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ABSTRACT 

Let A be a linear transformation on a finite-dimensional complex vector space 
with the associated algebra Alg A, commutant (A)‘, and hyperinvariant subspace 
lattice Hyperlat A. We determine Alg A, {A)’ (up to algebra isomorphism), and 
Hyperlat A (up to lattice isomorphism) in terms of the parameters in the Jordan form 
of A. 

1. INTRODUCTION 

Let A be a linear transformation on a finite-dimensional complex vector 

space V. There are two lattices naturally associated with A: the invariant 

subspace lattice Lat A, consisting of those subspaces of V that are invariant 
for A, and the hyperinvariant subspace lattice Hyperlat A, consisting of 
subspaces that are invariant for any linear transformation commuting with A. 
An interesting question in this respect is: to what extent do these lattices 
determine A? For the invariant subspace lattice, the answer has been known: 
if A and B are linear transformations on finite-dimensional spaces, then 
Lat A is isomorphic to Lat B if and only if A and B have the same Jordan 
structure, and in this case the (lattice) isomorphism can be chosen to be 
implemented by an invertible transformation (see [9, Corollary 2.3.11, [5, 
Theorem 2.11, or [4, Theorem 16.1.21). In this paper, we undertake a 
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corresponding study for the hyperinvariant subspace lattice. We completely 
determine when two linear transformations have isomorphic hyperinvariant 
subspace lattices in terms of the parameters in their Jordan forms. The 
situation is more delicate than the invariant-subspace one. This is to be 
expected, since for a linear transformation the number of hyperinvariant 
subspaces is much smaller than that of invariant subspaces: the former is 
always finite, and the latter uncountable in general (cf. [3] and [ll]). We are 
able to show that, except in certain special cases, the Jordan structure of A is 
more or less determined by Hyperlat A. We present the precise statement in 
Section 3 below. 

Given any linear transformation A, we can associate two algebras with A: 
Alg A, the algebra of all polynomials in A, and {A)‘, the commutunt of A, 
consisting of all linear transformations commuting with A. To warm up for 
later developments, we answer in Section 2 the questions when two linear 
transformations have (algebraically) isomorphic or equal such algebras, and 
relate these to the isomorphism of their invariant subspace lattices. 

In the following, a(A) denotes the set of eigenvalues of A. Two linear 
transformations A and I3 are similar (A = B) if there exists an invertible 
transformation X such that XA = BX. For any n > 1 and complex number a, 
let 

a 1 0 
. . 

J,(a)= *:. 

i I 1 
0 a 

denote the n x n Jordan cell with eigenvalue a. Any linear transformation A 
is similar to a unique Jordan form 

where a, are the (distinct) eigenvalues of A and, for each i, nil > . . . > ni, 

are the partial multiplicities of A at a,. In this case, nil is the ascent of A at 
a, and ll,‘=i(A - a,) “11 is the minimal polynomial of A. The reduced partial 
multiplicities of A at ai are obtained from nil 2 - * . > ni, by retaining only 
the distinct ones. A is cyclic if there is a vector x in V such that the linear 
span of x,Ax,A2x,... is V. Every linear transformation is similar to a unique 
rational form, which is, in particular, a direct sum of cyclic transformations. 
Our reference for linear algebra is [4]. 
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2. INVARIANT SUBSPACE LATTICE 

Let A and B be linear transformations on (possibly different) finite- 
dimensional vector spaces V and W. We start by considering the equality of 
their associated algebras. 

THEOREM 2.1. The following statements are equivalent for A and B: 

(1) Alg A = Alg B; 

(2) (Al’ = {B)‘; 
(3) A = p(B) and B = q(A) for some polynomials p and 9; 

(4) Lat A = Lat B, and A = p(B) for some polynomial p; 

(5) A = p(B) f or some polynomial p which defines a one-to-one mapping 

from a(B) onto a(A) and is such that p’(b) + 0 for any b in a(B) with 

ascent greater than one. 

Recall that if & is any set of linear transformations, &’ denotes its 
commutant, that is, the algebra of linear transformations which commute with 
every transformation in G?. It is well known that {A)“, the cornmutant of (A)‘, 
is always equal to Alg A for any A. 

Proof. (1) 2 (2): {A)’ = (Alg A)’ = (Alg B)’ = {BY. 
(2) =$ (3): Since Alg A = {A)” = {B)” = Alg B, (3) follows immediately. 
(3) a (4): This is trivial. 
(4) * (1): That Alg A c Alg B is trivial. To prove the converse, let T E 

Alg B. Then TA = AT, and T leaves invariant every invariant subspace of B, 

whence every invariant subspace of A. We infer from [l, Theorem lo] that 
T E Alg A. 

(3) = (5): Note that the polynomial 9 0 p defines a mapping from a(B) 

onto (9 0 p)(a(B)) = q(p(a(B))) = q(o(p( B))) = 9(&A)) = a(q(A1) = a(B). 
Since o(B) is a finite set, the mapping must be one-to-one. Hence p defines 
a one-to-one mapping from a(B) onto a(A). 

Assume that p’(b) = 0 for some b in o(B) with ascent m greater than 
one. Let J = Cr=,@Ji be the Jordan form of B, where the Ii’s are Jordan 
cells arranged so that 

1, = I 
b 1 0 

. . 
. . 

. . 

0 . ii 



166 PEI YUAN WU 

is one associated with I? with size m. Then p(B) is similar to p(J) = Cy= ~CB 
p(Ji) with 

0 

It is easily seen that [ p(J,) - p(h)I]’ = 0 for some I < m, whence p(J,l is not 
cyclic. This, together with the fact that p is one-to-one from a(B) onto 
o(A), implies that, in the Jordan form of p(B), the maximal size of the 
Jordan cells associated with p(b) is strictly less than m. Hence the same 
holds for &(I?))= B [with p(b) re pl aced by q(p(b))], that is, the ascent of 

B at CqopXb) is strictly less than m. Since (p 0 q 0 p)‘(b) = 0, we may 
repeat the above arguments to obtain the same assertion for (4 0 p 0 q 0 p)(b) 

or, more generally, for 

(4”P)(“Yb)=((~” PI” *.. “(4”P))(b) for any n&l. 

n 

It is well known that, on a finite set, a one-to-one mapping will map any 
element eventually back to itself. Thus b = (q 0 p)‘“‘(b) for some n, and we 
obtain a contradiction to our assertion on the ascent of b. 

(5) * (3): Let b,, . . . , b, be the (distinct) eigenvalues of B, and let 
ai = p(bi), i = 1,. . . , n. Since A = p(B) and p is one-to-one from a(B) onto 
a(A), the ai’s are all the (distinct) eigenvalues of A. For each i, let ni be the 
ascent of B at bi. We need to construct a polynomial 4 such that y(A) = B 

or, equivalently, q(p(B)) = B. Th’ is will be the case if, for all i, (y 0 pXbi) = bi, 

(9 0 p)‘(bi) = 1, and (9 0 p)“‘(b,) = 0 f or all j, 2 < j < rri - 1 (cf. [7, p. 305, 
Proposition 11). A simple computation shows that these latter conditions are 
equivalent to the system of equations q(ui) = bi, q’(aj) = l/p’(bi), and 

1 
q(j)(ai) = -Lj(9 

P’tbi) 
(j-l)(ui),...,q’(ui)), 
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2 < j < ni - 1, where Lj denotes some linear combination of its arguments. 
[Note that, by our assumption, p’(bi) # 0 for any i with ni > I.] This system 
has a polynomial solution 4, namely, the so-called Her-mite interpolating 
polynomial (cf. [7, p. 306, Proposition 11). Hence we would have q(A) = B as 
required. n 

Before passing on, a few remarks are in order. In the preceding theorem, 
the equivalence of (4) and (5) h as b een obtained before [4, Theorem 2.11.31. 
However, our proof is completely different: it establishes their equivalence 
via (3). Also note that the proof for the equivalence of (3) and (5) remains 
valid with the equality signs “ =” in A = p(B) and B = q(A) replaced by the 
similarity signs “ = .” This observation will be needed in proving Theorem 
2.2 below. Mention should be made that, unfortunately, none of the results in 
[12] is exactly correct: Lemma 2.1 there should exclude A = 0; the conditions 
in Corollary 2.2 and Theorem 3.1 are neither sufficient nor necessary (they 
can be modified as here or as in [4, Theorem 2.11.31). 

We next give conditions under which A and B have isomorphic invariant 
subspace lattices. Recall that two lattices L, and L, are isomorphic (L, E L,) 

if there is a one-to-one mapping from L, onto L, which preserves the lattice 
operations “join” and “meet.” A and B are said to have the same Jordan 
structure if they have the same number of (distinct) eigenvalues, which can 
be ordered, say, o(A)={a, ,..., a,} and a(B)=(b, ,..., b,), so that the 
partial multiplicities of A at ai coincide with those of B at bi for all i, 

i=l ,. . .,n (cf. [4, p. 4821). 

THEOREM 2.2. The following statements are equivalent fk- A and B: 

(1) Lat A and Lat B are isomorphic; 

(2) A and B have the same Jordan structure; 

(3) there exists an invertible transfmtion X such that Lat B = 

(XK:KELatA]; 
(4) A = p(B) and B = q(A) fn- some polynomials p and q; 

(5) A = p(B) f or some polynomial p which defines a one-to-one mapping 

from o(B) onto a(A) and fm which p’(b) # 0 for any b a(B) with ascent 

As noted before, is known (cf. 
of (4) 

of argument as that for of Theorem 2.1. That (5) implies 
is consequence of to complete we 

need only show 
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Let a(A) = (al,. . . , a,) and a(B) = {b,, . . . , b,) consist of (distinct) eigen- 
values of A and B, respectively, We may assume that A and B have the 
same Jordan structure at ai and hi for all i. Let p be a polynomial satisfying 
p(b,) = a, and p’(bi) # 0 for all i. For any Jordan cell 

we have 

ai P’Cbi) 

P(J) = I . 0 

which is similar to 

a, 1 

! . 0 

0 

. 1 

h 

0 

. . 

. 1 

‘i 

since p’(bi) # 0. Using the assumption that A and B have the same Jordan 
structure, we infer that A = p(B). In a similar fashion, B = q(A) for some 
polynomial 4. H 

Ong proved in [lo] that Lat A = Lat B implies that A = p(B) and B = 
q(A) for some polynomials p and 4. The equivalence of (1) and (4) in 
Theorem 2.2 strengthens this. 

We conclude this section by considering conditions under which A and 
B have isomorphic associated algebras. We start with the following defini- 
tions: Alg A and Alg B are isomorphic if there is an algebra isomorphism CY 
from Alg A onto Afg B which maps Z to I; (Alg A, A) and (Alg B, B) are 
isomorphic if, furthermore, (Y maps A to B (this terminology was suggested 
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by N. C. Phillips). Similar definitions can be made for {Al’ and {BJ’. The next 
two lemmas deal with these latter, more restricted isomorphisms. 

LEMMA 2.3. (Alg A, A) and (Alg B, B) are isomorphic if and only if the 
minimal polynomials of A and B coincide. 

Proof. It is easily seen that (Alg A, A) and (Alg B, B) being isomorphic 
is equivalent to the condition that, for any polynomial p, p(A) = 0 if and only 
if p(B) = 0. This latter condition is, in turn, equivalent to the equality of the 
minimal polynomials of A and B. n 

LEMMA 2.4. ((A)‘, A) and ({BY, B) are isomorphic if and only if A and B 

are similar. 

Proof. One direction is trivial: if A and B are similar via the invertible 
X, then a(T) = XTX-’ for T E {A)’ defines an algebra isomorphism from 
(A)’ onto {B)’ satisfjring a(A)= B and a(I)= 1. 

To prove the converse, let LY : {A} + {BJ’ be an algebra isomorphism such 
that a(A) = B and cr(l) = I. We may assume, by the above observation, that 
A is in rational form: A = Cnzl@Ai on V = C~=i@~, where each Ai is a 
cyclic transformation. Let 

pi=oa3 . . *$O@ I @OcI3*..cI30, i=l ,...,n. 
ith 

Since the Pi’s are in {A)’ and satisfy Pi Pj = Sij P, and Ci Pi = I (Sij being the 
Kronecker delta), the a( P,>‘s will belong to {B)’ and satisfy analogous 
conditions. Hence, letting Qi = (~(2’~) and noting that B = B, i * 1 . -i- B,, 

where B, = BlQ,W, we may further assume that B = Cr=,@ B, on W = 

Z;=i@Q,W. 
Next we show that, for each i, (Y induces an algebra isomorphism from 

(A$ onto (Bi)‘. Indeed, for any C E (A$, letting 

wehave &E(A) and, foranyj,k=I ,..., n, 

P,.&P, = c 
if j=k=i, 

0 otherwise. 
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Thus 6 = (Y(C) is in {B)‘, and Qj6Qk = 0 for any j, k, (j, k) z (i, i). There- 
fore, L? is of the form 

on W. It is easily seen that the induced mapping a&C) = D for C E {Ai)’ is 
an algebra isomorphism from (A$ onto (Bi)‘. Note that a linear transforma- 
tion T is cyclic if and only if(T)’ = Alg T. Hence the cyclicity of Ai implies 
that of Bi, and thus (AlgAi,Ai) is isomorphic to (Alg Bi, Bi). We infer from 
Lemma 2.3 that the minimal polynomials of Ai and Bi coincide. For cyclic 
transformations, this is equivalent to their similarity. We conclude that A 

and B are similar. n 

Finally, we are ready for our promised conditions. 

THEOREM 2.5. 

(1) Alg A and Alg B are isomorphic if and only $A and B have the same 

number of (distinct) eigenvalues, which can be ordered, say, o(A) = 

{a ,, . . ., a,) and a(B) = (b,, . . ., b,), so that fw each i the ascent of A at a, 

and that of B at bi are equal. 

(2) (A)’ and (B)’ are isomorphic if and only if Lat A and Lat B are 

isomorphic. 

Proof. (1): If Alg A and Alg B are isomorphic, then there exists a linear 
transformation C in Alg B such that (Alg A, A) and (Alg C, C) are isomorphic 
and Alg C = Alg B. The former implies that the minimal polynomials of A 

and C coincide by Lemma 2.3, and the latter that C and B have the same 
Jordan structure by Theorems 2.1 and 2.2. Our condition then follows 
immediately. 

Conversely, assume that the condition holds. Let p be a polynomial 
which defines a one-to-one mapping from a(B) onto a(A) and satisfies 
p’(b) # 0 for any b in a(B) with ascent greater than one, and let C = p(B). 
Theorem 2.2 implies that B and C have the same Jordan structure. There- 
fore, by our assumption and the fact that a(C) = a(A), the minimal polyno- 
mials of A and C coincide. Hence (Alg A, A) and (Alg C, C) are isomorphic 
by Lemma 2.3. This, together with Alg B = Alg C, implies that Alg A and 
Alg B are isomorphic. 

(2): If (A)’ and (B)’ are isomorphic then there exists a linear transforma- 
tion C in (B)’ such that ((Al’, A) and c(C)‘, C) are isomorphic and (Cl’ = (BJ’. 
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The former implies that A and C are similar by Lemma 2.4, and the latter 
that Lat C = Lat B by Theorem 2.1. Hence Lat A is isomorphic to Lat B. 

Conversely, if Lat A and Lat B are isomorphic, let p be a polynomial as 
in Theorem 2.2(5) such that A = p(B). Letting C = p(B), we infer from 
Lemma 2.4 that ((A)‘, A) is isomorphic to ((C)‘,C). On the other hand, 
{C)l = {BJ’ by Th eorem 2.1. Hence {A)’ is isomorphic to (By. a 

3. HYPERINVARIANT SUBSPACE LATTICE 

In this section, we come to the major theme of this paper: characterizing 
linear transformations with isomorphic hyperinvariant subspace lattices. The 
next theorem is our main result. 

THEOREM 3.1. Assume that A [respectively, B] has (distinct) eigenval- 

ues a,,.. .,a, [b,,. .., b,,,] with reduced partial multiplicities ni, > . . . > n,,,, 

i=l >..., n[mjl> ..* > mjs,, j = 1,. . ., m]. Then Hyperlat A is isomorphic to 

Hyperlat B if and only if n = m and, after a reordering, the eigenvalues a, 

and bi are matched so that, for each i, their reduced partial multiplicities 

n,,> *. . > nir, and mi, > . *. > mi,Y, satisfy one of the following conditions: 

(1) they coincide with 5 > 2 and 4 > 2 > 1; 

(2) they coincide with I> 1 - 1 and 21- 1 for some 12 2; 

(3) ri = si and nik = mik for all k. 

The theorem says that, up to the ordering of the eigenvalues and except 
for some special cases, Hyperlat A determines the reduced partial multiplici- 
ties of the eigenvalues of A. (The appearance of such exceptional cases 
can best be explained by Richard Guy’s strong law of small numbers [6]: 
there aren’t enough small numbers to meet the many demands made on 
them.) Thus the dependence of A on Hyperlat A is looser than that of A 
on Lat A, as should be the case. In particular, we have the following result of 
Longstaff [8]: 

COROLLARY 3.2. If Lat A is isomorphic to Lat B, then Hyperlat A is 
isomorphic to Hyperlat B. 

For normal transformations, the conditions for isomorphic lattices are 
much easier to state. 
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COROLLARY 3.3. Let A and B be normal transformations. Then 

(1) Lat A is isomorphic to Lat B if and only if the eigenvalues of A and B 
are the same (including multiplicities), and 

(2) Hyperlat A is isomorphic to Hyperlat B $ and only if A and B have 
the same number of (distinct) eigenvalues. 

Before embarking on the proof of Theorem 3.1, we draw the reader’s 

attention to an error in [4, p. 338, Exercise 10.31. If 

then, since A = J&O) and B = Jz(0)@j,(O), they are not similar to each other. 

But it is easily seen that Hyperlat A = Hyperlat B consists of the four 

subspaces C3, {(h,,A,,O):h,,h, EC], {(h,,O,O):A, EC}, and ((O,O,O)). Actu- 

ally, this example corresponds to case (2) (with 1 = 2) in Theorem 3.1. 

To prove Theorem 3.1, we need a series of lemmas. We start with a result 

from [3] which yields a more concrete representation for the hyperinvariant 

subspace lattice. For positive integers n, > . . . > n,, L(n,, . , n,) denotes 

the set of r-tuples (u ,, . . , u,) of integers satisfying ui > . . . > u,. > 0 and 

n1 - ui 2 . . . > n, - u, > 0. Under the operations 

(u I,..., ur)v(v, >... a,)=( max(u,,.,),...,max(n.,r,)) 

and 

(u r ,..., ur)A(v, ,..., r,)=(min(u,,vi), . . . . min(u,,u,)), 

L(n I ,..., n,) is a Iattice. In particular, the partial order in L(n,,. . .,n,) is 

given by (u,,. . .,u,) 2 (v,, . . , ur) if ui > vi for all i. As proved in [3], such 

lattices are exactly (isomorphic to) the hyperinvariant subspace lattices of 

nilpotent linear transformations. 

LEMMA 3.4. If A is a nilpotent transformation with partial multiplicities 
n,a .*. >n, and reduced partial multiplicities n; > . . . > ri,., then 
Hyperlat A, L(n,,..., n,,), and L(n’,, . . . , n’J are isomorphic lattices. 

This is essentially [3, Theorem 31; that L(n’,, . . . , n’,.) is isomorphic to the 

other two lattices can be easily derived. It enables us to concentrate on 

lattices of the form L(n ,,..., n,) with n, > . . . > nr. 
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(4.2) 

(4,i; ‘;3 2) 
\ /‘\ 
(3,l) (2,2) 
/ \ / 

(3,O) (2,l) 
\ / \ 
(2,0( y,1, 

(1.0) 

‘3 2%:’ 

(2,2,:) y: 

y,‘,:’ y.l,O) 

Cl,‘,:’ c;, 1,y 

(l,yI y,O,O) 

VO) 
(o:o) (OiO) 

L(5,2) L(4,2,1) 

FK:. 1. 

The next lemma takes care of the exceptional cases in Theorem 3.1. We 
use the symbol K,-K,- * . . -K, to denote a chain in a lattice, where the Ki’s 

satisfy Ki > Ki+r for all i, 1 < i < n - 1. 

LEMMA 3.5. L(5,2) s L(4,2,1) and L(Z, Z - 1) E L(2Z - 1) for any 1 >, 2. 

Proof. The lattices L(5,2) and L(4,2, l), as shown in Figure 1, are easily 
seen to be isomorphic. For any 1 >, 2, L(Z, 1 - 1) is a chain of 21 elements: 
(1, 1 - l)-(1 - 1,z - O-(2 - 1,z - 2) . . . -(l, l)-(l,O)-(0, O), and hence is isomor- 
phic to L(2Z - 1). n 

As observed in Figure 1, it seems that each element in the lattice 

L(n I,...,n,)(nl> *.a > n,) has at most two “sons” and two “parents.” This 
is indeed the case, as we now show. Recall that, for two elements K, and K 2 

in a lattice, K 1 is a son of K, (K, is a parent of K ,) if K, < K, and there is 
no other element between K, and K,. 

LEMMA~.~. I&n,> ..* >n,>l andu=(u, ,..., u,)EL(n ,,..., n,). 

(1) u has at most two sons. 

(2) u has no son if and only if u = (0,. , 0). 

(3) u has exactly one son if and only if u + (0,. . . ,O) and one of the 
following holds: 

(i) u2= -.. =u,=O; 

(ii) there exists i, 1 =g i < r, such that u 1 = . . . = ui and ni - u i = * . . = 
n -u r r. 
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In this case, the son is (u,--LO ,..., 0) or (u, ,..., ~~_i,u~-l,u,+~ ,..., uJ, 

depending on whether (i) or (ii) holds. 

Note that the corresponding results for the parent can be obtained 

through the self-duality in L(n,, . . , n,) under the antiisomorphism 

(U,,..., u,)+(nl - ul,...,nr - 24,). 

Proof. Obviously, (u,,O,. .,O> (ul Z 0) has only one son (u, -LO,. . . ,O). 

Otherwise, for u z (0,. . ,O), let i (respectively, j), 1 G i < r (1 < j < r), be 

the smallest (largest) index for which ui > uifl (nj - uj < nj_l - u~_~). In 

general, we have i > j. If i >j, then u has two sons (U ,,..., ui_,,ui - 

l,u,+i ,..., ur) and(ui ,,.., uj_i,uj -l,t~~+~ ,..., u,); if i =j, then it has only 

oneson(u, ,..., ui_l,ui-l,uj+ ,,..., uJ. n 

LEMMA 3.7. Assume that L(n, ,..., n,) and L(m, ,..., m,) are isomor- 
phic, where n,> 1.. >n,al and m,> .*a >m,>l. Zf (ui ,..., u,)~ 

L(n 1,.. ., n,) and (v,,. . . ,uJ E L(m,, . . ., m,) correspond under an isomor- 
phism, then u1 + . . . + u, = v, + . . . + v,. In particular, L(n, ,..., n,) 1 
L(m,,.. .,m,> implies that n, + . . . + n, = m, + . * . + m,$. 

Proof. For any K=(u ,,..., u,) in L(n, ,..., n,), let dimK=u,+ 

* . . + u,. It follows from Lemma 3.6 (and its dual) that every K belongs to a 

chain C : K,-K,_,- * ‘. X,-K, of length t + 1 = n, + e-e + n, + 1 in 

L(n I,...,n,) with dim K, = i for all i, 0 < i < t. Note that such chains are 

exactly maximal chains in L(n,, .,n,), whence they are preserved under 

isomorphism. We infer that dim K, an indicator of the relative position of K 
in C, is invariant under isomorphism. This completes the proof. n 

To proceed further, we need to consider some special constructs in the 

lattice L(n,, . . , n,). A chain K,-K,- . *. -K, in L(n,,.. .,n,) (n, > * . . > 
n, > 1) is special if it is maximal with the property that each Ki, 1~ i < n - 1, 
has only one son, namely, Ki+ ,. The next lemma shows the existence of 

special chains which end at the zero element. 

LEMMA 3.8. ZnanyL(n,,...,n,)(n,> .a* >n,>l), thereeristatnwst 
two special chains ending at (0,. . . , 0). There exists exactly one such chain af 
and only if r = 1 or r = 2 and n1 - n2 = 1. In this case, the chain is of length 
n, + 1 or 271, - 1; otherwise, the two chains are of lengths r + 1 and 

nl -n,+l. 

Proof. It is easily seen that cl,.. ., l)-(1,. . ., l,O)-(l,.. ., l,O,O)- . . * - 
(0,. . ., O)and(n,--n,,O ,,.., O)-(n,-n,-1,0 ,..., O)-*..-(1,O ,..., 0)-(0 ,..., 0) 
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are two special chains ending at the zero element, and that they coincide if 
and only if r = 1 or r = 2 and n, - n2 = 1. n 

Note that in L(n i,. . . , n,), these two chains, denoted by C, and C, 
henceforth, encode the parameters r and n1 - n,, respectively. Also, any 
isomorphism between such lattices must map special chains among them- 
selves. To distinguish C, from C,, we need another construct. We say that a 
chain C:K,-K,- * . * -K, in L(n, ,..., n,) rides on Ci, i = 1,2, if 

(i) there is some j, 0 < j < n - 1, such that each K, has only one son 
K,, 1 for 1~ 1~ j and has two sons, one being K,, 1 and the other being in 
Ci, for j + 1 < I Q n - 1; 

(ii) K, has only one son (l,O, . . . ,O); and 
(iii) C is maximal with properties (i) and (ii). 

As examples, in L(5,2>, the chains (4,1)-(3,1)-(2,1)-(l, l> and (2,2)-(2,1)-(2,O) 
ride on special chains C, : (1, l)-(1, O)-(0,O) and C, : (3,0)-(2,0)-(l,O)-(0, O), 
respectively (cf. Figure 1). It is easy to see that, in any L(n,, . . . , n,.), C, has 
at most one chain, namely, (n, - n2 + 1, 1,. . ., l)-(n, - n2, 1,. . . , l)- . * * - 
(2,1,. . .) l)-(1,. . .) 11, riding on it; moreover, it is also of length n1 - n2 + 1. 

In the next lemma, we use the notion of riding chain to show that, under 
certain conditions, an isomorphism from L(n,, . . . , n,.) to L(m,, . . . , m,) must 
map Ci to Ci (i = 1,2). 

LEMMA 3.9. There is no isomorphism from L(n,, . . . , n,) onto 

L(m 1 ,..., m,) taking C, (in L(n, ,..., n,)) to C, (in L(m,,...,m,)) under 

either of the following conditions: 

(1) r > 2, s = 3, and m2 - m3 > 2; 

(2) r 2 2 and s > 4. 

Proof. Assume that such an isomorphism exists. By Lemma 3.8, we 
obtain n, - n2 =s and m,-m,=r. Let C be the chain (2,1,...,1)- 

(21, *. . , l.O)-(2,1,. . . , l,O,O)- * . . -(2,0,. . . ,O) in L(m,, . . ., m,). Since m, - 
m2 = r >, 2, (3,1,. . . , 1) is an element of L(m,, . . . , m,). Thus (2,1,. . . , 1) has 
two parents: (2,2,1,. . . ,l) and (3,1,. . ., 1). Under condition (11, (2,2,0) is in 
L(m,, m,, m3), and therefore both (2,2,1) and (3,1,1) have two sons: (2,1,1) 
and (2,2,0) for the former, and (2,1,1) and (3, LO> for the latter. On the 
other hand, if (2) holds, then (2,2,1,. . . , 1,O) is in L(m,, . . . , m,). Thus, again, 
both (2,2,1,..., 1) and (3,1,..., 1) have two sons: (2,1,..., 1) and 
(2,2,1,... , 1,O) for the former, and (2,1,. . . , 1) and (3,1,. . . , 1,O) for the latter. 
In any case, it is easy to see that the chain C rides on C, with length s. 
However, by our assumption, C, [in L(m, ,..., m,>l and C, [in L(n,,. . .,n,)l 
correspond under the isomorphism, whence the chain corresponding to C 
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rides on C, and is of length s. This contradicts the fact that the chain riding 
on C, must be of length ni - n2 + 1= s + 1. Therefore, no such isomorphism 
exists. n 

LEMMA 3.10. ikt r 2 1, n, > . * . > n, > 1, and m, > . . . > m, 2 1. Then 

L(n,,. . ., n,) and L(m,, . . . , m ,.> are isomorphic zy and only if ni = m, for all 

i, l< i Q r. 

Proof. We prove the necessity by induction on r. If L(n,, . . . ,nr) has 
only one special chain (ending at the zero element), then this is trivial. 
Assume next that r = 2 and L(n,, n,) has two special chains C, and C,. 
Then L(n,,n,) z L(m,,m,) implies that n1 - n, = m, - m2 or n1 - n2 = 2 

and m, - m2 = 2, depending on whether C, [in L(n,,nz)] is mapped to C, 
or C, [in L(m,, m,)]. On the other hand, we also have ni + n2 = m, + m2 by 
Lemma 3.7. Solving these equations yields n1 = m, and n, = m2. 

Assuming that the assertion is true for r - 1 (r > 3) and L(n,, . . , n,) G 

L(m 1,, . . ,m,), we proceed to prove it for r. If the isomorphism between 
them maps C, to C,, then, in view of Lemma 3.9, we must have r = 3 and 

722 -n3=mp- ma = 1. This equation, together with nr - na = m, - m2 = 3 
(Lemma 3.8) and n1 + 72% + ns = m, + m2 + m3 (Lemma 3.7), yields ni = m, 

for all i. Hence, for the rest of the proof, we may assume that the 
isomorphism maps Ci to Ci, i = 1,2. Consider the congruence relation in 
L(n, ,..., n,)definedby(u, ,..., U,.)m(oi ,..., u,)ifui=oi forall i,2<i<r, 
or, equivalently, (u, - oi, . . . , 24, - 0,) belongs to C,. The resulting factor 
lattice L(n,, . . , n,)/ C, is easily seen to be isomorphic to L(n,, . . , n,). (For 
these lattice-theoretic notions, the reader may consult [2, p. 731.1 Similarly, 
we have L(m,, . . , m,)/ C, G L(m,, . . . , m,). Since the isomorphism between 

L(n l,. ..,n,) and L(m,,.. ., m,) maps C, to C,, it induces an isomorphism on 
the factor lattices. Thus L(n,, . . . , n,) E L(m,, . . , m,). The induction hypoth- 
esis then implies that ni = mi for all i, 2 <i < r. It follows from n, + 

.*a +n,=m,+ .. . + m, (by Lemma 3.7) that n, = m,. This completes the 
proof. n 

LEMMA 3.11. If L(n,,n,) is isomorphic to L(m,,...,m,v), where n,> 

n2 2 1, n, - n2 > 2, s 2 3, and m, > . . * > m, 2 2, then m,_, - m, z 2. 

Proof. If m,_, - m, = 1, then, by Lemma 3.6, it is easily seen that 

(m,, . . . , m,)-(m,, . . . , m,, m, - l)-Cm,, . . . , m,, m, - 1, m, - 1) is a special 
chain in L(m ,, . . . ,mJ which is not part of C, or C,. We check that 
L(n,, n,) has no special chain of length bigger than two except parts of these 
two special chains. It will then follow that L(n,,n,) and L(m,, . . .,m,) 
cannot be isomorphic. 
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Assume to the contrary that K,-Ka-K, is a chain in L(n,, n,), where both 
K, and K, have only one son. By Lemma 3.6, K, =(uI,uZ) has only one son 
if and only if ua = 0, ui = ua, or n1 - u2 = n2 - u,. We consider the three 
cases separately: 

(1) If ua = 0, then, obviously, K,-K,-K, is part of C,. 
(2) If ur=uz, then K, = (u,,u, - 1). Again, by Lemma 3.6, either 

ua - 1= 0 or n, - ur = n2 -(u, - 1). The former implies that K,-K,-KS is 
the special chain (1, l)-(LO)-(0,O); the latter, that n1 - n, = 1, contradicting 
our hypothesis. 

(3) If n, - u1 = n, - u2, then K, = (u 1 - 1, u,). By Lemma 3.6, either 
u2 = 0 or ur - 1= us. The former implies that K,-K,-K, is part of C,; the 
latter, that n, - n, = 1, a contradiction. n 

LEMMA~.~~. Letr,s>l,n,> .*. >n,>l,andm,> ..*m,>l.Then 
L(n 1 ,..., n,) is isomorphic to L(m, ,..., m,> if and only if one of the following 
holds : 

(1) the n,‘s and mj’s coincide with 5 > 2 and 4 > 2 > 1; 

(2) the ni’s and mj’s coincide with 1> I- 1 and 21- 1 for some 1~ 2; 
(3) r = s and ni = m, for all i. 

Proof. If r = 1, then L(n,) = L(m,, . . , m,) implies (2) or (3) by Lemma 
3.8. Next assume that r, s > 2. Let (Y be an isomorphism from L(n,, . . . , n,) 

onto L(m,,..., m,). If it takes Ci to Ci, i = 1,2, then r = s, whence 
(3) follows from Lemma 3.10. Consequently, we may assume that (Y takes 
C, to C,. This can happen only when s = 2 or s = 3 and m2 - m3 = 1, by 
Lemma 3.9. 

(i) s = 2. If r = 2, then (3) follows as above. Hence we may further 
assume that r >/ 3. Using Lemma 3.9 again (by reversing the roles of ni and 
mj there), we need only consider the case r = 3 and n, - n3 = 1. Since C, 
and C, are corresponded under (Y, we obtain n 1 - n2 = s = 2 and m, - 

m2 = r = 3. On the other hand, L emma 3.7 and Lemma 3.11 imply n1 + n, + 

na = m, + m2 and na = 1, respectively. Solving these equations yields the 
solution n1 = 4, n2 = 2, n3 = 1, m, = 5 and m2 = 2, that is, (1) holds. 

(ii) s=3 andmz-m,=l. If r = 2, then an argument similar to that 
in (i) with the roles of r and s reversed yields (1). If r = 3, then (3) follows 
from Lemma 3.10, while r >, 4 cannot happen by Lemma 3.9. This completes 
the proof. n 

Finally, we are ready for the coup de g&e. The idea of the following 
proof is similar to that for the invariant subspace lattice [8, Theorem 3.21. 
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Proof of Theorem 3.1. If A,@ -*- @A, on VI@ -*a @V, is the primary 
decomposition of A, where Vi = ker(A - uiZ)“il, then Hyperlat A is isomor- 
phic to the direct product of Hyperlat Ai, i = 1,. . . , n (cf. [3, Theorem 21). 
Note that each Hyperlat Ai is a nontrivial indecomposable sublattice of 
Hyperlat A (cf. [3, p. 131, (iv)]) and the family of such sublattices is unique 
(cf. [2, pp. 92-93, 11.81). A similar consideration applies to Z?. Thus 
Hyperlat A 7 Hyperlat B if and only if, after a reordering, Hyperlat Ai 7 
Hyperlat Bj for all i. The proof is then completed by applying Lemma 3.12. 
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