[Home](http://iopscience.iop.org/) [Search](http://iopscience.iop.org/search) [Collections](http://iopscience.iop.org/collections) [Journals](http://iopscience.iop.org/journals) [About](http://iopscience.iop.org/page/aboutioppublishing) [Contact us](http://iopscience.iop.org/contact) [My IOPscience](http://iopscience.iop.org/myiopscience)

Anisotropic Irreversibility Lines for *C-*Axis Aligned (Bi, Pb) $_2$ Ca $_2$ Sr $_2$ Cu $_3$ O $_{10}$ _{+δ} Powders

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1992 Jpn. J. Appl. Phys. 31 L461

(http://iopscience.iop.org/1347-4065/31/4B/L461)

View [the table of contents for this issue](http://iopscience.iop.org/1347-4065/31/4B), or go to the [journal homepage](http://iopscience.iop.org/1347-4065) for more

Download details:

IP Address: 140.113.38.11 This content was downloaded on 28/04/2014 at 18:03

Please note that [terms and conditions apply.](iopscience.iop.org/page/terms)

Anisotropic Irreversibility Lines for C-Axis Aligned $(Bi, Pb)₂ Ca₂Sr₂Cu₃O_{10+\delta}$ Powders

J. B. SHI, B. S. CHIOU, P. L. KUO¹ and H. C. KU¹

Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan 30039, R.O.C. ¹Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30043, R.O.C.

(Received October 11, 1991; accepted for publication February 15, 1992)

Anisotropic irreversibility lines due to thermal fluctuation for quasi-two-dimensional high- T_c superconductors were observed in c-axis-aligned powders of the (Bi, Pb)₂Ca₂Sr₂Cu₃O₁₀₊₈Bi(2223) compound with T_c = 108 K. The anisotropic ratio $H_1(\pm c)/H_1(\#c)$ decreases sharply from 13.6 at 100 K to low values of 3.2 at 80 K and 3.1 at 70 K. The simple 3Dlike power law $H_1 = a \cdot (1 - T/T_c)^n$ was observed only in the low field region (≤ 200 G) with $n = 2.19$ for $H \perp c$ and 2.99 for $H/\!\!/c$. In the higher field region up to 4 kG, the temperature dependence of $H_r(T)$ lines changes into a 2D-like exponential function $H_r = b \cdot \exp(-T/T_0)$ due to the breakdown of the interlayer and/or intralayer coupling of the conduction channel which consists of three Cu-O planes, with $T_0 = 14.2$ K for $H \perp c$ and 13.7 K for $H \nparallel c$. The magnetic susceptibility ratio χ_c/χ_{ab} for this highly anisotropic superconductor in a low applied field of 8 G increases sharply from 9.8 at 5 K to 17.9 near T_c .

KEYWORDS: c-axis-aligned (Bi, Pb)₂Ca₂Sr₂Cu₃O₁₀₊₈ powder, irreversibility line

One of the most intriguing properties of quasi-twodimensional high- T_c superconductors is the occurrence of the irreversibility line $H_r(T)$ due to thermal fluctuations in the vortex state region between the lower critical field $H_{c1}(T)$ and the upper critical field $H_{c2}(T)$. This irreversibility or "quasi-de-Almeida-Thouless" line was first observed in the $La_{2-x}Ba_xCuO_{4-y}$ superconductor where $H_r(T)$ can be fitted by a simple power law of $H_r(T) = a \cdot (1 - T/T_c)^n$ with $n \approx 1.5$ ^{t)} The irreversibility line $H_r(T)$ was later observed in all high- T_c superconductors with the power *n* varying from 1.3 to 2.²⁻⁶⁾ However, in most cases the power law can be applied only in the low-field $(< 10² ~ 10³ G)$ region; serious deviation from linearity in the logarithmic plot indicates that other forms of temperature dependence in the higher field region are required. Recently, in the (Bi. $Pb_2Ca_2Sr_2Cu_3O_{10+\delta}$ Bi(2223) bulk sample, an exponential law of the form $H_r(T) = b \cdot \exp(-T/T_0)$ for $T < 80$ K was reported. 7

The effects of increasing disorder or other imperfections on the position of $H_r(T)$ in the H-T plane were also explored. After 3-MeV proton irradiation, which creates random local point defects, the irreversibility line of the $YBa₂Cu₃O_{7-x}$ single crystal remained unchanged.⁸⁾ However, a large shift was reported for the $Bi_2CaSr_2Cu_2O_{8+\delta} Bi(2122)$ single crystal after neutron irradiation.* A shift in $H_r(T)$ due to the thickness of $YBa₂Cu₃O_{7-x}$ thin film was also observed.⁹⁾

The theoretical interpretations of the origin of the irreversibility line $H_{r}(T)$ due to strong thermal fluctuations for these quasi-two-dimensional high- T_c superconductors are confusing. Various models ranging from the giant flux creep model to the vortex lattice (low random pinning) or vortex glass (strong random pinning) melting models were proposed.¹⁰⁻¹³⁾

Regardless of the origin of $H_r(T)$, anisotropic irreversibility is expected for these anisotropic quasi-two-dimensional high- T_c superconductors. Here, we report on the observation and detailed examination of temperature dependence of the anisotropic irreversibility properties for the c -axis-aligned powders of the $Bi(2223)$ (Bi, $Pb)$ ₂Ca₂Sr₂Cu₃O_{10+ δ} compound.

Bulk samples were synthesized using the solid-state reaction method. High-purity powders of $Bi₂O₃Pb₃O₄$, $CaCO₃$, SrCO₃ and CuO were used with the ratio $(Bi+Pb):(Ca+Sr):Cu=(1.85+0.15):(2.2+1.8):3$ with excess PbO and CuO in order to preserve the entropystabilized metastable Bi(2223) phase with the nominal composition $(Bi_{1.85}Pb_{0.15})Ca_{2.2}Sr_{1.8}Cu_3O_{10+\delta}$. Well-mixed powders were calcined at 800°C in air for 1 day with several intermediate regrindings. These powders were then pressed into pellets, sintered at 859° C in air up to 3 days and then furnace-cooled.

For the c-axis-aligned powder sample, Farrell's method was employed.¹⁴⁾ Pellets were ground into powders with an average microcrystalline grain size of 1-10 μ m, mixed with SPAR 5-minute epoxy/hardener in an 8-mm quartz holder with typical powder: epoxy ratio of 1:7, then aligned in a 9.4 T magnetic field at room temperature using the anisotropic normal state magnetic susceptibility. The degree of c -axis alignment is higher than 90% as can be checked from the intensities of the orthorhombic (001) lines from X-ray diffraction patterns. $14, 15$

Superconducting data were obtained using a Quantum Design MPMS SQUID magnetometer from 2 to 300 K. For zero-field-cooled (ZFC) measurements, the "magnetic reset" option was used to quench the superconducting magnet and reduce the residual or rem-

^{*}W. Kritscha, F. M. Sauerzopf, H. W. Weber, G. W. Crabtree, Y. C. Chang and P. Z. Jiang: unpublished.

nant field to less than 1 G.

The temperature dependence of the zero-field-cooled (ZFC) anisotropic magnetic susceptibility ratio $\chi_c(T)$ $/\chi_{ab}(T)$ for a c-axis-aligned powder sample of (Bi, Pb)₂Ca₂Sr₂Cu₃O_{10+ δ} in low applied fields of 8, 30 and 80 G are shown in Fig. 1. A high anisotropic ratio χ_c/χ_{ab} of 9.8 was observed at low temperature. The effective anisotropic lower critical field H_{c1}^{*} (lower bound from the deviation of linearity in the initial $M(H)$ magnetization measurements) data indicate that H_{c1}^* ($\pi/2$, 0 K) \approx 60 G and H_{c1}^* ($\perp c$, 0 K) \approx 30 G. These values are lower than actual H_{c1} values due to powder size, shape and flux pinning.* The anisotropic ratio χ_c/χ_{ab} in a low applied field of 8 G increases sharply when the temperature approaches the superconducting transition temperature T_c of 108 K, reaches a maximum value of $\chi_c/\chi_{ab} \approx 17.9$ near T_c . In a higher applied field of 80 G, the anisotropic ratio decreases steadily due to field penetration when 80 G is larger than the lower critical field $H_{c1}(T)$ above certain temperature T .

The irreversibility temperature T_r for the aligned powder sample (Bi, Pb) ₂Ca₂Sr₂Cu₃O_{10+ δ} was obtained from the merging point of the field-cooled (FC) and zerofield-cooled (ZFC) curves of the temperature dependence of mass magnetic susceptibility χ_{g} . The temperature dependences of mass magnetic susceptibility ratios γ_{\circ} (ZFC)/ γ_{\circ} (FC) in various applied fields parallel to the aligned c-axis are shown collectively in Fig. 2. The irreversibility temperatures T_r 's can be easily pinpointed using the ratio $\chi_{g}(ZFC)/\chi_{g}(FC)$, which decreases steadily to 1 when the field-cooled and zero-field-cooled curves merge together for $T \geq T_r$.

irreversibility The lines $H_{r}(T)$'s for (Bi, $Pb)_{2}Ca_{2}Sr_{2}Cu_{3}O_{10+\delta}$ with applied fields up to 4 kG parallel and perpendicular to the c -axis are shown in Fig. 3. Dashed lines for the lower critical field H_{c1} and upper critical field H_{c2} are anisotropic in nature and are reference guides. The anisotropic ratio $H_r(\perp c)/H_r(\mathbb{Z} c)$ decreases rapidly from 13.6 at 100 K (T_c =108 K) to 5.9 at 90 K, 3.2 at 80 K, and 3.1 at 70 K. The anisotropic ratio $H_{\rm r}(\perp c)/H_{\rm r}(\mathbb{Z}_c)$ = 1 was also observed for the anisotropic

Fig. 1. Temperature dependence of zero-field-cooled (ZFC) anisotropic magnetic susceptibility ratio $\chi_c(T)/\chi_{ab}(T)$ for aligned powders of (Bi, Pb)₂Ca₂Sr₂Cu₃O_{10+ δ} in three low applied fields of 8, 30 and 80 G.

*J. B. Shi and H. C. Ku: unpublished.

Fig. 2. Temperature dependence of mass magnetic susceptibility ratio $\chi_{\alpha}(ZFC)/\chi_{\alpha}(FC)$ for aligned powders of (Bi, Pb)₂Ca₂Sr₂Cu₃O_{10+ δ} in various applied fields parallel to the c-axis.

Fig. 3. Anisotropic irreversibility lines $H_r(T)$ in the H-T plane for (Bi, Pb)₂Ca₂Sr₂Cu₃O_{10+ δ}. Solid line, lower critical field H_{c1} and upper critical field H_{c2} dashed lines are reference guides showing no anisotropy.

upper critical field H_{c2} of all high- T_c superconductors due to the anisotropic coherence length ξ with $\xi_c < \xi_{ab}$. Although $H_r(T)$'s are closely related to pinning/depinning mechanisms and are sample dependent, in-depth studies of the relationships between anisotropic properties of the irreversibility lines and anisotropic superconducting intrinsic parameters are necessary and are in progress.

The temperature dependence of the irreversibility lines $H_r(\perp c)$ and $H_r(\mathbb{Z} c)$ can be determined using the logarithmic plot. The irreversibility lines of c -axis-aligned powder sample (Bi, Pb)₂Ca₂Sr₂Cu₃O_{10+ δ} using the ln H_r versus ln $(1-T/T_c)$ plot are shown in Fig. 4. Linear behavior in the low field region (\leq 200 G) indicates that both lines can be accurately fitted by the simple power law

$$
H_{\rm r}=a\cdot(1-T/T_{\rm c})^n
$$

with $n=2.19$, $a=3.68$ T (36.8 kG) for $H \perp c$ and $n=2.99$, $a=2.23$ T for H/ℓ . The power value $n=2.99$ (H/ℓ) for the (Bi, Pb) ₂ $Ca_2Sr_2Cu_3O_{10+\delta}$ Bi(2223) compound is the largest value observed thus far for all high- T_c superconductors and is larger than the value $n=1.5$ predicted by

Fig. 4. In H_r versus $\ln (1 - T/T_c)$ of the c-axis-aligned powder sample. Linear behavior was observed in the low field range up to 200 G.

the standard flux creep model and $n=2$ by the vortex lattice melting model.^{10,16} The large reversible region in the H -T plane indicates very low flux pinning for this c-axisaligned powder sample.

In the higher field region $(>200 \text{ G})$, no simple power law can be found. However, using the $\ln H_r$ versus T plot (Fig. 5), the irreversibility lines can be fitted by the exponential function

$H_{\rm r} = b \cdot \exp(-T/T_0)$

with $T_0 = 14.2 \text{ K}$, $b = 36.2 \text{ T}$ for $H \perp c$ and $T_0 = 13.7 \text{ K}$, $b=14.0$ T for $H/\!\!/c$. The $H_r(\ell\!\!/c)=14.0$ exp (-T/13.7) T for $H_r \ge 500 \text{ G}$ (T < 80 K) is compatible with the $H_{\rm r}$ = 14.7 · exp (-T/13.3) T value reported for the bulk but possibly preferentially oriented sample below 80 K.⁷⁾

The (Bi, Pb) ₂ $Ca_2Sr_2Cu_3O_{10+\delta}$ Bi(2223) orthorhombic $(a=5.409 \text{ Å}, b=5.411 \text{ Å}, c=37.09 \text{ Å})$ phase has a structure in which alternating conduction layers (with three Cu-O planes. CuO-Ca-CuO-Ca-CuO) of thickness $d \approx 9$ Å alternate with charge reservoir layers (SrO–BiO– BiO-SrO) of thickness $d' \approx 9.5$ Å. Interlayer and/or intralayer Josephson coupling are necessary due to small coherence length along the c-axis $\xi_c \approx 2$ Å. In the lowfield region, a 3D-like power law for $H_r(T)$ line is expected. With higher applied field in the vortex state region, interlayer and/or interlayer coupling will be

Fig. 5. In H_r versus T of the c-axis-aligned powder sample. Exponential dependence of the irreversibility lines for $H > 200$ G was observed.

broken and a crossover from 3D-like to 2D-like exponential behavior is expected.^{7,17)}

The H -T phase diagram of this quasi-two-dimensional type II superconductor with strong thermal fluctuation indicates a possible phase transition along the anisotropic irreversibility lines $H_r(T)$ from the low-temperature vortex glass phase to the vortex liquid phase for T T_r .¹¹⁻¹² The vortex glass long-range order phase is due to the presence of random local pinning centers for samples with the complex nominal composition $(Bi_{1.85}Pb_{0.15})$ $Ca_{2.2}Sr_{1.8}Cu_3O_{10+\delta}$. The vortex fluid phase is a fully disordered phase with only local pairing where the pairing field is strongly fluctuating with only a finite but large correlation length.

Anisotropic irreversibility lines $H_r(T)$'s were observed powder sample (Bi, for the c -axis-aligned $Pb_2Ca_2Sr_2Cu_3O_{10+\delta}$ with the nominal composition $(Bi_{1.85}Pb_{0.15})Ca_{2.2}Sr_{1.8}Cu₃O_{10+\delta}$. The anisotropic ratio $H_{\rm r}(\perp c)/H_{\rm r}(\mathbb{Z} c)$ decreases sharply from 13.6 at 100 K to low values of 3.2 at 80 K and 3.1 at 70 K. The simple power law $H_{r} = a \cdot (1 - T/T_{c})^{n}$ was observed only in the low-field region (\leq 200 G) with n=2.19 for $H \perp c$ and 2.99 for $H/\!\!/c$. In the higher field region up to 4 kG , $H_r(T)$ lines can be fitted with the exponential law $H_{\rm r} = b \cdot \exp(-T/T_0)$ with $T_0 = 14.2$ K for $H \perp c$ and 13.7 K for $H/\!\!/c$.

Acknowledgement

This research was supported by the National Science Council of the Republic of China under Contract No. NSC81-0208-M007-92.

References

- 1) K. A. Muller, M. Takashige and J. G. Bednorz: Phys. Rev. Lett. 58 (1987) 408.
- A. P. Malozemoff: Physical Properties of High Temperature $2)$ Superconductors I, ed. D. M. Ginsberg (World Scientific, Singapore, 1989) Chap. 3 and references.
- H. C. Ku, J. B. Shi, C. C. Lai and S. J. Sun: Physica B165 & 166 $\overline{3}$ (1990) 1153.
- G. H. Hwang, T. H. Her, C. Y. Lin and H. C. Ku: Physica B165 Δ & 166 (1990) 1155.
- C. C. Lai, T. Y. Lin, P. C. Li, P. C. Ho, C. Y. Hung and H. C. 5) Ku: Chin. J. Phys. 28 (1990) 347.
- G. H. Hwang, T. H. Her and H. C. Ku: Chin. J. Phys. 28 (1990) $6)$ 453.
- P. de Rango, B. Giordanengo, J. L. Genicon, P. Lejay, A. 7) Sulpice and R. Tournier: Physica B165 & 166 (1990) 1141.
- L. Civale, A. D. Marwick, M. W. McElfresh, T. K. Worthington, 8) A. P. Malozemoff, F. H. Holtzberg, J. R. Thompson and M. A. Kirk: Phys. Rev. Lett. 65 (1990) 1164.
- L. Civale, T. K. Worthington and A. Gupta: Phys. Rev. B43 \mathbf{Q} $(1991) 5425.$
- Y. Yeshurun and A. P. Malozemoff: Phys. Rev. Lett. 60 (1988) $10₀$ 2202.
- D. R. Nelson: Phys. Rev. Lett. 60 (1988) 1973. $11)$
- D. S. Fisher, M. P. A. Fisher and D. A. Huse: Phys. Rev. B43 $12)$ (1991) 130, and references cited therein.
- Y. Xu and M. Suenaga: Phys. Rev. B43 (1991) 5516. $13)$
- J. B. Shi, B. S. Chiou and H. C. Ku: Phys. Rev. B43 (1991) $14)$ 13001.
- J. B. Shi, P. L. Kuo, B. S. Chiou and H. C. Ku: to be published in 15) Physica C (1991).
- A. Houghton, R. A. Pelcovits and A. Sudbo: Phys. Rev. B40 $16₀$ (1989) 6763.
- $17)$ A. L. Fetter et al.: Superconductivity, ed. R. J. Parks (Marcel Dekker, New York, 1969) Vol. 2, p. 817.