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Image Estimation Using Fast Modified Reduced 
Update Kalman Filter 

Wen-Rong WU, Member, IEEE, and Amlan Kundu, Member, IEEE 

Abstract-In this paper, we have proposed some modifica- 
tions of the reduced update Kalman filter (RUKF) as applied 
to filtering of images corrupted by additive noise. First, we have 
reduced the computational complexity by reducing the state di- 
mensionality. By doing so, it is shown in the paper that the 
computational requirement is reduced by an order of magni- 
tude while the loss of performance is only marginal. Next, the 
RUKF is modified using the score function based approach to 
accommodate the non-Gaussian noise. The image is modeled as 
a nonstationary mean and stationary variance autoregressive 
Gaussian process. It is shown in the paper that the stationary 
variance assumption is reasonable if the nonstationary mean is 
computed by an edge and detail preserving efficient estimator 
of local nonstationary mean. Such an estimator called HMSMD 
filter is also described in the paper. Finally, detailed experi- 
mental results are provided which indicate the success of the 
new filtering scheme. 

I. INTRODUCTION 
HE problem of optimal estimation of images cor- T rupted by additive noise has been considered by a 

number of researchers [1]-[10], [18]-1211. For optimal 
estimation of images, an image model is the primary re- 
quirement. Hunt and Cannon [4] proposed a nonstation- 
ary mean Gaussian image model. They assumed that an im- 
age f can be decomposed into a nonstationary statistical 
mean component E ( f ) ,  and a stationary residual com- 
ponent fo = f - E( f ) .  The nonstationary statistical mean 
component describes the gross structure of an image and 
the residual component describes the detail variation of 
the image. If we replace the nonstationary statistical (en- 
semble) mean E ( f )  by a local average (spatial) that is 
calculated over an M x M window, and subtract the local 
mean from the original image, we have the residual image 
fo. In general, the residual image is still a correlated non- 
stationary process, but the shape of the histogram is more 
Gaussian in nature. 

Nonstationarity of images has been considered by Ra- 
jala and de Figueiredo [5] and Ingle and Woods 161. In 
1.51, a piecewise stationary image model is assumed, and 
different Kalman filters are used in different segments of 
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the image. Ingle and Woods used reduced update Kalman 
filtering 161 and a composite image model which assumes 
that an image is composed of many different stationary 
components. Nonstationarity of the images has been con- 
sidered by Anderson and Netravali [7] and Abramatic and 
Silverman [8] using the masking effect of the human vi- 
sion system. The masking effect derives from the fact that 
noise is perceived by a human eye differently depending 
upon whether it occurs close to or far from an edge. In 
[8], the resulting optimal filter is shown to be nonlinear. 
But none of these approaches are designed for non-Gauss- 
ian noise though the non-Gaussian noise consideration 
also leads to an optimal nonlinear filter. 

In order to consider the nonstationarity of the image, 
and not to complicate the computation too much, Kuan et 
al. [9] assumed that fo is a nonstationary white Gaussian 
process. More specifically, f o  is statistically uncorrelated, 
and is characterized by its nonstationary variance. This 
nonstationary mean and nonstationary variance (NMNV) 
image model has been used by Kuan et al. [9] to restore 
images corrupted by additive noise. Their algorithm is 
similar to the algorithm used by Lee [lo]. 

It has been observed in 191 that to realize the NMNV 
image model, the residual image fo should be obtained 
from the original imagefby means of an intelligent filter. 
The purpose of the intelligent filter is to provide edge pre- 
serving smoothing of the original image f such that the 
residual image exhibits less correlation at the edges. It is 
our observation that if the intelligent filter is edge pre- 
serving as well as detail preserving, and if it provides suf- 
ficient smoothing over the flat regions of the image, then 
the white variance assumption is reasonably satisfied for 
some of the images, but not for all images. The role of 
intelligent filter, also, becomes very critical. 

The nonstationary mean, nonstationary white variance 
image model is simple and rather inexpensive computa- 
tionally, but it fails to take care of the correlation struc- 
ture of the residual image. On the other hand, a nonsta- 
tionary mean subtracted residual image can be modeled 
as an AR Gauss-Markov random field with zero mean and 
space-variant variance. Such an image model is theoreti- 
cally more appealing though computationally more ex- 
pensive. Here, the incorporation of reduced update Kal- 
man filtering [ 111 can reduce the complexity substantially. 

In this paper, we have modeled the residual image using 
the state space model given by Woods et al. in their sig- 
nificant works as described in [ 1 11, [ 151. We also assume 
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that the covariance and the variance of the residual signal 
are stationary. The stationary variance assumption for the 
residual signal is the only significant difference from the 
image model proposed in [ 151. In [ 151, a simple averag- 
ing filter is used to estimate the nonstationary mean. Such 
a filter cannot preserve the edges or the thin-line details. 
As a result, the variance of the residual signal near the 
edges or the thin-line signal tends to be higher compared 
to that over the flat regions of the image. Consequently, 
the residual signal exhibits markedly different variances 
over different parts of the image. On the other hand, if 
the nonstationary mean component is computed by an edge 
and detail preserving filter, it is reasonable to think that 
the variance of the residual signal will not change much 
over the image. It is to be noted that the computation of 
nonstationary variance from the noisy image is not very 
reliable, particularly when the data contain impulse noise. 
On the other hand, the computation of one stationary vari- 
ance is more reliable. With these considerations, the pro- 
posed model is expected to be as effective as the one pro- 
posed in [15]. One of the contributions of this paper is to 
propose an efficient edge and detail preserving filter to 
justify the assumptions on the image model. 

The filtering algorithm used in [I51 is the well-known 
reduced update Kalman filtering (RUKF) [ 1 I ]  scheme. 
Although the RUKF has successfully applied the frame- 
work of Kalman filtering to image processing, the results 
can still be improved. Also, the optimal filter derived in 
[ 111 is linear in form, i.e., this filter is optimal in the class 
of linear filters. If the residual image is assumed to be 
Gaussian in nature, the linear filters are globally optimal 
only when the additive noise is also Gaussian. But the 
additive noise is not always Gaussian. The occurrence of 
impulse noise, which can appear due to transmission er- 
ror, is a prime example. The other frequent non-Gaussian 
disturbances are Laplacian noise, rectangular noise. etc. 
Because of non-Gaussian noise, the conventional RUKF 
has to be modified using the score function of the obser- 
vation prediction density as has been described by Wu and 
Kundu [ 121. 

A further consideration is the computational complex- 
ity of the filtering scheme. To reduce the computational 
complexity, we have incorporated the idea of strip pro- 
cessing with the RUKF. The idea of strip processing was 
considered by Nahi [21]. In this approach, the image sig- 
nal is transformed into a one-dimensional signal by raster 
scanning before processing. This results in a time variant 
correlation function. An approximation method is then 
used to obtain a time invariant correlation function. In 
order to achieve a better approximation, he then divided 
the horizontal scan lines into nonoverlapping strips. Sub- 
sequently, a time invariant correlation function is ob- 
tained for each strip. Once the correlatio functions are ob- 
tained, state space signal models can be derived. A time 
variant Kalman filter, which changes its parameters be- 
tween successive strips, is then applied. A different type 
of strip processing was proposed in [ 1 I ]  by Woods and 
Radewan. The idea is to divide an image into some over- 
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lapping strips and each strip is processed independently 
by a vector Kalman filter. While Nahi’s strip processing 
technique is used for handling the nonstationary scalar 
correlation functions, Woods’ method is used to reduce 
the computational complexity. Thus, the objective of our 
strip processing is similar to that of Woods. 

In brief, we have developed some modification schemes 
which can significantly improve the performance of the 
original RUKF. These modifications are mainly three- 
fold. 1) Reduce the computation furthermore. 2) Accom- 
modate the non-Gaussian noise. 3) Reduce edge blurring. 

Of these three items, the first two items deal with the 
modification of the original RUKF; and the third item is 
connected with the computation of edge and detail pre- 
serving nonstationary local mean. It is also shown in the 
paper that these modifications significantly improve the 
estimation results. 

This paper is organized as follows: Section I1 presents 
the basic idea of RUKF. In Section 111, the modification 
of RUKF, for reduced computational complexity and non- 
Gaussian observation noise, is presented. In Section IV,  
a new filter, called HMSMD filter, is proposed for the 
computation of the nonstationary local mean. Section V 
describes the experimental results. The concluding re- 
marks are made in Section VI. 

11. REDUCED UPDATE KALMAN FILTER 

Kalman filtering is a state space approach and a dy- 
namic model of the system is essential. In order to con- 
struct the dynamic model, a state has to be defined. For 
an image, there is no unique way to define a state. In [ l l ] ,  
Woods and Radewan proposed one way to define the state 
which utilizes the concept of a nonsymmetric half-plane 
model. Consider an N x N image. Assume that the image 
is processed in  a raster scan fashion. If we take the current 
scan point and define it as the “present,” the points that 
have been scanned will be the “past” and the remaining 
points will be the “future” (see Fig. l(a)). Let an indi- 
vidual point in the image be represented as s (k ,  I )  where 
k is the horizontal coordinate and I is the vertical coordi- 
nate. Applying the concept of two-dimensional spectrum 
factorization, the M X M order signal model can be ob- 
tained as follows: 

s (k ,  I )  = C ci js(k - i, I - j )  + w ( k ,  I )  ( 1 )  

where R = { M  2 i 2 0, M 2 j 2 0) U (0 2 i > - M ,  
M 2 j > 0) and ~ ‘ ( k ,  I )  is a random process assumed to 
be zero-mean Gaussian. This signal model is called the 
nonsymmetric half-plane (NSHP) model. We now can re- 
construct a state based on this model. Let 

R 

x ( k ,  I )  = [ s ( k ,  l ) ,  s (k  - 1. I ) ,  . . * . s ( 1 ,  1 ) ;  

s (N ,  1 - l ) ,  . . . , $ ( I ,  1 - 1); . . . ;  

s (N,  1 - M ) ,  * . , s(k - M ,  1 - hi’)]‘. 

(2) 

II - 
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(NN) 

(b )  
Fig. 1 .  (a) Nonsymmetric half-plane signal model. ( b )  Stripped nonsym- 

metric half-plane signal model. 

Also, let us assume that the image is degraded by an ad- 
ditive noise, i.e., 

z (k ,  I )  = s ( k ,  I )  + u ( k ,  I )  ( 3 )  
where z ( k ,  I )  is the observed pixel value of the image, 
and ~ ( k ,  I )  is a zero mean white noise process indepen- 
dent of w(k, I ) .  Combining (1)-(3), a recursive dynamic 
model of the image is established: 

(4) 

(3 

~ ( k ,  I )  = Fx(k - 1, I )  + Gw(k,  I )  

z (k ,  I )  = H x ( k ,  I )  + z j (k ,  I )  
where 

c20 

0 

. . .  

G = ( l , O ; . . , O ) ' ,  and H = ( l , O ; . .  , O ) .  

(7). (8) 
Once the dynamic model is obtained, the standard Kal- 
man filter equation can be directly applied. It should be 
stated that the Kalman filter, in this case, is the optimal 
filter in the class of all linear filters. Let Q = GG'o;.. The 
filtering equations can be written as 

i ( k ,  I )  = X ( k ,  I )  + M ( k ,  I ) H ' [ H M ( k ,  1)H'  + a i . ] p '  

(9) . [ ~ ( k ,  I )  - H X ( k ,  I ) ]  

917 

P(k,  I )  = M(k,  1 )  - M(k,  I )H'[HM(k,  1)H' + c7:,]-' 

- HM(k,  I )  (10) 

x ( k  + 1, I )  = Fi(k,  I )  

M(k + 1, I )  = F P ( k ,  I )F '  + Q 

(1  1) 

(12) 

where at. and c72, are the variance of w(k,  I )  and u ( k ,  I ) ,  
respectively. The direct computation seems straightfor- 
ward. However, if we take a look at the dimension of the 
state, we find that it is of the order O ( M N ) .  Because N is 
usually a large number, the memory and the computa- 
tional requirement for the Kalman filter is tremendous. 
Hence, with this kind of formulation, direct implemen- 
tation is infeasible. Observing (9), we find that the filter- 
ing process consists of two parts, namely, prediction and 
update. From ( 1  l ) ,  we know that the prediction part .just 
consists of state shifting and is computationally straight- 
forward. However, the update part involves the matrix 
multiplications and additions which are computationally 
intensive. The main concept of the RUKF is that the bulk 
of the computation can be reduced by reducing the update 
process. We can only update the states which is in the 
region around the current processing point. Since the 
states outside this region are much less correlated with the 
current point, this approximation will only affect the op- 
timality slightly. But, the computational savings is sig- 
nificant. For convenience, the update region is taken as 
the support of the M x M NSHP model. In this case, there 
are only 2 M 2  + 2M points to be updated. We now intro- 
duce a vector corresponding to the state in the update re- 
gion: 

x , ( k ,  I )  = [ s (k ,  I ) ,  . * . , s(k - M ,  I ) ;  

s(k + M ,  I - l ) ,  * . * , s(k - M ,  1 - 1); . . * ; 

s(k + M ,  1 - M ) ,  * .  . , s(k - M ,  1 - M ) ] ' .  

(13) 

Let the remaining elements of the state be xz(k,  I ) .  Or- 
dering the original state, we can partition the original state 
into x , ( k ,  I )  and xZ(k,  I ) :  

x ( k ,  I )  = [x , (k ,  l ) ' ,  x,(k, 1 1 7 ' .  

x (k  + 1, I )  = Cx(k, I )  + Gw(k, I )  

(14) 

The dynamic model can then be written as 

(15) 

(16) 

where G and H are the same as defined before and C is 
the state transition matrix which is obtained by rearrang- 
ing F according to the new states x , ( k ,  I )  and x 2 ( k ,  I ) .  
Applying the same partitioning scheme, H ,  C ,  M k ,  and Pk 
can also be partitioned accordingly: 

(17) 

z ( k ,  I )  = H x ( k ,  I )  + P ( k ,  I )  

H = (HI,  Hz), HZ = 0 
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Although the RUKF has greatly reduced the complexity 
of the standard Kalman filter, it still needs an intensive 
computation to compute the error covariance matrix. This 
has been explicitly recognized in [15]. In addition, the 
optimality for the RUKF can only be ascertained under 
Gaussian noise. In the next section, we have proposed 
some modifications which can overcome these problems. 

111. FAST MODIFIED RUKF 

In this section, we have described the modifications of 
RUKF in order to reduce the computational complexity 
furthermore, and to accommodate the non-Gaussian ob- 
servation noise. 

A .  Reduction of Computational Complexity 

The basic idea of RUKF is to reduce the update pro- 
cess. Although this algorithm does reduce the computa- 
tional cost dramatically, the computational cost is still 
very high. This can be clearly understood by looking at 
(23)-(26) which are used to compute the Kalman gain. 
The reduction of computational complexity of RUKF has 
been considered in [15] where the steady state Kalman 
gain is used for different quantized level of the signal vari- 
ance. Here, we propose another approach for reduction in 
computational complexity by reducing the state dimen- 
sionality. Note that (1) is obtained by the two-dimen- 
sional spectrum factorization. This results in a state of 
order O ( M N ) ,  which is dependent on the image size N .  
This situation can be avoided by redefining the state. Con- 
sider an N X N image. We first partition the image into 
strips (they are overlapped, see Fig. l(b)). Let the width 
of a strip be L where L > M .  Then, we redefine the state 

in the first strip as 

x ( k ,  1 )  = [s(k, I), s(k - 1, I), . . . , s(1, 1 ) ;  

s(L, 1 - l), . . . , s(1, f - 1 ) ;  . . - ;  

s(L, 1 - M ) ,  - * * , s(k - M ,  I - M ) ] ' .  

(28) 

The dimension of states now has the order of O(ML) which 
is independent of the image size. After one line in a strip 
is processed, the filter goes to the next strip and starts all 
over again. Between two consecutive strips, there is a 
minimum overlap of 2M + 1 pixels (Fig. l(b)). So, the 
state in strip number 2 can be written as 

x ( k ,  1 )  = [s(k,  f), s(k - 1, I ) ,  * * * , s(L - 2M - 1, I ) ;  

s(2L - 2M - 1, I - l ) ,  * 

s(L - 2M - 1, 1 - 1); . . . ; 
s(2L - 2M - 1, I - M ) ,  * * * , 

s(k - M ,  1 - M ) ] .  

* ,  

(29) 

We call this the strip RUKF. One key problem of this 
approach is: How to decide the initial state and the initial 
covariance matrix in each strip? Since the state inside the 
M x M support ( x , ( k ,  1)) remains the same, the final Rl(k,  
1) and MI of the previous strip can be directly used as the 
initial x I  and P l 1  of the current strip. But, initial x 2 ,  PI,,  
P21, and P22 cannot be obtained. Here, we can use an ap- 
proximation to overcome this problem. We assume that 
x2 of the current strip is uncorrelated with the processed 
pixels, i.e., observations, in the previous strip. In other 
words, the observations of the previous strip do not affect 
the estimation of the initial x2 of the current strip. Con- 
sequently, we can use the corresponding filtered value of 
the pixels in the current strip as the initial x2. Also, we 
can use the same initial P I 2 ,  P , , ,  and P22 as the previous 
strip, i .e.,  fixed initial covariance matrices. Since the most 
important information is carried by x I  and MII  and the 
correlation of the image decays fast, this approach is ex- 
pected to work well. Specially, when the local mean of 
the image is extracted, the uncorrelated assumption, as 
made before, becomes more tenable. Simulations show 
that this scheme can perform almost as well as RUKF. 
Using sixteen strips in an 128 x 128 image, the com- 
plexity, as measured by elapsed CPU time, is reduced by 
a factor of 100 and the loss in gain is less than 0.1 dB. 
Although the direct comparison is not possible, the loss 
in gain for using the steady state Kalman gain for different 
values of the signal variance is around 0.5 dB. It should 
also be noted that for non-Gaussian noise, the update term 
in the Kalman filter is no longer linear. As a result, the 
conventional meaning of steady state Kalman gain does 
not hold. 

The order of the total number of states for the fast 
RUKF is O(ML). The order of the number of states for 
the update region is O(M2) .  Thus, the order of computa- 
tion is O(M3L) .  The order of computation of the original 

n 
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RUKF is O ( M 3 N )  [ 111 which is dependent on the image 
size N .  Hence, the computational savings of fast RUKF 
is of order @ N I L ) .  For a constant L ,  the bigger the image 
size, the more computations we can save. The memory 
requirement is dominated by the storage of the covariance 
matrix. For the RUKF, this is O(M2N2) .  For the fast 
RUKF, this storage is O(M2L2).  A memory saving of 
O ( N 2 / L 2 )  is achieved. 

B. Non-Gaussian Observation Noise 
Next, we consider the case of non-Gaussian observa- 

tion noise. We have mentioned before, the Kalman filter 
is an optimal filter only for the Gaussian noise. For the 
RUKF, the same argument holds. Note that in (16), the 
observation z (k ,  I )  is a scalar, so is the noise u(k, I ) .  The 
H matrix is (1, 0, * * , 0) .  Due to this special structure, 
the observation prediction density is still univariate. 
Hence, we can apply the one-dimensional score function 
filtering scheme developed in [ 121-[ 141 to accommodate 
the non-Gaussian observation noise. 

The score function based scheme was first proposed by 
Masreliez [14). Consider a linear system depicted as fol- 
lows: 

xk+ I = 4 k X k  + wk (30) 

z k  = HkXk + uk. (31) 
Let Z k - '  stand for (z l ,  z 2 ,  . - , zk - I ) ,  wk be Gaussian 
with E { w ( k ) w ( j ) }  = Qk 6, ,  and uL be non-Gaussian. 
Assuming that f (xk Z k  - I )  is a Gaussian density with 
mean i k  and covariance M ~ ,  and f ( zk  1 zk I )  twice differ- 
entiable, Masreliez has shown that the minimum variance 
estimation of the state ik = E(xk 1 Z k )  and its covariance 
Pk = E { ( i k  - xk) (2, - Xk)' I Z k  } can be recursively cal- 
culated as follows: 

(32) 

(33) 

(34) 

i k  = x k  + M k H k g k ( Z k )  

Pk = Mk - Mk H :  G ~ ( z L  ) HL ML 

ML+ I = 6~Pi.4; + QL 
where gk( * ) is called the score function and GL( . ) is the 
derivative of gk( . ). They are defined as 

where gk,! is the ith component of gk and GL.,, is the ijth 
component of Gk. It can be shown that the score function, 
which is operating on the residue signal zk - HkXk,  will 
deemphasize the large residue if the noise distribution is 
long tailed and emphasize the large residue if the noise 
distribution is short tailed. This is intuitively appealing. 
In the special case of Gaussian observation noise, the 
score function becomes a linear function of the innova- 
tion. As a result, the score function approach will be re- 

111 

duced to standard Kalman filtering. This can be easily 
proved in the following way. Let vk be Gaussian and its 
variance be Rk.  Denote a Gaussian density by N(a, b )  
where a is the mean and b is the variance. Then 

f(Xk(ZkP1) - N ( X k 9  Mk) (37) 

f ( z k  I Z k -  I )  - N(H$k, HkMkH' + Rk) (38) 

gk(zk) = (HkMk" -k Rk)-I(zk - Hkik) (39) 

Gk(zk) = (HkMkHf + (40) 

Substituting (39), (40) into (32)-(34), the standard Kal- 
man filter equations are obtained. 

Masreliez's algorithm is directly applicable to the 
RUKF problem. Let Z k - l  stand for data up to the oint 
( k  - 1, I ) ,  g( ) for the score function off ( z (k ,  1) I Z I ) ,  
and G( ) be the derivative of g( - ). Now, the RUKF can 

r- 
be rewritten as 

i ] ( k ,  1 )  = 

Pldk I) = 

P&, 1 )  = 

2,(k + 1 ,  1 )  = 

M(k + 1 ,  I )  = 

Although the RUKF is applied to two-dimensional image 
signal, from the above discussion, we know that the score 
function is still one dimensional. Consequently, the com- 
putation turns out to be simple and straightforward. 

C. Computation of the Score Function 

The main thrust of the computation of the score func- 
tion based scheme is the estimation off (zk I Z k -  I )  which 
is obtained by a convolution off (Hkxk I Z k -  I )  and f ( u k ) .  
The convolution is very difficult to implement except for 
very simple cases. In [ 121, we have developed an efficient 
approximation scheme for the computation of the score 
function of a distribution in the scalar case. The method 
employs an adaptive normal expansion to expand the score 
function and truncates the higher order terms in the ex- 
panded series. Consequently, the score function can be 
approximated by a few moments of the distribution. It is 
shown in [13] that the approximation scheme works well 
for medium-tailed to long-tailed distributions. 

Consider a random variable z with distribution f ( z )  and 
the moment generating function M ( T ) .  Let K ( T )  = In 
( M ( T ) ) .  The scheme uses the concept of the conjugate 
density and the saddle point to approximate the score 
function at a given point z in the following manner [13], 
Wl' 

I 
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1 )  Replace the original f (z)  by the conjugate density 

(47) 

fi( * 1: 
A($) = c,e':sf(z + s)  

where c, and a, are chosen such that& ( * ) is a probability 
density with expectation 0. It has been shown [13], [22] 
that if aZ is chosen as the saddle point of M( T )  e -" and 
1 /c, as M(al), fi( . ) is the conjugate density. The saddle 
point is defined as the solution of the equation 

(48) 

2) Calculate the second, third, and fourth moment of 

K'(T)  - z = 0. 

+m 

0 2 , ~  = s szf;(s) ds, 

0 3 , ~  = s s?&(s) ds,  

(49) 

(50) 

-m  

+m 

-m 

0 +m 

u4,z = 1 s x ( s )  ds. (51) 
-m  

If the saddle point is found, u2,:, 03,: ,  and 04,: can be 
easily calculated as follows: 

( 7 2 , :  = K"(a,) ( 5 2 )  

03,: = K"'(UZ) ( 5 3 )  

04,: = K'"'(az).  (54) 
3) Using the normal expansion for the conjugate den- 

sity, it is shown [ 131 that the score function of the original 
distribution and its derivative can be approximated by 

( 5 5 )  

For the present problem, we want to approximate the 
score function and its derivative for the density f ( z ( k ,  
I )  I Z k -  I ) .  This density can be obtained by convolving the 
density f ( H , x , ( k ,  1 )  1 Z k -  I )  and the observation noise 
density. Since HI = (1, 0, * * ) , f ( H , x , ( k ,  I )  IZ"-') is 
just the density of the first state element in x l ( k ,  I ) .  The 
density f ( x , ( k ,  I )  1 Z k -  I )  is assumed to be Gaussian [13], 
[ 141. Subsequently, the variance of the first state element 
in x , ( k ,  I ) ,  given the data up to the point ( k  - 1, I ) ,  is 
just the first element of M I  and the mean is given by the 
first element of Tl(k,  I ) .  To evaluate the score function, 
one needs to know the moment generating function (MGF) 
of f ( z ( k ,  I )  1 Z k - I ) .  This MGF can be obtained by the 
multiplication of the MGF of the noise density ( M J T ) )  
and the MGF of thef(H,x,(k,  I ) l Z " ' ) ,  i .e.,  M , ( T ) .  If 
no closed form of the MGF is available, we assume that 
some approximate form, say in terms of rational Che- 
byshev approximation [ 131, is available. Now, let 

z = z (k ,  1 )  (57) 

M T )  = M,,(T)M,(T)  (58) 

and 

K ( T )  = In (M(T)) .  (59) 

Substituting (57)-(59) into (48), and (52)-(56), the score 
function and its derivative for f ( z ( k ,  I )  12"') are ob- 
tained. 

IV. COMPUTATIONS OF NONSTATIONARY MEAN 
Because of the stationarity assumption of the image 

model, the Kalman filter can smear the edges. Under- 
standing the problem, Jeng and Woods [15] proposed an 
approach which can reduce this effect. The main idea is 
to subtract a nonstationary mean component to convert the 
nonstationary signal into a residual signal. To do so, the 
local mean of an image is subtracted before filtering and 
the residual image is then filtered. After filtering, the local 
mean is added back to form the output. In [15], the av- 
eraging filter is used to estimate the local mean. Although 
this approach does show some improvement, the strong 
edges and the details are not well preserved by the aver- 
aging filter. As a result, the Jeng and Woods model has 
to incorporate a nonstationary variance in the image 
model. Since our image model assumes a stationary vari- 
ance, it is absolutely essential to estimate the mean by an 
edge and detail preserving filter which also has a high 
smoothing efficiency over the flat regions of the image. 
For this reason, we propose a new filter which can be 
efficiently estimate the local mean such that the edges and 
the details are well preserved. This filter combines the 
merits of the multistage median (MSM) [16] filter and 
the Hodges-Lehman D filter [ 171. We call the new filter 
hybrid-MSM-D filter, or HMSMD filter. It has been 
shown that the MSM filter has very good detail preserving 
ability, but its smoothing efficiency is poor. On the con- 
trary, the D filter has very good smoothing efficiency, but 
its detail preserving ability is poor. Combining these two 
filters, we are able to obtain an efficient edge and detail- 
preserving filter. The definitions of the D and the MSM 
are described in the following. 

A .  Dejinition: Multistage Median (MSM) Filter 
Let s( ., . )  be a discrete image sequence. Consider the 

samples inside a (2L + 1) x (2L + 1) window which is 
centered at (i, j).  Define four subwindows as 

W l ( i , j )  = {s ( i  + k ,  j ) :  - L  I k I L }  

W3( i , j )  = ( ~ ( i , j  + k ) :  -L I k I L }  

(60) 

W z ( i , j )  = {s( i  + k ,  j + k ) :  -L 5 k 5 L }  (61) 

(62) 

(63) W 4 ( i , j )  = {s( i  + k ,  j - k ) :  -L I k 5 L } .  

Let 

z , ( i ,  j)  = median [s(., . )  E y ( i ,  j ) ]  1 I 1 I 4 

(64) 



92 1 WU A N D  KUNDU: IMAGE ESTIMATION USING FAST MODIFIED KALMAN FILTER 

The output of the MSM at ( i ,  j )  is defined as 

~ ( i ,  j )  = median [ymax(i, j ) ,  Yrnm(i7 j ) ,  ~ ( i ,  Al. (67) 

B. Dejinition: D Filter 
Consider an window of size M X M which scans the 

image in a raster scan sense. Let M 2  = n.  The n pixel 
values inside the window are next sorted in the ascending 
order of magnitude as Y ( ~ ) ,  . . . , Y ( ~ , .  Thus, y c I )  is the 
minimum order statistic, and y(n)  is the maximum order 
statistic, respectively. The D filter is given by 

(68) ~ ( i )  = (0.5 * Y ( , )  + 0.5 . y [ n - , + ~ J  

Xo = median, ( z ( i ) ,  i = 1, . . . , (n  - 1)/2 + 1) 

for n odd (694 

Xo = median, ( z ( i ) ,  i = 1,  . . . , n / 2 )  for n even. 

(69b) 
We now combine the MSM filter with the D filter in the 
manner described below: 

C.  Hybrid-MSM-D Filter 
Consider an window of size M X M which scans the 

image in a raster scan sense. Let M 2  = n.  Let X o  be the 
filtered value of all the data inside the window using the 
MSM filter. Define R as the range (X, - q ,  X, + q) where 
q is a preselected threshold. Next, all the pixel values in- 
side the window and falling in this range R are selected. 
Let their number be rn. These rn pixel values are next 
sorted in the ascending order of magnitude as y (  I ,, . . . , 
Y ( ~ ) .  Thus, y ( l )  is the minimum order statistic, and y(,,) is 
the maximum order statistic, respectively. The HMSMD 
filter is given by 

(70) z ( i )  = (0.5 * y(i) + 0.5 . Y ( , , - ~ + ~ ) )  

Xo = median; ( z ( i ) ,  i = 1, . . . , ( m  - 1)/2 + 1) 

for rn odd (71a) 

'for m even. 

(71b) 
The value of q is directly related to the noise statistics. 

In a quasi-constant region, we wish to include all the data 
in the window to estimate the signal value. Hence, in the 
noise filtering problem, a reasonable choice for q is in 
between (20n to 3on) where U, is the noise standard devia- 
tion. For the local mean estimation problem, we have to 
take the signal variance into account also. Thus. the 

X o  = mediani ( z ( i ) ,  i = 1, . . . , m / 2 )  

choice for should be in the range of (2- to 
3 m )  where of is the signal variance, o: can be 
obtained from the residual signal of the least square fitting 
of the image (to find the NSHP coefficients). 

V .  EXPERIMENTAL RESULTS 
To summarize, the overall filtering scheme proposed in 

1) Use the HMSMD filter to estimate the mean. 
2) Subtract the mean component to obtain the residual 

image. 
3) Filter the residual image using the fast modified 

RUKF. 
4) Restore the nonstationary mean. 

Simulations are carried out to test the performance of 
the modified RUKF. An 128 x 128 real image is chosen. 
First we filter the noisy image using the HMSMD filter, 
and then use the filtered image to identify the coefficients 
of the NSHP model. The order of NSHP is set to be 2 X 

2 as it is found that a higher order NSHP model is not 
necessary. The least square fitting method is used to com- 
pute the NHSP model coefficients. For all strip RUKF 
experiments, the width of strip overlap is 5 ,  i .e.,  2M + 
1 with M = 2. The signal-to-noise ratio and the mean- 
square error are chosen as the performance index. They 
are defined as follows: 

this paper is described as follows: 

N hr 

C t: s(i, j) '  
(72) 

r = l  / = I  
SNR = 10 log ,v 

C C [ r (k ,  I )  - s(k, /)12 

1 "  
[r(k,  I) - s ( k ,  01' 

! , = I  / = I  

(73) 

where s(k,  I )  is the original uncorrupted image, r ( k ,  I )  is 
the filtered image, and N is the size of the image. The 
simulation is implemented on VAX 8800 and the elapsed 
CPU time is chosen as the computational complexity 
measure. Three comparisons are made. 

I )  Comparison of the Original RUKF and the Strip 
RUKF: A Gaussian white noise with variance of 225 is 
added to the original image. The HMSMD filter is used 
to estimate the local means. The threshold for HMSMD 
is set at 45. The window for computing the local mean is 
set to be 5 X 5 .  The SNR of the corrupted image is 17.94, 
and the MSE is 220.1. Table I shows the elapsed CPU 
time for RUKF with different number of strips. Note that 
when one strip is used, the strip RUKF reduces to the 
original RUKF. 

2)  Comparison of the Averaging and the HMSMD Lo- 
cal Meun Estimator: The same noisy image is used to test 
the performance of the RUKF under the new local mean 
estimator. Sixteen strips are used in the RUKF and the 
threshold value for HMSMD is chosen as 45. Table I1 
shows the SNR and MSE comparison. Figs. 2(a)-(d) show 
the original, the noisy, and the filtered images. 

3) Cornparison of the RUKF and the Score Function 
Based RUKF: Sixteen strips are used in the RUKF, and 
HMSMD is used to estimate the local mean. One percent 
impulse noise is added to the image already corrupted by 
zero-mean additive Gaussian noise with variance 100. The 

MSE = 7 
N A = I  / = I  
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TABLE I 
COMPARISON OF RUFF A N D  STRIP RUKF CPU TIME:  

(HOURS : MINUTES : SECONDS) 

No. Strip SNR MSE CPU Time 

1 22.93 69.87 02:40:45 .96  
4 22.89 70.49 00 :  08 : 50.83 

16 22.88 70.58 0 O : O l :  13.35 

TABLE I1 

ESTIMATORS 
COMPARISON OF DIFFERENT LOCAL MEAN 

Filters SNR MSE 

HMSMD 22.88 70.58 
Averaging 21.94 87.52 

impulse noise is modeled as a long-tailed Laplacian noise 
with mean zero and the parameter 30. The gray scale of 
the image i s  0-255. The SNR of the noisy image is 16.54, 
and the MSE is 304.2. Table 111 shows the SNR and MSE 
comparison. Figs. 3(a)-(c) show the noisy, and the fil- 
tered images. 

We next generate two synthetic images of size 50 X 50 
using a DPCM image model. Let i denote the vertical co- 
ordinate and j denote the horizontal coordinate. The im- 
age model can be described as follows: 

s(i, j )  = phs( i ,  j - 1) + p,,s(i  - 1, j )  

- PhP$( i  - 1 , j  - 1) + w ( i , j )  (74) 
where is the horizontal correlation coefficient, p l ,  is the 
vertical correlation coefficient, and w ( i ,  j )  is a white 
Gaussian noise. In our experiment, we use P h  = p, ,  = 0.9 
and w ( i , j )  - N ( 0 ,  0.8). Two images are generated. One 
is a quarter disk and the other one is a thin ring. The means 
of the quarter disk and the thin ring are 180 and 150, re- 
spectively. The mean of the background is 100. To gen- 
erate the quarter disk, first a 2-D signal of constant value 
80 only encompassing the disk position is created. Next 
a square background of image size 50 X 50 with mean 
100 is created using the DPCM model of (74). The two 
images are added together to create the quarter disk im- 
age. Similarly, the thin ring image is created. The param- 
eter estimation and the strip overlapping for modified 
RUKF are the same as the previous experiments. A 
Gaussian plus impulse (1 %) mixture type noise is added 
to the images. The variance of the Gaussian noise is 50. 
The original RUKF filter and the modified RUKF filter 
are applied to these images. The original RUKF uses the 
averaging filter as the local estimator of the mean. Figs. 
4(a)-(d) and 5(a)-(d) show the graphic display of the re- 
sults. Tables IV and V summarize the SNR and MSE 
comparison results. 

It can be seeii from the simulations that the modified 
RUKF greatly improves the performance of the original 
RUKF. For 128 X 128 images, the computation cost of 
the strip RUKF (16 strips) is less than 1 % of the original 

(d) 
Fig. 2 .  (a) The original image. (b) The corrupted image: Gauasian additive 
noise. (c) RUKF filtered image: averaging local mean estimator. (d) RUKF 
filtered image: HMSMD local mean estimator. 

RUKF. As discussed in Section 111, even larger compu- 
tational savings can be achieved with larger images. The 
SNR gain is about 1 dB using the new HMSMD local 
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TABLE 111 
COMPARISON OF RUKF AND S C o R t  FUNCTION 

BASED RUKF 

Filters SNR MSE CPU Time 
_ _ _ _ _ ~  

RUKF 23.02 68.37 0 O : O l  :08.47 
SRUKF 24.33 50.54 0 O : O l :  11.37 

(C) 

Fig. 3 .  (a) The corrupted image: Gaussian + impulse noise. (b) RUKF 
filtered image. (c) Score function based RUKF filtered image. 

mean estimator. Also, the original RUKF cannot remove 
the impulse noise. Scattered white and dark points can be 
easily seen after filtering. However, the score function 
based RUKF efficiently removes both the Gaussian and 
the impulse noise. The score function based filtering is 
most appropriate when the additive noise deviates mark- 
edly from the Gaussian form. As a result, this approach 
is expected to work very well for many mixture type noise. 

In our experiments, the gain in SNR due to score function 
based approach with 1 % impulse noise is around 1.3 dB. 

The overall SNR gain using the modified RUKF, as 
described in this paper, is around 8 dB for natural images 
with input SNR of 16 dB or so. For synthetic images with 
input SNR of 16-17 dB or so, the gain improvement is 
around 12 dB. These figures compare very well with the 
existing schemes in Gaussian environment. For non- 
Gaussian observation noise, however, the new scheme 
outperforms the existing schemes. 

The experiments reported so far use the RUKF only 
once. The coefficients of the NSHP can be reestimated 
after the filtering is done once. The new coefficients could 
be used to do the filtering again. This process can be it- 
erated until no further change is found in the coefficient 
values. However, experiments show that if the q value is 
chosen properly, the iterated procedure does not improve 
the filtering performance in any significant manner. There 
could even be slight loss of SNR performance in such it- 
erated procedure. 

Although the RUKF is approximated by the strip 
RUKF, there is no artifact in the filtered images because 
the strips are not processed independently. Many param- 
eters are passed from the previous strip to the next strip. 
In addition, the image is processed by a raster scan in- 
stead of strip by strip. If the correlation of the image is 
small outside the update region, the strip RUKF is essen- 
tially the same as the RUKF. 

In our image model, we have assumed that the residual 
signal has a stationary variance if the nonstationary mean 
is estimated by an edge and detail preserving filter with 
good smoothing efficiency. Figs. 6(a) and (b) show the 
residual signal of Figs. 4(b) and 5(b), respectively. Look- 
ing at Figs. 6(a) and (b), it is obvious that the HMSMD 
filter does a good job in estiamting the local mean. Both 
Figs. 6(a) and (b) give the impression of stationary vari- 
ance. Also, the impulses are exactly replicated in the re- 
sidual signal as they are part of the original signal. The 
stationary variance does not need to take care of these 
impulses as the score function based scheme can reject 
these impulses. Figs. 6(c) and (d) show the residual signal 
of Figs. 4(b) and 5(b) without the impulses. These figures 
vindicate that the stationary variance assumption, in our 
case, is reasonable. 

A .  Comparison with Order Statistics Filter 
It is well known that the MSM filter preserves the edges 

and the details very well. The HMSMD filter incorporates 
the superior smoothing property of D filter with the detail 
preserving ability of the MSM filter. With the proper 
choice of q, this filter can perform at the same level as 
any other order statistics filter. In the following, we have 
described some experiments to compare the performance 
of the HMSMD filter and the modified RUKF filter. A 
white Gaussian noise with mean 0 and variance 225 is 
added to two images, namely, “girl” and “bridge.” The 
SNR and MSE of the noisy images are 17.94/220.1 and 

I 
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ze SO x SO (b) 
Gaussian + im- 
filtered linage 

Fig. 4 
Noise 
pulse. 

(d) 
..(a) A synthetic image containing a sharp edge. Si 
corrupted image of Fig. 4(a). The additive noise is 
(c) RUKF filtered image. (d) Fast modified RUKF 
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(d) 
Fig. S (a) A synthetic image containing a \harp t h i n  line signal. Size SO 
X SO. ( b )  Noise corrupted image of Fig S(a) .  The additive noise is Gauss- 
ian + impulse. (c) RUKF filtered image. (d) Fast modified RUKF filtered 
image. 

21.82/219.1, respectively. When 1 % impulse noise is 
added to Gaussian noise corrupted images, the SNR and 
MSE arc 15.11 /422 and 18.71 /448.9, respectively. The 
q value is selected as 35 for the “girl” image and 30 for 
the “bridge” image. The window size is 3 x 3 for the 
HMSMD. Within the constraints of the given experi- 

n . .  
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TABLE IV 
COMPARISON or RUKF ALD MRUKF FOR r H E  

QUARTER DISK I M A G E  

Q-Disk SNR MSE 

Noisy 19.55 204.2 
RUKF 22 05 114.8 
MRUKF 34.42 6.665 

TABLE V 
COMPARIWN OF RUKF A Y D  MRUKF F O R  THF T H I ~  

RING IMAGF 

Thin-Ring SNR MSE 

Noisy 16.89 222.3 
RUKF 19.47 122.7 
MRUKF 3 I .26 8.144 

Fig. 6. (a) Residual signal of Fig. 4(b).  (b)  Residual \ignal of Fig. 5(b).  
(c) Residual signal of Fig. 4(b) without the impulses. (d) Residual signal 
of Fig. 5(b) without the impulses. 

TABLE VI 
COMPARISON OF HMSMD A N D  MRUKF FOR “GIRL” 

IMAGF 

SNRiMSE SNRiMSE Filters 
~ 

HMSMD 22 15/83 61 21 93/87  81 
22 66/74 70 MRUKF 22 88/70 58 

TABLE VI1 
COMPARISON o b  HMSMD A N D  MRUKF FOR 

“BRIDGE” IMAGE 

SNRJMSE Filters SNRiMSE 

HMSMD 23.81/128.9 23.58/ 146.4 
MRUKF 24.53/117.5 24. I7 / 127.8 

Fig. 7. HMSMD .filtered image of Fig. 3(a) 

Fig. 8. Noise corrupted image “bridge” as used in experiments 

ments, these parameters give the best or nearly the best 
smoothing as well as good detail preservation. The pa- 
rameter of modified RUKF are selected as described be- 
fore. Tables VI and VI1 summarize the results. The right- 
hand column of the tables are the SNR/MSE for the fil- 
tered images when the noise also includes the impulse 
noise. 

Fig. 7 shows the HMSMD filtered image of “girl.” 
Fig. 8 shows the noise corrupted “bridge” image as used 
in our experiments. From the tables, we know that the 
SNR improvement of modified RUKF over HMSMD is 
around 0.7 dB. Also, the RUKF filtered image is visually 
more appealing. In the quasi-constant region, the modi- 

111 - I 



926 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 4, APRIL 1992 

fied RUKF provides more smoothing and, in regions of 
large spatial variation, it gives more edge and detail pres- 
ervation. Another important aspect of modified RUKF is 
that it can be extended to image restoration [ 151. 

It is possible to improve the performance of the modi- 
fied RUKF furthermore by relaxing the stationary vari- 
ance assumption. The idea is to segment the image into 
regions and then use the NSHP model with identified coef- 
ficients to estimate the AR driving noise variance in each 
region. When the filter is running, the corresponding vari- 
ance is used for each region. This scheme is similar to the 
one described in [lS].  This is a research topic for further 
investigation. 

VI. CONCLUSIONS 
In this paper, we have proposed some modifications of 

RUKF as applied to the estimation of noisy image. These 
modifications are in relation to the reduction of complex- 
ity, and the incorporation of non-Gaussian noise. We have 
also shown that by using an edge and detail preserving 
efficient local estimator of the nonstationary mean, a sim- 
pler image model can be used to achieve a comparable 
performance with respect to the existing schemes. The 
overall filtering scheme proposed in this paper has a gain 
improvement performance comparable to the existing 
schemes in Gaussian environment. Moreover, as the new 
scheme is at least suboptimal in non-Gaussian environ- 
ment, the new scheme outperforms the existing schemes 
in non-Gaussian environment. Although a general conclu- 
sion cannot be made, the new filtering scheme also has 
better performance than some selected order statistics fil- 
ters. 

Following the outlines given in [ lS] ,  the new scheme 
can be applied to pictures degraded by linear blur with 
non-Gaussian additive noise. This problem is under in- 
vestigation. 
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