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The r-electronic excitations in graphite layers are studied within the self- 
consistent-field approach. The ~r plasmon behaves as an optical plasmon, 
mainly due to the z-band characteristics. The excitation spectra and the 
r-plasmon frequencies are obviously enhanced by the interlayer Coulomb 
interactions and increase with the number of graphite layers. © 1997 
Published by Elsevier Science Ltd. 
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Carbon atoms can form diamond, graphite, carbon 
nanotube, Ct0-related fullerene and carbon onion. Their 
physical properties might be similar to one another. For 
example, the 7r plasmon, the r-electronic collective 
excitations, exist in all systems except diamond, 
namely, graphite [1, 2], carbon nanotube [3], Ct0-related 
fullerene [4] and carbon onion [5]. The layered graphite 
has been studied for many years. In this work, we mainly 
study the lr plasmon in graphite layers. Its dependence on 
magnitude (q) and direction (4>) of the transferred 
momentum and interlayer Coulomb interactions is 
investigated. 

The r and a bands in graphite are formed, respectively, 
by 2pz and (2s, 2px, 2py) orbitals. The excitation energy 
of the ,r band is below 15 eV, while the opposite is true 
for the a band [1, 2]. The tight-binding model [6] is used 
to calculate the r band and the self-consistent-field 
approach (SCF) [7] to study the ~r-electronic excitations. 
The excitation properties will be strongly affected by the 
r-band characteristics. The ,r plasmon with frequency 
w t, > 5 eV is identified from the most prominent peak in 
electron-energy-loss spectrum (EELS). The graphite 
layers are weakly coupled to neighboring layers by 
Van der Waals interactions. Such interactions might 
modify the 7r band in the vicinity of the Fermi level [8]. 
However, they only affect the low-frequency physical 
properties, e.g. the intraband plasmon -0 .1  eV [9], but 
not the ~r plasmon. Thus, these interactions are neglected 
in the calculations. On the other hand, the interlayer 
Coulomb interactions among electrons on different 
layers play an important role in the ~r plasmon. 

A graphite sheet is a hexagonal-symmetry plane. 
Each unit cell has two carbon atoms, so the Bloch 
functions could be described by the two tight-binding 
functions [Ut(kx, ky) and U2(kx, ky)] built from the 2pz 
orbitals [6]. Diagonalizing the Hamiltonian with only the 
nearest-neighboring interactions, one can obtain the 
energy dispersions as: 

EC,V(kx, ky)= 4- 7'o 1 + 4 c o s ~ - ~ - - ) c o s  

-t-4 cos 2 , (1 a) 

and the Bloch functions are [6] 

~2 { I~,H~2(kx'ky) u Ck k ,I, x~c'V(kx, ky)  • U l (kx ,  ky) + 2 I, x, y i f .  

(lb) 

Hl2(kx, ky) = - 3'0 e ,k~b + COS 

is the Hamiltonian matrix element. The resonance 
integral 3,0--2.3-2.7 eV [10] and "r0 = 2.5 eV is taken 
in the calculations, b = 1.42 ,~ is the C-C bond length. 
The wave vectors, kx and ky, are confined within the first 
Brillouin zone [BZ; Fig. l(a)]. The superscript c(v) 
represents the conduction (valence) band. The conduc- 
tion band is symmetric, about EF = 0, to the valence 
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Fig. 1. (a) The first Brillouin zone of a graphite layer. The 
P point is the origin. The P and P' points are the corners 
and the Q point is the middle point between them. (b) The 
2D ~r band. 

band [Fig. l(b)]. A single graphite layer is a zero-gap 
semiconductor. 

The ~r band is anisotropic at the plane. Therefore, the 
electronic excitations are described by magnitude (q) and 
direction (~) of the transferred momentum and excitation 
energy (w). 0 ° -< ~ - 30 ° is sufficient to characterize the 
direction-dependent excitations owing to the hexagonal 
symmetry. For a single graphite layer, the dielectric 
function calculated from SCF [7] is 

e(q, dp, W)  = eO --  V q X ( q ,  ~, w), (2a) 

where 

x(q, ~, w) = f 
dk~ dk, 

.1¢ 2 
I stBZ 

X ](k x + qx ,~  + qy;c[ eiq'x eiq'Ylkx,~; v)l 2 

× EC(kx + qx, ky + qy) -- EV(kx, k~) (2b) 
e+(kx + qx, ky + qy) - ~ ( k ~ ,  ky) - (w + ,T)' 

Vq = 21re21q and e0 = 2.4 is the background dielectric 
constant [1]. F is the energy width due to various 
deexcitation mechanisms. For a finite F, X has to be 
modified according to Mermin [11]. The intraband 
excitations are clearly absent and the interband 
excitations are the only excitation channel. 

There exist interlayer Coulomb interactions in 
the multilayered graphite. When an N-layer system is 
perturbed by a probing electron with the time-dependent 
potential V~(q, ~, w), the effective potential V~H(q, ~, w) 
is the sum of the external potential and the induced 
potential from screening charges on all layers. Within 
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the linear response [7], V~ on the lth layer is given by 

~ 0 ~ H ( q ,  ~,, w) = v~X(q, ~, w) 

+ ~ .  Vt.r(q)V~,~(q, dp, w)x(q, ~, w). (3) 
l' 

V~X is the induced charge density on the l'th layer. 
The interlayer Coulomb interaction is Vu,(q)= 
Vq exp ( - qil - l' I/c), where Ic = 3.35 ,~, is the periodic 
distance. V~/~ could be obtained from the known external 
potential by solving the N × N matrix. Here the density 
distribution of the probing electron is assumed to be 
uniform inside the system. Such an approximation does 
not change the main features in the x-electronic excita- 
tions. It is reasonable for the smaller N, since the periodic 
distance is short. The probability, which the probing 
electron transfers (q, ~b, w) to the N-layer system, is 
calculated from the Fermi Golden Rule 

~' - Im xlv~ffl  2 --- v f  + Im . (4)  
1=1 1-----1 

(~-'~=lV7 x) is the average external potential. Im(-1/e) 
defined in equation (4) could be interpreted as 
the EELS intensity. When N = ~ ,  e = % -  
Vq sinh(qlc)x/(cosh(qlc)-1) .  This is the dielectric 
function of the k z = 0 mode for the supedattice of the 
infinite graphite layers [12]. The ~r-electronic collective 
oscillations on all layers are indicated to be in phase. 

The dielectric function of a single graphite layer 
[equation (2)] is calculated at q = 0.25 A -J, ~ = 0 ° 
and r = 0.1 eV. The real part eL is shown by the solid 
curve and the imaginary part e2 by the dashed curve 
(Fig. 2). The excitations due to the critical points in 
the energy-wave-vector space would cause singular 
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Fig. 2. The real (el) and the imaginary (e2) parts of the 
dielectric function at q = 0.25 ,~-l, ~ = 0 ° and 
r = O. 1 eV. e i at r --, 0 (the heavy solid curve) is also 
shown in the inset for comparison. 
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structures in e. They include the minimum [P; Fig. l(a)], 
the maximum (P') and the saddle point (near Q). Note 
that the Q point is the saddle point only at q = 0. The 
excitation energy of the P point is the threshold 
energy. ~2 (el), which corresponds to P'  and Q 
points, respectively, exhibits the square-root divergency 
(the square-root divergency) and the logarithmical 
divergency [13] (the diplike structure after broadening). 
When I" approaches zero, the diplike structure in el 
would become the discontinuity which accompanies 
zeros of el (the heavy solid curve in the inset). The 
number of the singular structures might change with ~. 
For example, there are two logarithmic divergencies at 
w~5.5 eV for ~ = 30 °, since there are two saddle points 
near the middle points of the comers [Fig. l(a)]. The 
main features remain similar as q changes. For q = 0, the 
diplike structure in E l occurs at w~2"r0. Such a structure 
would become deep and occur at higher w in the 
increasing of q. It generally includes zeros of el. The 
vanishing E 1, if at where ~2 is small, is associated with the 
x plasmon. That is, when the Landau damping is weak, 
EELS will exhibit a prominent plasmon peak. 

The EELS, Im[-1/e(q, ~, w)], is further shown in 
Fig. 3. The spectrum exhibits a weak and broad shoulder 
at low w's and a very pronounced peak at --6 eV. The 
former is due to the e-h excitations. The latter remains 
strong even at very large F, e.g. I' = 0.5 eV. It is 
thus reasonable to identify the most prominent peak as 
the w-electronic collective excitations. The x plasmon is 
closely related to the diplike structure in e i. This band- 
induced plasmon hardly exists in a graphite layer when q 
is very small, e.g. EELS at q = 0.01 .~-i (the dashed 
curve in the inset). Also note that the 7r plasmon at 
q ---. 0 could exist in graphite with N = ~ (Fig. 4), mainly 
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Fig. 3. The EELS for various graphite layers are 
calculated at q = 0.25 ~ - l ,  ck = 0 ° and F = 0.1 eV. 
The EELS of a single graphite layer at q = 0.01 ~ - l  is 
also shown in the inset for comparison. 
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Fig. 4. The q-dependent plasmon frequencies for various 
graphite layers at ~ = 0 °. The inset also shows wp(q) of a 
graphite layer at $ = 30 °. 

due to the very strong interlayer Coulomb interactions. 
When the number of the graphite layers increases, the 
EELS intensity and the plasmon frequency behave 
similarly. The main reason for this is the interlayer 
Coulomb coupling. 

The variation of plasmon frequency with q is 
shown in Fig. 4. The strong q-dependence directly 
reflects the x-band characteristic, the strong wave- 
vector-dependence. When N is finite, Wp approaches a 
finite value 23~0 at q ~ 0. This result further illustrates 
that the r plasmon is associated with the interband 
excitations of the saddle points. The r plasmon 
apparently belongs to an optical plasmon. The interlayer 
Coulomb interactions obviously enhance the plasmon 
frequency at small q's. Moreover, for graphite at q --. 0, 
they cause the blue-shift of the plasmon frequency from 
5 eV to 7.4 eV. This value is close to the measured result 
( - 7  eV) of the reflectance spectrum [1] and the EELS 
[2]. Finally, the q-dependent plasmons also rely on $. 
The excitation energies of the saddle points strongly 
depend on $ only at large q's and so does the 
S-dependence of Wp (inset). 

The w-band characteristics, the strong wave-vector- 
dependence, the anisotropic behaviour and the special 
symmetry, are directly reflected in the excitation 
properties. The critical points in the energy-wave- 
vector space could induce the singular structures in the 
dielectric functions and thus are associated with the 
7r-electronic collective excitations. The r plasmon 
behaves like an optical plasmon. The interlayer Coulomb 
interactions play an important role in enhancing the 
EELS intensity and the plasmon frequencies. The 
dependence of the r plasmon on the number of graphite 
layers needs further experimental verification. 
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