 and r joints, respectively, and the constants
Mt = M, + M,, K = M,(L, + 2L,), Jt = Je + Jp +

The Problem: It is intended to find the optimal control U'
and U' so that the robot will move from (1, l) to (1, - 1)
along the straight line connecting these two points in mini-
mum time while satisfying the control constraints that I uJ 1
I 1, j = 8, r . Note that the problem assigns a path con-
straint which is r = sec 8, - (n/4) s 8 I n / 4 in terms of
polar coordinates.

Algorithm Constants: N = 30, M = 1000, k,,, = 4u,
I,,, = 40.

Initial Guess: Initially, we set the following values: rf(0)
= 5.5 s, 8,, i = 0; -, Nand ri , i = 0,. e , N were on the
line segments from 80 = n /4 to O N = - n /4 and from
ro = 1.414 to r, = 1.414, respectively; w i = 0, i =
O;..,N,u:=u~=O,i=O,...,N-l.

Results and Estimated Computation Time: The solution
of minimum time we obtained was t , = 6.2014 s; the order
of the magnitudes of the final values of the slack variables
was the optimal trajectories of 8 and w are shown in
Fig. 9(a) and (b), respectively. We obtained m, = 2, and
they are all in Newton's method. Since the state functions are
trigonometric; the time complexity TpE1 = 14.23 ns and
TpE6 = 28.4 ns are obtained. Furthermore, for this system,
n = 4, p = 2, r = 1. Then according to (18), the estimated
computation time is 0.091 ms.

Discussion: Fig. 10 is an optimal 8 versus optimal w plot
obtained from Fig. 9(a) and (b). Although the minimum t,
was not indicated explicitly in [16], we found that the results
shown in Fig. 10 agree with Fig. 8 in [16] if the 8 and w are
converted to the parameters used in [161.

M'(L2, + L,L, + L2,/3).

VI. CONCLUSION AND FURTHER RESEARCH
We have developed a theoretically sound, hardware imple-

mentable two-level parallel computing algorithm for generql
minimum-time control problems. This algorithm has good
numerical properties as demonstrated by the simulations of a

602 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 31, NO. 5, MAY 1992

- -

1 , 1

I

A7Ej(k) + (A;-1 - A y dx;

I -AY[z f y (Y j (k) y tf i, tf) dyj + dsj 5

f o r O s i s N - 1,
A L E , (k) + ,dX,

TxN(X N (k) 7 tf) dxN + dsN] 3

for i = N.

where

I
0 2 4 6

time (seconds)

(a)

0 2 4 6
time (seconds)

min Zi(dYj 9 dsi) (b)

salution of the rotating angular velocity w (t) .
Fig. 9. (a) The optimal solution of the rotating angle O(t). (h) The optimal d y , ~ [x , - y (k) , y , - y (k)] , ds,

+ e A i , dyi , dsj) + A;,jHi(dyj). (A2)

Each term in (A2) is linear in (dy j , dsj) except Zi(dyj, dsj).
Moreover, all the quadratic terms in Z(dyi, dsj) are decou-
pled. Therefore, (A2) can be further decomposed into (2 n +
p + r) minimizationA subproblems, and the solution of each
component of (dy , ds) shown in Lemma 3 is the solution of
the corresponding decomposed subproblem. This completes
the proof of Lemma 3.

8 (rad)

ACKNOWLEDGMENT Fig. 10. The plot of optimal O (t) versus optimal w (t) .

The reviewers’ constructive comments, Prof. R. V. Patel’s
effort in improving the readability, and the helpful sugges-
tions from M. H. Cheng on the presentation of this paper are
deeply appreciated by the author.

number of practical problems. Its realizability via VLSI array
processors points to a direction of implementing the control
algorithms. Its computational efficiency as evidenced by the
simulated results recommends itself to real-time applications.
Moreover, the parallel computing method for the slave prob-
lem can be extended to solve general optimal control
problems. MA: Blaisdell. 1969.

REFERENCES

[l] A. E. Bryson and Y. C. Ho, Applied Optimal Control. Waltham,

However, from our numerical experience, it seems that the
assumptions on the uniqueness of the optimal solution can be
relaxed but a more elaborate proof is needed. Furthermore, it
is worth investigating the related issue of developing a feed-
back scheme based upon the proposed algorithm for mini-
mum-time control [7]. Moreover, a separate effort is needed
to explore the chip size of the presented VLSI array proces-
sors for implementation.

APPENDIX

Proof of Lemma 3

The expression of (1 1) can be rearranged as

[71

181

A. P. Sage and C. C. White, Optimum Systems Control, 2nd ed.
Englewood Cliffs, NJ: hentice Hall, 1977.
P. Dyer and S . R. McReynolds, The Computation and Theory of
Optimal Control. New York: Academic, 1970.
D. H. Jacobson and D. Q. Mayne, Differential Dynamic Program-
ming.
J. Vlassenbroeck and R. V. Dooren, “A Chebyshev technique for
solving nonlinear optimal control problems,” ZEEE Trans. Au-
tomat. Contr., vol. 33, pp. 333-340, Apr. 1988.
J . E. Cuthrell and L. T. Biegler, “On the optimization of
differential-algebraic process systems,” AZChE J . , vol. 33, Aug.
1987.
S . Y. Lin, “A two-level computational algorithm with parallel com-
puting capability for general minimum-time control problems,” in
Proc. Amer. Contr. Conf., San Diego, CA, May 23-25, 1990, pp.

S. Y. Lin, “A new algorithm for minimum-time control,” Dept.
Contr. Eng., National Chiao Tung Univ., Hsinchu, Taiwan, ROC,
Tech. Rep. TR-MIST-F79006, July 1990.
K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed.
Singapore: Wiley, 1989.
L. S. Lasdon, Optimization Theory for Large Systems. New
York: Macmillan, 1970.
R. Sharma, A. Lopaz, J. Michejda, S. Hillenius, J. Andrews, and
A. Studwell, “A 6.75-11s 16 x 16-bit multiplier in single-level-

New York: American Elsevier, 1970.

2583-2588.

LIN: HARDWARE IMPLEMENTABLE TWO-LEVEL PARALLEL COMPUTING ALGORITHM 603

metal CMOS technology,” IEEE J . Solid State Circuits, vol. 24,

[I21 S . Y. Kung, VLSIArray Processors. Englewood Cliffs, NJ: Pren-
tice Hall International, 1988.

[I31 D. G . Luenberger, Linear and Nonlinear Programming, 2nd ed.
Reading, MA: Addison-Wesley, 1984.

[14] S. P. Han, “A globally convergent method for nonlinear program-
ming,” J . Optimiz. Theory Appl., vol. 22, no. 3, pp. 297-309,
July 1977.
M. J. D. Powell, “Algorithms for nonlinear constraints that use
Lagrangian functions,” Math. Programming, vol. 14, pp. 224-248,
1978.
K. G . Shin and N. D. McKay, “Minimum time control of robotic
manipulators with geometric path constraints,” ZEEE Trans. Au-
tomat. Contr., vol. AC-30, June 1985.

[I71 R. P. Paul, Robot Manipulators: Mathematics, Programming and
Control. Cambridge, MA: M.I.T. Press, 1981.

pp. 922-927, Aug. 1989.

[I51

[16]

Shin-Yeu Lin was born in Taiwan, ROC. He
received the B.S. degree in electronics engineering
from National Chiao Tung University, the M.S.
degree in electrical engineering from the Univer-
sity of Texas at El Paso, and the D.Sc. degree in
systems science and mathematics from Washington
University, St. Louis, MO, in 1975, 1979, and
1983, respectively.

From 1984 to 1985, he was with Washington
University working as a Research Associate then a
Visiting Assistant Professor. From 1985 to 1986,

he joined the GTE Laboratories worlung at the Switching Department as a
Senior MTS. He is currently an Associate Professor at the National Chiao
Tung University, Taiwan, ROC. His major research interests include opti-
mal control, optimization theory and applications, parallel and distributed
computations, and large-scale power systems.

