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Abstract: A new method of control system design 
is developed to simultaneously consider the inter- 
nal stability, pole assignment, reference signal 
tracking and control input minimisation. A para- 
metrised design algorithm of the pole-zero assign- 
ment control law is derived to achieve the desired 
goals. The free parameters are used to minimise 
the L,-norm of the control input signal. Since the 
requirements of internal stability are satisfied, this 
design algorithm performs appropriately, even if 
the plant is unstable and/or is in a nonminimum 
phase. Examples are given to illustrate the validity 
of the design algorithm. 

1 Introduction 

In control systems, the pole dominates the transient 
response and the system stability, so there have been 
many studies [l-41 on the pole assignment design 
method. In addition, since the zero of a system plays an 
important role in the interaction between the system and 
its external environment, much research [S-81 has been 
carried out to achieve the reference signal tracking by 
assigning the appropriate zeros to a system. In addition 
to pole-zero assignment, another important control strat- 
egy is to minimise the control input signal of the control 
system. Optimal control theory 191 (more specifically, the 
linear quadratic regulator and linear quadratic Gaussian 
control theories) has considered the control input mini- 
misation problem in the performance index. In Reference 
10, the minimum fuel control problem is investigated for 
a class of systems whose associated Lie algebra 1111 is 
nilpotent. For plants with not ‘too’ large a parameter 
uncertainty, the result given in Reference 12 guarantees 
the minimisation of the control signal ‘power’ at the 
plant’s input. For a minimum variance controller algo- 
rithm proposed by Mendes et al. [13], the weighting 
polynomials are calculated so as to assign the closed-loop 
poles of the system and to reduce the control signal’s 
variances. A model reference control law has been pro- 
posed [I41 to minimise a cost function including output 
error and weighting control input. The problems of pole 
assignment, signal tracking and input quadratic norm 
minimisation have already been investigated individually, 
however, a complete analysis of the internal stability, 
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pole assignment, reference signal tracking and control 
input minimisation of a system was not pursued in the 
above design methods. In this paper, some previously 
published ideas are collected to present a new method of 
control system design. The present contribution is the 
application of the conditions of previous results to con- 
struct a parametrised compensator assuring internal sta- 
bility, pole assignment and reference signal tracking. The 
free parameters are then used to minimise the L,-norm of 
the control input signal. Since internal stability [lS] is 
ensured to avoid the unstable hidden mode of the control 
system, this design algorithm will perform appropriately 
even if the plant is unstable and/or is in a nonminimum 
phase. 

2 Problem formulation 

Consider the unity-feedback system shown in Fig. 1, 
where P(s)  and C(s) denote the plant and controller, Xl+WT 
Fig. 1 Unity-feedback system 

respectively. Let the plant be: 

where A(s) and B(s) are coprime polynomials. 
The reference input is 

where M(s)  and N(s)  are coprime polynomials 
Define the sensitivity function S(s) as 

1 
S(S) = 

1 + P(s)C(s) (3) 

then the tracking error signal E(s)  can be obtained as 

E(s) = S(s)R(s) (4) 
For a high-order reference signal (step, ramp, . . . , etc.) 
tracking, the sensitivity function must have sufficient 
zeros to cancel the poles of R(s) in the closed right-half 
plane (i.e. in Re [s] > 0). Thus the zero assignment of S(s) 
is very important in the reference signal tracking 
problem. The desired pole assignment of S(s) also enables 
the system to achieve prespecified performance. 

3 

To apply the design to any stable or unstable, minimum 
or nonminimum phase system, we first derive a pole-zero 

Pole-zero assignment control law design 
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assignment control law which satisfies the internal stabil- 
ity. Let us factorise A(s), B(s) and M(s)  as follows: 

A(s) = A+(s )A- ( s )  ( 5 )  

B(s) = B + ( s ) B - ( s )  (6) 
M(s )  = M + ( s ) M _ ( s )  (7) 

where A+(s), B + ( s )  and M+(s )  have all their zeros in 
Re [s] 2 0 while A-(s) ,  B - ( s )  and M - ( s )  have all their 
zeros in Re[s] < 0. 

For the reference signal tracking and desired pole 
assignment, the sensitivity function must be of the form 

where C(s) is a Hurwitz polynomial with desired closed- 
loop poles and W(s) is an undetermined polynomial 
which should be determined to satisfy the internal stabil- 
ity constraints. 

3.1 Definition 1 
The sensitivity function S(s) is said to be internally stable 
if the closed-loop system of Fig. 1 is asymptotically stable 
for some choices of C(s), i.e. there is no pole-zero cancel- 
lation between C(s) and P(s) in Re [s] > 0 [lS]. 
3.2 Lemma 1 
The sensitivity function S(s) is said to be internally stable 
if and only if all the following conditions hold [l5]: 

(i) S(s) is analytic in Re [s] 2 0. 
(ii) The numerator polynomial of S(s) is divisible by 

(iii) The numerator polynomial of 1 - S(s) is divisible 

Remark; If S(s) is internally stable, then from eqn. 3, the 
corresponding controller can be derived as 

A + (4. 

by B + (s). 

without worrying about any unstable pole-zero cancel- 
lation. 

From condition (ii) of Lemma 1, the numerator of S(s) 
must contain A+(s) ,  and from eqn. 8, the numerator of 
S(s) must also contain M+(s ) .  Thus the numerator of S(s) 
must contain the least common multiplier of A+(s )  and 
M+(s) ,  i.e., 

(9) 

where Z(s) is the least common multiplier of A+(s )  and 
M + ( s )  while L(s) is an undetermined polynomial. To 
satisfy the requirement of causality, the sensitivity func- 
tion must be proper, i.e. 

deg (G(s)) deg (W) + deg (Z(s))  (10) 
where deg (*) denotes the degree of the polynomial * 

From eqn. 9, we have 

and from condition (iii) of Lemma 1, the numerator of 
1 - S(s) must contain B+(s). Thus we have 

(12) 
where the number of undetermined parameters of L(s) is 
greater than or equal to deg (B+(s)), and F(s)  is an unde- 
termined polynomial. 

H(s) G G(s) - L(s)Z(S) = B+(s)F(s) 
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3.3 Theorem I 
The solution of L(s)  in eqn. 12 exists if and only if M+(s )  
is coprime with B+(s). 

Proof: ( I f ) :  SinceM+(s) is coprime with E+($, and A + ( s )  
is coprime with B+(s),  so that Z(s)  is coprime with B+(s) .  
And since G(s) is a Hurwitz polynomial and is coprime 
with B+(s), so that the solution of L(s) in eqn. 12 exists. 
exists. 
(Only i f ) :  In contrast, suppose M + ( s )  is not coprime with 
B+(s) ,  so that Z(s)  and B+(s) must have a common factor 
with zeros in Re [s] 2 0. Since C(s) is a Hurwitz poly- 
nomial and is coprime with B+(s), thus the solution of 
L(s) in eqn. 12 does not exist. This contradicts the exis- 
tence of the solution of L(s) in eqn. 12, so M+(s )  must be 
coprime with B+(s). This completes the proof. 

Remark: If Us) exists and the number of undetermined 
parameters of L(s) is equal to deg (B+(s)),  then the solu- 
tion of L(s) in eqn. 12 is unique. By solving eqn. 12, we 
obtain us) and F(s). And then the controller can be 
derived as 

where 

It can be seen that if A+(s )  and M+(s)  have no common 
factor then Q(s) = M+(s) ;  but if A+(s )  contains M + ( s )  
then Q(s) = 1. 

Remark: From eqn. 13, for C(s) to be proper, it is 
required that 

deg (BUS)) + deg W)) + deg (Q(s)) 

2 deg ( A - ( s ) )  + deg (F(4  (15) 
The control input can be obtained from eqns. 2,9 and 13 

U(S)  = C(s)S(s)R(s) 

- '4 - ( s ) W  L(S)Z(S) N(4 - 
B -(s)L(s)Q(s) C(s) M(4 

Finally, the output Y(s )  can be derived from eqns. 2, 11 
and 12, i.e. 

Y(s)  = (1 - S(s))R(s) 

If L(s) exists and the number of undetermined parameters 
of L(s) is greater than deg(B+(s)), then the solution of 
L(s) is not unique. This leads to an over-parametrised 
solution and the free parameters of L(s) can be deter- 
mined according to some specific performance criteria. In 
the following section, L(s) is determined by minimising 
the L,-norm of the control input signal u(t). 
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4 Minimisation of control input 

In most practical control systems, the control input 
signal u(t) has to be minimised to save the control energy 
and to avoid nonlinear saturation problems. 
4.1 Definition 2 
The &-norm of u(t) is defined as [16] 

If u(t) is bounded for all value of t ,  is zero for t < 0, and 
approaches zero at least as fast as e-‘‘ as t approaches 
infinity, where E is a small positive constant, then apply- 
ing the Parseval theorem [17], we obtain 

IluI12 = ( F u z @ )  dt)’” 

= llUIl2 (19) 
where V(s) is the Laplace transform of u(t), i.e., U(s) is 
stable with poles in Re [s] < 0. 
4.2 Theorem2 
If A + ( s )  is divisible by M+(s )  and U(s) is a strictly proper 
rational function then 1 1  U1Iz in eqn. 19 is finite. 

Proof: Since A+(s) is divisible by M+(s) ,  and K ( s )  and 
G(s) are Hurwitz polynomials, from eqn. 16, U(s)  is a 
stable function. Since U(s)  is a strictly proper rational 
function, /I UII, is finite [18]. This completes the proof. 

If A + ( s )  is divisible by M+(s) ,  and U(s) is a strictly 
proper rational function with free parameters, then we 
can use the algorithm given in Reference 18 to obtain 
11 UIl? in terms of free parameters. Furthermore, the 
mimmum value of IIUII, and the corresponding free 
parameters can be obtained by solving the simultaneous 
equations of partial derivatives of /lUI12 with respect to 
these free parameters. 

Remarks: 
(i) If the reference input R(s) is stable, then U(s)  is 

stable, IIUIIz is finite as long as U(s)  is strictly proper. 
Since the closed-loop system is also stable, stable refer- 
ence signal tracking can always be achieved. In this case 
Z(s) is equal to A+(s), and the constraint in Theorem 2, 
that A+(s)  is divisible by M+(s ) ,  can be relaxed, thus the 
design goals are reduced to assuring the internal stability, 
pole assignment and control input minimisation. If neces- 
sary, the design goals can be extended, for example, to 
minimise a cost function including the tracking error and 
the control input [9, 14, 171. 

(ii) For high-order reference signal tracking, if A +(s) 
does not fully contain M + ( s ) ,  one approach is to first 
augment the plant at its input or output with a transfer 
function l/Q(s) if this is realisable in the system [9, 
Section 4.31. Otherwise, the denominator polynomial of 
C(s) must contain Q(s) as in eqns. 13 and 14, so that the 
high-order reference signal tracking with stable closed- 
loop system can be achieved despite the fact that u(t) is a 
nondecaying function. In most practical systems, for 
high-order reference signal tracking, the considered time 
is finite, thus llul12 is still finite. Hence the control input 
minimisation is also significant in this case. 

From the above analysis, we obtain the following 
design algorithm for pole-zero assignment control law 
with minimum control input. 
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Step I :  Perform the factorisation of A(s), B(s) and M(s)  
as in eqns. 5-7, respectively, and determine Z(s).  

Step 2: From eqn. 12, solve L(s) and F(s)  with free 
parameters, where G(s) is determined by the desired 
closed-loop poles. 

Step 3: Obtain U(s)  with free parameters as in eqn. 16, 
and solve the minimum of IIUli2 to obtain the values of 
free parameters (i.e., L(s) and F(s) are solved). 

5 Examples 

Two examples are given to illustrate the validity of the 
proposed algorithm. 

5.1 Example 1 
For a given unstable, nonminimum phase plant: 

Step 4 :  Obtain the controller C(s) from eqn. 13. 

s - 5  
P(s) = ~ 

s(s - 1 )  

a pole-zero assignment control law and a minimum 
control input pole-zero assignment control law, respec- 
tively, are designed for the closed-loop system to track 
the unit step reference input signal, and to have the 
closed-loop poles assigned at - 1 

Solution: (a)  Pole-zero assignment control law: In this 
system, A+(s) = s(s - 1)  contains M+(s )  = s, thus U(s)  is 
stable. The poles of S(s)  are assigned at - 1 kjl ,  - 2  and 
-3 .  To satisfy conditions (ii) and (iii) of Lemma 1 and 
the requirements of causality and a proper controller, 
since B+(s) = s - 5 ,  we choose L(s) = sz + s + I ,  with 
one undermined parameter. Then 

j l ,  -2 and -3 .  

~ ( s )  = (s2 + 2s + 2)(s + 2xs + 3) - (sz + s + r , ) s (s  - 1) 

= (s - 5)F(s) 

H(5) = 0 

then 

1 ,  = 73.6 

F(s) = 7s’ - 19.6s - 2.4 

thus 

Is2 - 19.6s - 2.4 
s2 + s + 73.6 

C(s) = 

(s - 1x7s’ - 19.6s - 2.4) 
U(S) = 

( s 2  + 2s + 2xs + 2xs + 3) 

( S  - 5 x 7 ~ ~  - 19.6s - 2.4) Y(s) = 
s(s2 + 2s + 2)(s + 2)(s + 3) 

and 

1 1  U11 , = 2.8988 

Solution: (b)  Minimum control input pole-zero assignment 
control law: Since deg (B+(s ) )  = 1, we choose L(s) = s2 
+ l,s + I, with two undetermined parameters. Then 

H(s)  = (SZ + 2s + 2)(s + 2xs + 3) 

- (SZ + I,s + I,)S(S - 1) 

= (s - 5)F(s) 

H(5) = 0 

I ,  = 78.6 - 51, 

F(s)  = (8 - l,)s2 + ( I ,  - 20.6)s - 2.4 
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Thus 

(S - lM(8 - 11)s' + ( 1 1  - 20.6)s - 2.4) 
U(S) = 

( s2  + 2s + 2Ms + 2xs + 3) 

$ 4  3 

a '  

r 

time.5 

Fig. 2 Control inputs against time/or example I 

time,s 

Fig. 3 Outputs against time for example I 

41 

0 4 6 8 
time,s 

Fig. 4 Control inputs against timefor example 2 

llUI12 is minimised at 1, = 9.1983. Thus the minimum 
control input 

(s - 1M- 1 . 1 9 8 ~ ~  - 11.402s - 2.4) 
(s2 + 2s + 2)(s + 2xs + 3) 'Jm(s) = 

~~U, , , l~  = 1.1079 
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And the controller C,(s) and output Y,(s) corresponding 
to U,(s) can be obtain as 

- 1 . 1 9 8 ~ ~  - 11.402s - 2.4 
C,(S) = s2 + 9.198s + 32.61 

(s - 9 - 1 . 1 9 8 ~ ~  - 11.402s - 2.4) 
s(s2 + 2s + 2)(s + 2xs + 3) Y,(S) = 

_----- ------ 
YmW,,..-H 

-61 1 '  ' " ' " " 
0 2 6 8 10 

time.5 

Fig .  5 

The control inputs u(t) and u,(t) are shown in Fig. 2. The 
outputs y( t )  and y,(t) are shown in Fig. 3. 

5.2 Example2 
A model of the flexible robot arm is represented as [19] 

Outputs against timefor example 2 

-4.9065(~ - 8.5568)(~ + 8.4294) 
P(s)  = 

s(s + 0.2)((s + 0.17)2 + (11.79)') 
A pole-zero assignment control law and a minimum 
control input pole-zero assignment control law, respec- 
tively, are designed for the closed-loop system of the 
robot arm to track the unit step reference input signal, 
and to have the closed-loop poles assigned at - 1 f j l ,  
-2 and -3. 

Solution (a)  Pole-zero assignment control law: In this 
system, A + ( s )  = s contains M + ( s )  = s, thus U(s)  is stable. 
The poles of S(s) are assigned at - 1 + j l ,  -2 and -3, 
i.e., G(s) = s4 + 7s3 + 18s' + 22s + 12. To satisfy condi- 
tions (ii) and (iii) of Lemma 1 and the requirements of 
causality and a proper controller, since B+(s) = 
s - 8.5568, we choose L(s) = s3 + 7s2 + s + I ,  with one 
undetermined parameter. Then 

H ( s )  = (s' + 2s + 2xs + 2)(s + 3) 

- (s3 + 7s2 + s + 1,)s 

= (S - 8.5568)F(~) 

H(8.5568) = 0 
then 

I ,  = 168.86 

F(s) = 17s - 1.4024 
thus 

(s + 0.2)((s + 0.17)2 + (11.79)2)(17s - 1.4024) 
-4.9065(s + 8.4294)(s3 + 7s' + s + 168.86) 

(s + 0.2)((s + 0.17)' + (11.79)2)(17s - 1.4024) 
-4.49065(s + 8.4294)(s' + 2s + 2)(s + 2)(s + 3) 

(s - 8.5568x17s ~ 1.4024) 
s(s2 + 2s + 2)(s + 2Ms + 3) 

C(S) = 

U(s)  = 

Y(s) = 
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and 

llUllz = 4.1354 

Solution (b) Minimum control input pole-zero assignment 
control law: Since deg ( B + ( s ) )  = 1, we choose L(s) = s3 
+ 7s’ + 1,s + I ,  with two undetermined parameters. 

Then 

H ( s )  = (sZ + 2s - 2xs + 2xs + 3) 

- (s3 + 7s2 + 1,s + 1,)s 

= (S - 8.5568)F(~) 

H(8.5568) = 0 

1, = 177.42 - 8.55681, 

F(s) = (18 - 1,)s - 1.4024 

thus 

(s + 0.2)((s + 0.17), + (11.79)2)((18 - 1 , )s  - 1.4024) 

JIUJI, is minimised at I,  = 18. Thus the minimum control 
input 

U(s )  = 
-4.9065(~ + 8.4294)(s2 + 2s + 2)(s + 2 ) ( ~  + 3) 

0.2858(s + 0.2)((s + 0.17)’ + (11.79)’) 
= (s + 8.4294Xs2 + 2s + 2Xs + 2Ns + 3) 

And the controller C,(s) and output Y,(s) corresponding 
to U&) can be obtained as 

0.2858(s + 0.2)((s + 0.17)’ + (11.79),) 
= (s + 8.4294)(s3 + 7s’ + 18s + 23.3976) 

- 1.4024(~ - 8.5568) 
ym(s) = s(s’ + 2s + 2)(s + 2xs + 3) 

The control inputs u(t) and u,(t) are shown in Fig. 4. The 
outputs At) and y,(t) are shown in Fig. 5. 

6 Conclusions 

We have proposed a pole-zero assignment control law 
with minimum control input to simultaneously achieve 
internal stability, pole assignment, reference signal track- 
ing and control input minimisation. Since the require- 
ments of internal stability are satisfied, this design 
algorithm performs appropriately, even if the plant is 
unstable and/or is in a nonminimum phase. From the 

examples, we can see that when the control inputs are 
minimised, the outputs are more satisfactory (with less 
overshoot and undershoot). 
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