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Abstract: A design criterion is developed to 
achieve the following goals simultaneously: (i) 
input-output decoupling of multivariable feedback 
systems; (ii) complete and arbitrary closed-loop 
pole assignment; (iii) desired zero assignment for 
reference signal tracking; and (iv) robust stabilisa- 
tion of multivariable feedback systems subjected 
to time-varying nonlinear uncertainties. Thus, the 
requirements of performance as well as stability 
robustness of a multivariable feedback system will 
be simultaneously met by employing this design 
criterion. Moreover, by minimising H"-norm of 
each channel of the closed-loop transfer matrix, 
we can obtain the robustness optimisation of the 
system, i.e., we can predict the maximum slope of 
the sector-bounded nonlinear uncertainties that 
can be tolerated in each channel of the system. A 
practical example, the lateral flight control of 
CCV (control configured vehicle), is given to illus- 
trate the validity of the proposed design algo- 
rithm. 

1 Introduction 

In control systems the pole dominates the transient 
response as well as the system stability and so many 
studies [l ,  21 have addressed pole assignment design. In 
addition, since the zero of a system plays an important 
role in the interaction between the system and its external 
environment, a great deal of research [3, 41 has gone into 
achieving reference signal tracking by assigning appropri- 
ate zeros. Thus, the pole-zero assignment of a control 
system is important for a system to achieve desired per- 
formance requirement. Another important control strat- 
egy is the robust stabilisation problem, i.e., the ability to 
maintain system stability under plant uncertainties. Cruz 
et al. [SI have discussed the robust stabilisation of linear 
feedback systems with time-varying nonlinear pertur- 
bations in terms of the roles of singular values. However 
their results are valid only when the plant and the con- 
troller are stable. Other work [6 ,  71 uses the spectral 
norm to formulate an upper bound on the largest singu- 
lar value of the closed-loop transfer matrix to guarantee 
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robust stability of a multivariable control sytem under 
parameter variation. Dickman and Sivan [8] have shown 
that among the different, not necessarily diagonal, closed- 
loop transfer matrices which have the same diagonal ele- 
ments, the diagonal closed-loop transfer matrix has the 
greatest robustness for a multivariable system. Allowable 
perturbations are discussed in References 9 and 10 for 
maintaining stability of uncertain systems. These results 
are concerned only with stability robustness, they do  not 
deal with the robustness for maintaining a certain per- 
formance. Robustness results which do address the per- 
formance problem are found in References 11 and 12. 

The primary purpose of this paper is to outline a 
design criterion for achieving the input-output decoup- 
ling (i.e. obtaining the diagonal closed-loop transfer 
matrices) of multivariable feedback systems and the 
robust stabilisation of systems subjected to time-varying 
nonlinear uncertainties with desired pole-zero assign- 
ment. By appropriately assigning the poles and zeros of 
the sensitivity matrix and simultaneously satisfying the 
robustness requirement, the proposed design algorithm 
ensures: 

(i) input-output decoupling of multivariable feedback 
systems; 

(ii) complete and arbitrary closed-loop pole assign- 
ment; 

(iii) desired zero assignment for reference signal track- 
ing; 

(iv) robust stabilisation of multivariable feedback 
systems subjected to time-varying nonlinear uncer- 
tainties. 

Moreover, by minimising H"-norm of each channel of 
the closed-loop transfer matrix, we can obtain the robust- 
ness optimisation of the system, i.e., we can predict the 
maximum slope of the sector-bounded nonlinear uncer- 
tainties that can be tolerated in each channel of the 
system. 

The notations used in this paper are as follows: deg(*) 
denotes the degree of the polynomial *. diag(.) denotes a 
diagonal matrix. 1 1  1 1  denotes the Euclidean norm. The 
H"-norm of a transfer function G(s) is 

/I G I1 = sup I G(jo)  1, Vw E CO, col 
0 

and B I B 0  stands for bounded-input bounded-output. 

2 Problem formulation 

Consider the multivariable feedback system subjected to 
time-varying nonlinear uncertainties shown in Fig. 1, 
where p ,  P and C E C""" denote the practical plant, 
nominal plant and the controller, respectively. The time- 
varying nonlinear uncertainty A N [ u ( t ) ,  t] = diag 
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[ A N , [ u ( t ) ,  t ] ,  . . . , AN.[u(t), r]] is a real-valued matrix of 
the control signal u(t)  E R" and t E [0, w ]  satisfying the 
following: 

(a)  ANi[O,  t] = 0, i = 1, . . ., n, for t E [0, so]; 
(b)  AN,[u(t) ,  t], i = 1, . . . , n are measurable functions of 

(c) there exist finite constants pi > 0, i = 1, . , , , n with 

I ANi[u( t ) ,  tl  I < pz I/ u(t)  11, i = 1, . . . , nV /I u(t)  1 1  < CO (1) 
and the nonlinear uncertainties within the sectors having 
slopes p i ,  i = 1, .., n are denoted as ANi[u( t ) ,  t ] ,  

f for all measerable u(t);  and 

the property 

I 

Fig. 1 Multivariablefeedbark system with nonlinear unrertaintie~ 

i = 1, . . ,  n, and pi 1 1  u(t)  1 1 ,  i = 1, . . . ,  n are the sector 
bounds of the nonlinear uncertainties. 

Let the nominal plant of the system in Fig. 1 be factor- 
ised as 

P(s)  = A-'(s)B(s) = B,(s )A, ' ( s )  (2) 
where the pairs (A(s) ,  B(s)) and (Bl(s), A,(s ) )  are the left 
and right coprime polynomial matrix factorisations of the 
plant, respectively. The sensitivity matrix is defined as 

S ( S )  = ( r  + P ( ~ ) C ( S ) )  - I (3) 

E(s) = S(s)R(s) (4) 

then the tracking error signal E(s) can be obtained as 

where R(s) is the reference signal. Let the reference signal 
R(s) = [rl(s), r2(s), ..., r,(s)]' and let the zeros of the 
polynomials mAs) be the poles of ri(s) in Re[s] 2 0 for 
i =  1, ..., n. 

For the input-output decoupling, reference signal 
tracking and desired closed-loop pole assignment, the 
sensitivity matrix must be of the form 

S(s) = diag [sl(s), . . . , s,(s)] 

where yi(s), i = 1, , . . , n are Hurwitz polynomials with 
desired closed-loop poles and wi(s), i = 1, . . . , n are unde- 
termined polynomials which should be determined to 
satisfy the internal stability constraints. 

3 

For application to any stable or unstable, minimum or 
nonminimum phase system, we first derive a pole-zero 
assignment control law which satisfies the internal stabil- 
ity of the multivariable feedback system in the nominal 
case, i.e. A N [ u ( t ) ,  t] = 0, for all t E [0, m]. 

Lemma f [ 1 3 ] :  Suppose det (A(s) )  and det (B,(s))  have no 
common zero in Re[s] > 0. Then S(s) is internally stable 
if and only if S(s) is analytic in Re[s] 2 0 and for some 
appropriately dimensioned stable rational matrices X ( s )  
and Y(s) such that 

Pole-zero assignment control law design 

S(s) = Y(s)A(s)  

I - S(S) = B1(s)X(s) 

From eqns. 6 and 7, we have 

S(s)A - 1(s) = Y(s )  

E ;  '(s)(I  - S(S)) = X ( S )  

(8) 

(9) 
Equivalently, S(s) is internally stable if and only if S(s), 
S(s)A- l ( s )  and BF1(s)(I - S(s)) are all analytic in 
Re[s] > 0. 

Remark: If S(s) satisfies the requirements of internal sta- 
bility, then we can directly obtain the controller as 

(10) C(S) = P- ' ( s )S- ' ( s ) ( z  - S(s)) 

without worrying about any unstable hidden mode. 
Assume 

A ' ( s )  = (1 1) 
a,,(s) ' . '  a,A4 

B ;  '(s) = 

b,i(s) ' '  ' bnAs) 

From eqns. 5, 11 and 12, we obtain 

sl(s)all(s) ' .  S l ( s ) w )  

s,(s)a"l(s) . ' . s,(s)a,,(s) 

(1 - s,(s))b,,(s) ' ' ' (1 - s,(s))b,,(s) 

(1 - si(s))bni(s) ' .  . (1 ~ sAs))b,,(s) 

(14) 

B ,  ' (s)( l  ~ S(S)) = 

Define the polynomials 
2 ,  

I = '  
ai(s) = n (s - pil)o", i = 1, . . . , n (15) 

where ii is the number of distinct poles p i l  of the ith row 
of A -  '(s) in Re[s] 2 0 and bi, is the greatest multiplicity 
of each pole p,l which appears in any element of the ith 
row of A '(s). Similarly, we define the polynomials 

a, 

1 = 1  
p is )  = fl (s - qil)"Cf, i = I , .  . . , n (16) 

where 6; is the number of distinct poles qil of the ith 
column of B;'(s) in Re[s] 2 0 and q,l is the greatest 
multiplicity of each pole qil which appears in any element 
of the ith column of B,'(s). Then we obtain the following 
lemma: 

Lemma 2: For the nominal system (i.e. AN[u( t ) ,  t] = 0) 
shown in Fig. 1, if &) and pi(s) are coprime for i = I, . . . , 
n, then S(s) = diag [sl(s), . . . , s.(s)] is internally stable if 
and only if the following conditions hold: 

(i) si(s) is analytic in ReCs] 2 0 for i = 1, . . . , n ;  
(ii) the numerator polynomial of si(s) is divisible by 

(iii) the numerator polynomial of 1 - si(s) is divisible 
ai(s) for i = 1, . . . , n ;  

byPi(s)for i= 1, ..., n. 

Remark: If there exists any pair (ads), pi(s))  which is not 
coprime, then it is impossible for S(s) to achieve the inter- 
nal stability. 

From condition (ii) of Lemma 2, the numerator poly- 
nomial of s , ( ~ )  must contain ais), and from eqn. 5, the 
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numerator of s,(s) must also contain mi(s). Thus the 
numerator of si(s) must contain the least common multi- 
plier of q(s) and m,(s) for i = 1, . . , , n, i.e., 

where z,(s), i = 1, . . . , n are the least common multipliers 
of %is) and mis)  while li(s), i = 1, . . . , n are undetermined 
polynomials. To satisfy the requirement of causality of 
the closed-loop system, the sensitivity matrix must be 
proper, i.e., 

(18) deg (gi(s)) > deg (li(s)) + deg (zi(s)) i = 1, . . . , n 
From eqn. 17, we have 

and from condition (iii) of Lemma 2, the numerator of 
1 - SAS) must contain his). Thus we have 

(20) his) = gis) - 1is)zis) = B X S ) f i ( S )  i = 1, . , , , n 

wheref,(s), i = 1, . . . , n are undetermined polynomials 

Theorem I :  The solution of li(s) in eqn. 20 exists if and 
only if mi(s) is coprime with pi(s), for i = 1, , . . , n, respec- 
tively. 

Proof: (If): Since m i s )  is coprime with bi(s), and zi(s) is 
coprime with Bi(s), so that q(s) is coprime with P,(s) ;  and 
since gis) is a Hurwitz polynomial and is coprime with 
pis), so that the solution of li(s) in eqn. 20 exists, for 
i = 1, . . _ ,  n. respectively. 

(Only if): By contradiction, suppose mi(s) is not 
coprime with pi(s), so that zi(s) and pi(s) must have a 
common factor with zeros in Re[s] 0. And since gi(s) is 
a Hurwitz polynomial and is coprime with pi(s), hence 
the solution of li(s) in eqn. 20 does not exist, for i = 1, . . . , 
n,  respectively. This contradicts to the fact that the solu- 
tion of Ids) in eqn. 20 exists, so that mi(s) must be coprime 
with pi(s). Q E D .  

Remark: If li(s) exists and the number of undetermined 
parameters of li(s) is equal to deg (pi(s)) ,  then the solution 
of li(s) in eqn. 20 is unique for i = 1, . . . , n, respectively. 

By solving eqn. 20, we obtain l,(s), i.e. S(s )  is obtained 
Then the controller can be derived as 

(21) 
Moreover, if li(s) exists and the number of undetermined 
parameters of l i s )  is greater than deg (pis)), then the 
solutions of [is) are not unique for i = 1, . . . , n, respec- 
tively. This leads to an over-parameterised solution and 
the free parameters of &) can be determined according 

C(S) = P- ' ( s ) s - l ( s ) ( I  - S(S)) 

to some specific performance criteria. In the following, 
1,(s), i = 1, ..., n are determined to satisfy the stability 
robustness requirement, and furthermore to minimise the 
H"-norm of each channel of the closed-loop transfer 
function to obtain the robustness optimisation of the 
system. 

4 

In the following, we consider the robust stabilisation of 
the feedback system subjected to sector-bounded nonlin- 
ear uncertainties. 

Robust stabilisation of time-varying nonlinear 
uncertainties 

Theorem 2 [SI: The feedback system in Fig. 1 is B I B 0  
stable if 

(i) S(s) is internally stable and 
(ii) pi 1 1  1 - si ( 1  I, < 1 for i = 1, . . . , n or 

sup p,(  1 - si(jo)( < 1 i = 1,. . . , n (22) 
W t [ O .  = I  

Proof: For the proof of Theorem 2, refer to Reference 6. 
From the above analysis, the objective of the robust 

stabilisation control design of feedback systems subjected 
to sector-bounded nonlinear uncertainties is to adjust the 
controller C(s) such that the sensitivity function S(s)  
satisfies the internal stability of Lemma 2 with desired 
pole-zero assignment and the robust stability given in 
eqn. 22. 

Thus, we obtain the following design algorithm for the 
robust stabilisation of multivariable feedback systems 
with desired performance requirement: 

Step  I :  Perform the factorisation P(s) = A '(s)B(s) = 
B,(s)A; ' ( s )  and calculate A -  ' ( s )  and B ;  ' ( s ) ,  then deter- 
mine d s )  and fli(s), for i = 1, . . . , n. And determine mi(s) 
and zi(s) as in eqn. 17. 

Step 2: Choose diagonal sensitivity matrix S(s) = diag 
[Sl(S), , , , ?  s.(s)l. 

Step 3: From eqn. 20, solve l,(s) and h(s) with free 
parameters, where gi(s), i = I ,  . . . . n are determined by the 
desired closed-loop poles for each channel. 

Step 4 :  By satisfying eqn. 22, determine the free 
parameters of li(s) in eqn. 19. And then S(s) is also deter- 
mined. 

Step 5 :  Obtain the controller C(s) as in eqn. 21. 

Remark: Moreover, we can minimise 11 1 - si ( 1  ~, i = 1, 
. . . , n to obtain the robustness optimisation of the system 
with desired pole-zero assignment, i.e., we can predict the 
maximum slope 

1 
min /I 1 - si 1 1  1. Pi,,, = 

of the sector-bounded nonlinear uncertainties that can be 
tolerated in each channel of the multivariable feedback 
system. 

5 Example 

A practical example, the lateral flight control of CCV (control configured vehicle) [14], is given to illustrate the validity 
of the proposed design algorithm. 

The nominal lateral dynamics of T2-CCV can be decribed as follows: 

-0.259 0.039 0 ~ 1 
0 0  1 

-65.05 0 -3 
-7.88 0 -0.05 

0 0  0 
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where p is the sideslip angle (rad), 4 is the rolling angle (rad), p is the rolling rate (radis), r is the yaw rate (radis), $ is 
the yaw angle (rad), 6, is the direct lift control angle (rad), 6, is the yaw rudder angle (rad), and 6, is the direct sideforce 
control angle (rad). 

The transfer matrix form of the system can be obtained as 

where 
P(s )  -0.09(~ - 1.2001)(~ + 44.6357Xs + 0.63442) 

P " ( S )  = ~ = 
S,(s) (s ~ 2.1987)(s - 0.10122)(s + 2.0592)(s + 3.9698) 

p(s) 0.121(s - 0.0080644)(s + 131.941)(s + 3.2726) 
P12(S) = - = 

6,(~) 

B(S) 
6,(~) 

(S - 2.1987)(~ - 0.10122)(~ + 2.0592Xs + 3.9698) 

0.081(~ - 76.0459)(~ - 0.0345)(~ + 2.9332) 
(S ~ 2.1987X~ - 0.10122)(~ + 2.0592)(~ + 3.9698) PI 3(s) = - = 

4(s) 151(~  - 2.1035)(~ + 2.9206) 
PZI(S) = ~ = 

P 2 2 N  = - = 

6 J s )  (s ~ 2.1987Xs - 0.10122)(s + 2.0592)(s + 3.9698) 

4(s) 
6 , (~ )  

46.2(~ - 5.5963)(~ + 5.451 1) 
(S ~ 2.1987)(~ - 0.10122Xs + 2.0592)(~ + 3.9698) 

4(s) 
S,(s) 

7.106(s + 0.8846 + j6.9426)(s + 0.8846 - j6.9426) 
(s ~ 2.1987Xs - 0.10122Hs + 2.0592)(s + 3.9698) P 2 & )  = ~ = 

$(s) 
6,(s) 

3.654(s - 1.6984Xs + 1.5426 + j1.8985)(s + 1.5426 - jl.8985) 
s(s - 2.1987)(s - 0.10122)(s + 2.0592Xs + 3.9698) P31(S) = ~ = 

+(s) - 15.94(s + 3.469Ms - 0.0027 + j0.994)(s - 0.0027 - j0.994) 
S(S ~ 2.1987)(~ - 0.10122)(~ + 2.0592)(~ + 3.9698) P 3 2 W  = - = 

p&) = __ = 

6,(S) 

$(s) 
a"@) 

6.206(s + 3.1607Xs - 0.0309 + j0.8309)(s - 0.0309 - j0.8309) 
s(s ~ 2.1987)(s - 0.10122)(s + 2.0592)(s + 3.9698) 

Let us consider the system illustrated in Fig. 1 with the nominal plant P(s) described as above. We will synthesise a 
controller for: 

(a)  decoupling the nominal system; 
(b)  assigning five closed-loop system poles at - l/2 

(c) tracking the unit step reference signal for each channel; 
( d )  achieving the robust stabilisation of the sector-bounded nonlinear uncertainties 

I ANiCdt), t3 I < I1 u(r) I1 
I ANzCu(tX tl I < 3 I1 U@) I/ 
I AN3Cu(t), t l  I G $ I/ 

j(J(3)/2), - 8, - 12 and - 16 for channel 1, at -2 k j2, - 12, 
- 18 and -24 for channel 2, at - 1 j l ,  - 10, - I5 and -20 for channel 3;  

I/ v 11 u(t)  1 1  < 
Another design objective is to derive the maximum slopes plmax,  pz,, and p3,x of the sector-bounded nonlinear 
uncertainties that can be tolerated in each channel of the feedback system under requirements (Q), (b) and (c). 

Solution: Firstlv. we derive the conditions for achievine internal stability. Performing the factorisations of P(s),  we 
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0.3477(s + 3.1143)(s + 0.8631)(s + 0.2136) 
(s - 0.101 2Ks - 2.1987Ns + 3.9698Xs + 2.0592)D(s) ai&) = 

0.0764(s - 4.344Ms + 2.946Ks + 0.0971) 
(S - 0.101 2Ns - 2.1987)(~ + 3.9698)(~ + 2.0592)D(~) a13(s) = 

-0.1188(~ + 556.51)(~ + 4.107)(~ + 0.9785) 
(s - 0.1012)(s - 2.1987)(s + 3.9698)(s + 2.0592)D(s) 

(s - 2.6877Xs + 1.4582Xs + 4.4471 + j1.7138)(s + 4.4471 - j1.7138) 
(s - 0.1012)(s - 2.1987)(s + 3.9698)(s + 2.0592)D(s) 

a,,is) = 

4 s )  = 

az3(s) = 
0.9168(~ + 5.8937)(~ - 1.4404)(~ - 0.2547) 

(S - 0.1012)(~ - 2.1987)(~ + 3.9698)(~ + 2.0592)D(s) 

-0.1639(s + 51.846Xs + 4.0898)(s + 2.4848)(s + 0.02996) 
S(S - 0.1012)(~ - 2.1987)(~ + 3.9698)(~ + 2.0592)D(s) a 3 , ( s )  = 

0.7017(~ - 3.0011)(~ + 4.2938)(~ + 2.2135)(~ + 0.0842) 
S(S - 0.1012)(~ - 2.1987Hs + 3.9698)(~ + 2.0592)D(s) a3&) = 

a33(s) = 
(S - 2.1827)(~ + 3.7006Xs + 3.2746)(~ + 22.2119)(~ - 0.1020) 

s(s - 0.1012)(s - 2.1987)(s + 3.9698)(s + 2.0592)D(s) 

400 
(s + l)(s + 2Xs + 3)(s + 5) b i i ( s )  = 

-2.0421(~ + 3.8842)(~ - 19.167) 
D(s) 

b,,(s) = 

-2.8824 
(s + 3)(s + 4Xs + 5) b,  3(s) = 

-911 
(s + 1)(s + 2)(s + 3)(s + 5) b z i ( S )  = 

-0.8545(~ + 3.8339)(~ + 130.91) 
D(4 

M s )  = 

12.871 
(s + 3Xs + 4)(s + 5) 

b23(s) 

- 2575.8 
(s + 1Xs + 2)(s + 3)(s + 5) b31(s) = 

-0.9925(~ + 3.8398)(~ + 312.66) 

D(s) 
b,z(s) = 

- 22.429 
(s + 3)(s + 4)(s + 5) b33(s) = 

D(s) = (s + l)(s + 2)(s + 3)(s + 4Ns + 5) 

Then we obtain ai@) and Pis) for i = 1, 2, 3 as follows: 

r l (s)  (x~ (s )  = (S - 2.1987)(~ - 0.10122) 

To satisfy the requirements (a), (b)  and (c). the conditions (ii) and (iii) of Lemma 2, and the requirements of proper 
controller and causality of the closed-loop system, since pl(s) = 1, p2(s)  = 1, and B3(s) = 1, we choose I,(s) = s2 
+ 39.2999s + p i , ,  12(s) = s2 + 60.2999s + pZ1, and I & )  = s2 + 49.2999s + p3,, with one undetermined parameter, 
respectively. Then the sensitivity matrix is chosen as 

S i b )  0 
S ( S )  = [ ; S Z ( 4  : ] 

0 s3(4 
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where 

S(S’ + 39.2999s + p 1 1 ) ( ~  - 0.10122)(~ - 2.1987) 
(s + 8Xs + 12Xs + 16)(s2 + s + 1) Sl(S) = 

S Z ( 4  = 
S(S’ + 60.2999s + p 2 1 ) ( ~  - 0.10122)(~ - 2.1987) 

(s + 12Ws + 18Ns + 24)(sz + 4s + 8) 

s(s2 + 49.2999s + p31)(s - 0.10122)(s - 2.1987) 
(s + l0Xs + 15)(s + 20)(s2 + 2s + 2) = 

For satisfying the stability robustness requirement, we have 

$ sup 11 - sl(jw)l < 1, 41 < p l l  < 244 

3 sup ~ l - s 2 ( j w ) l < l ,  - 4 6 < p Z 1  <903  
w E IO. m l  

o E IO.  m l  

$ sup 11 - s,(jw)l < 1, 164 < pS1 < 344 
o E I O .  m l  

And the corresponding controller can be obtained as 

cll(s) c12(s) ‘13(’) 

C(S) = P - y s ) s - y s ) ( I  - S ( S ) )  = 

‘31(’) ‘32(‘) ‘SS( ’ )  

where 

4Oo(s - 0.1299) 
cll(s) = s(s - 0.10122)(s - 2.1987) 

(543.1641 - ~ 1 1 ) ~ ~  + (1979.2537 + 2.2999p11)s2 + (1952 - 0.2226~11)~ + 1536 
s2 + 39.2999s + pll  

-2.0421(s + 1.5353 + j2.2983Xs + 1.5353 - j2.2983) 
S(S - 0.10122)(~ - 2.1987) ClZ(S) = 

(1298.462 - ~ 2 1 ) ~ ~  + (9346.58 + 2.2999p21)s2 + (28224 - 0.2226p21)~ + 41472 
s2 + 60.2999s + p21 

-2.8824s - 139.7452) 
(S - 0.10122X~ - 2.1987) c13(s) = 

(855.1633 - ~ 3 1 ) ~ ’  + (4379.0282 + 2 . 2 9 9 9 ~ 3 1 ) ~ ~  + (7300 - 0.2226p31)~ + 6300 
sz + 49.2999s + pSl 

-911.14(~ + 0.2087) 
S(S - 0.10122Xs - 2.1987) c21(4 = 

(543.1641 - pll)s3 + (1979.2537 + 2 . 2 9 9 9 ~ ~ ~ ) ~ ~  + (1952 - 0.2226p11)s + 1536 
sz + 39.2999s + pll  

-0.8545(~ + 7.6692)(~ - 5.4223) 
S(S - 0.10122Xs - 2.1987) c22(s)  = 

(1298.462 - p21)s3 + (9346.58 + 2.2999p21)s2 + (28224 - 0.2226p2,)~ + 41472 
s2 + 60.2999s + p21 

12.871(~ - 70.1873) 
( S  - 0.10122)(~ - 2.1987) c23(s) = 

(855.1633 - p31)sS + (4379.0282 + 2.2999p31)s2 + (7300 - O.2226pS1)s + 6300 
s2 + 49.2999s + p31 

-2575.8(~ + 0.3527) 
S(S - 0.10122)(~ - 2.1987) c31(s) = 

(543.1641 - pll)s3 + (1979.2537 + 2.2999pll)s2 + (1952 - 0 . 2 2 2 6 ~ ~ ~ ) ~  + 1536 
sz + 39.2999s + pl l  
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-0.9925(~ + 12.3354Xs - 8.2054) 
s(s - 0.10122Xs - 2.1987) c3Z(s) = 

(1298.462 - pZ1)s3 + (9346.58 + 2.2999pZ1)s2 + (28224 - 0.2226pZl)s + 41472 
sz + 60.2999s + pz1 

-22.429(~ + 115.2201) 
(S - 0.10122Xs - 2.1987) c 3 3 ( 4  = 

(855.1633 - p 3 J s 3  + (4379.0282 + 2 . 2 9 9 9 ~ ~ ~ ) ~ ~  + (7300 - 0.2226p3,)s + 6300 
s2 + 49.2999s + p31 

Moreover, 

min sup 11 - sl(jw)l = 1.3719, p l l  = 153 (33) 

min sup 11 - sz(jo)l = 1.4252, pzl = 385 (34) 

min sup 11 - s 3 ( j o ) l  = 1.3625, p31 = 254 (35) 

CIS) O E  IO. m1 

CIS1 w t IO, ml 

C(sl O E  IO. ml 

And then the maximum slopes of the sector-bounded 
nonlinear uncertainties that can be tolerated in this 
system are pl,, = (lp.3719) = 0.7289, p2,, = 
(1/1.4252) = 0.7017, and p3,., = (1/1.3625) = 0.7339. That 
is if no nonlinear uncertainty exists-AN[u(t), t ]  = 0, for 
all t E CO. col-and we choose the controller as in eqn. 
32 with arbitrary real pll ,  pzl and p31, then the feedback 
system in Fig. 1 achieves internal stability with desired 
pole-zero assignment. And if there exist nonlinear uncer- 5 
tainties within the sector bound with slopes p1 = (2/3), E 
p 2  = (3/5) and p 3  = (5/7), we choose the controller as in h 
eqn. 32, by satisfying inequalities eqns. 29, 30 and 31, 5 
then the feedback system in Fig. 1 also achieves robust .E- 
stability. Moreover, when we choose the controller as in 
eqn. 32 with pl ,  = 153, pzl = 385 and pLSl = 254, then - 
the feedback system in Fig. 1 can tolerate the nonlinear 
uncertainties within the maximum sector bound with - 
slopes pl,, = 0.7289, pz,, = 0.7017 and p3,, = 0.7339. 

The Nyquist diagrams of the loop gain for channel 1 
with pl l  = 41, 153 and 244 are shown in Fig. 2. Since the 
loop gain with p I I  = 41 and 244, respectively, has two 

Fig. 2, the Nyquist diagram of the loop gain with pI1 = 

clockwise direction, then the circle disk which intersects 

-6 -4 -2 0 
-4 

-8 
real part 

poles (2,1987 and 0.1012) in the right-half plane and from 

41 and 244, completely encircles twice in a counter- 

Fig. 3 
~~~. 

diagram Of the loo?’ gainfor channel ’ 
p 2 ,  = -46 (dashed line) 
p 2 ,  = 385 (solid line) 
p2, = 903 (dashdot Line) 

~ 

real par i  

Nyquist diagram of the loop gainfor channel 3 Fig. 4 
p,, = 164 (dashed line) 

~ p 3 ,  = 254 (solid Line) 
pa, = 344 (dashdot line) 

~ . - ~  
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the real axis at boundary values [- l/(l - (2/3))] = - 3  
and [- l /( l  + (2/3))] = -0.6 corresponds to the slope 
pl = (2/3) of the sector-bounded uncertainty AN,[u(t), t3 
in the feedback system. Moreover, the loop gain for 
pI1 = 153 also has two poles (2.1987 and 0.1012) in the 
right-half plane, and from Fig. 2, the Nyquist diagram of 
the loop gain for p l ,  = 153 completely encircles twice 
in counterclockwise direction, the circle disk which 
intersects the real axis at boundary values 
[- l/(l - 0.7289)] = -3.6887 and [- l/(l + 0.7289)] = 
-0.5784 corresponding to the maximum slope pi,, = 
0.7289 of the sector-bounded uncertainty ANI[u( t ) ,  t] 
that can be tolerated in the feedback system. These satisfy 
the circle criterion and Nyquist criterion, thus the robust 
stability is ensured. Similarly, the Nyquist diagrams of 
the loop gain for channels 2 and 3 with pz1 = -46, 385 
and 903 and p31 = 164,254 and 344 shown in Figs. 3 and 
4 also satisfy the circle criterion and Nyquist criterion, 
thus the robust stability is ensured. 

6 Numerical algorithm for controller design 

The computer-aided-design package MATLAB has been 
used for the numerical computations in this paper. The 
numerical algorithm for controller design in the preced- 
ing Sections includes: 

(a) conversion of a system from a state-space model to 
transfer function matrix form; 

(b) left and right coprime factorisations of a transfer 
function matrix; 

(c) inversion of a transfer function matrix; 
( d )  H“-norm calculation of a transfer function. 

For Item (a), an M-file [l5] is written by using the 
state-space to transfer function conversion function of the 
MATLAB Control System Toolbox. 

For Item (b), the algorithm given in Reference 16 
(Section 4.1) is adopted to design an M-file to obtain the 
left and right coprime factorisations of a transfer function 
matrix. 

For Item (c), an M-file is written to construct the 
adjoint matrix and the determinant of a transfer function 
matrix by using the convolution function of the 
MATLAB toolbox. For a rational matrix which is proper 
and not strictly proper, a more efficient algorithm given 
in Reference 16 (Section 7.1) is used to design an M-file to 
obtain the inverse of a transfer function matrix. 

For Item (4, the algorithm given in Reference 17 is 
adopted to design an M-file to calculate the H“-norm of 
a transfer function by using the transfer function to state- 
space conversion function of the MATLAB control 
system toolbox and the eigenvalue function of the 
MATLAB toolbox. 

7 Conclusion 

A design criterion has been developed to simultaneously 
consider the performance and the stability robustness of 
a multivariable feedback system. Moreover, by mini- 
mising H“-norm of each channel of the closed-loop 
transfer matrix, we can predict the maximum slope of the 
sector-bounded nonlinear uncertainties that can be toler- 
ated in each channel of the feedback system. Since the 
requirements of internal stability are satisfied, this design 
algorithm performs appropriately, even if the plant is 
unstable and/or nonminimum phase. 
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