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Systolic Block Householder Transformation for RLS 
Algorithm with Two-Level Pipelined 

Implementation 
KuoJuey Ray Liu, Member, IEEE, Shih-Fu Hsieh, Member, IEEE, and Kung Yao, Senior Member, IEEE 

Abstract-The QR decomposition, recursive least squares 
(QRD RLS) algorithm is one of the most promising RLS algo- 
rithms, due to its robust numerical stability and suitability for 
VLSI implementation based on a systolic array architecture. 
Up to now, among many techniques to implement the QR de- 
composition, only the Givens rotation and modified Gram- 
Schmidt methods have been successfully applied to the devel- 
opment of the QRD RLS systolic array. It is well known that 
Householder transformation (HT) outperforms the Givens ro- 
tation method under finite precision computations. Presently, 
there is no known technique to implement the HT on a systolic 
array architecture. In this paper, we propose a systolic block 
Householder transformation (SBHT) approach, to implement 
the HT on a systolic array as well as its application to the RLS 
algorithm. Since the data is fetched in a block manner, vector 
operations are in general required for the vectorized array. 
However, a modified HT algorithm permits a two-level pipe- 
lined implementation of the SBHT systolic array at both the 
vector and word levels. The throughput rate can be as fast as 
that of the Givens rotation method. Our approach makes the 
HT amenable for VLSI implementation as well as applicable to 
real-time high throughput applications of modern signal pro- 
cessing. The constrained RLS problem using the SBHT RLS 
systolic array is also considered in this paper. 

I. INTRODUCTION 

EAST squares (LS) technique constitutes an integral L part of modem signal processing and communications 
methodology as used in adaptive filtering, beamforming, 
array signal processing, channel equalization, etc. 161. Ef- 
ficient implementation of the LS algorithm, particularly 
the recursive LS algorithm (RLS), is needed to meet the 
high throughput and speed requirements of modem signal 
processing. There are many possible approaches, such as 
the fast transversal method and the lattice method, which 
can perform RLS algorithm efficiently [ 11, [6]. Unfortu- 
nately, these methods can encounter numerical difficulties 
due to the accumulation of roundoff errors under a finite- 
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precision implementation as summarized in [2] . This may 
lead to a divergence of the computations of the RLS al- 
gorithm [2]. A new type of systolic algorithm based on 
the QR decomposition (QRD), known as the QRD RLS, 
was first proposed by McWhirter in [ 181. This algorithm 
is one of the most promising algorithms in that it is nu- 
merically stable [ l ] ,  [ 121 as well as suitable for parallel 
processing implementation on a systolic array 161, [ 181. 

Up to now, most of the QRD RLS implementations 
were based on the Givens rotation method and modified 
Gram-Schmidt method, which are both rank- 1 update ap- 
proaches 121, [4], 171, [13], [16], [18], [9]. It is well 
known that the Householder transformation (HT), which 
is a rank-k update approach, is one of the most computa- 
tionally efficient methods to compute QRD. The error 
analysis carried out by Wilkinson 1261, [8] showed that 
the HT outperforms the Givens method under finite pre- 
cision computations. Presently, there is no known tech- 
nique to implement the HT on a systolic array parallel 
processing architecture, since there is a belief that non- 
local connections in the implementation are necessary due 
to the vector processing nature of the Householder trans- 
formation. One of the purposes of this paper is to show 
that we can implement the HT on a systolic array with 
only local connections. Thus, it is amenable to VLSI im- 
plementation and is applicable to real-time high through- 
put applications of modem signal processing. 

In this paper, we first propose a systolic Householder 
algorithm called a systolic block Householder transfor- 
mation (SBHT) to compute the QRD with an implemen- 
tation on a vectorized systolic array. Then a RLS algo- 
rithm based on the SBHT called SBHT RLS algorithm is 
proposed to perform RLS operations on the array. We 
shall show that the SBHT array and the SBHT RLS array 
are generalizations of Gentleman-Kung’s QRD array [4] 
and McWhirter’s QRD RLS systolic array 1181 (see Fig. 
l ) ,  respectively. The difficulty in the applications of the 
above arrays is mainly due to the vectorized operations of 
the processing cells. This results in a high cell complexity 
as well as a high I/O bandwidth. By using a modified HT 
algorithm proposed by Tsao 12.51, a two-level pipelined 
implementation of the SBHT RLS algorithm can be 
achieved. That is, the algorithm is pipelined at the vector 
level as well as at the word level. The complexity of the 
processing cell and the I/O bandwidth are thus reduced. 
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Fig. 1 .  (a) QRD RLS systolic array using Givens rotation method. (b) Pro- 

cessing cells of the Givens rotation method. 

In general, the cell complexity of the SBHT array is higher 
and the system latency is longer than that of the conven- 
tional Givens rotation implementations, With the two- 
level pipelined implementation, the throughput of the 
SBHT RLS systolic array is as fast as that of McWhirter's 
Givens rotation array, and it offers better numerical sta- 
bility than the Givens method. In addition, an extension 

of the SBHT RLS array to MVDR beamformation, which 
is a constrainted RLS problem, is also considered. 

In Section 11, a brief review of the QRD RLS algorithm 
is given. In Section 111, the SBHT is presented, while the 
SBHT RLS algorithm is considered in Section IV. The 
two-level pipelined implementation of the SBHT RLS 
systolic array is discussed in Section V. In Section VI, 
the constrained RLS problem is applied to the MVDR 
beamformation, using an extension of the SBHT RLS ar- 
ray. Finally, the systolic array for the hyperbolic House- 
holder transformation is considered in Section VI1 and a 
conclusion is given in Section VIII. 

11. QRD RLS ALGORITHM 
A full rank m X p, m > p ,  rectangular matrix X can 

be uniquely factorized into two matrices Q and R such 
that X = Q R ,  where Q is an m x p matrix with ortho- 
normal columns and R is a p X p upper triangular matrix. 
Several different approaches of the QRD systolic arrays 
have been proposed by Gentleman and Kung [4], Heller 
and Ipsen [7], Luk [ 161, Ling et al. [ 131, and Kalson and 
Yao [9]. The first three approaches are based on the Giv- 
ens rotations methods, while the last two are based on the 
modified Gram-Schmidt orthogonalization. Given an m 
X 1 vectory, the LS problem is to minimize the norm of 
the residual vector E 

IIW)ll = IIX(m)w(m) - y(m)II 
by choosing an optimal weight vector w. If the matrix X 
and vector y grow in time, then the problem of minimiz- 
ing the norm of the residual vector recursively becomes 
the RLS problem. Until recently, it appears that only Giv- 
ens and modified Gram-Schmidt methods have been con- 
sidered for RLS computations. Some recent RLS prob- 
lems based upon the use of Householder transformation 
have appeared [3], [ 151. In [ 181, McWhirter showed that 
a QRD RLS systolic array, which was based on the 
Gentleman-Kung array, can be designed without first 
computing the weight vector of the RLS problem. This 
approach is useful for high throughput applications in var- 
ious modem signal processing problems such as adaptive 
filtering and beamforming since optimal residuals are of 
direct interest while the weight vector needs not be com- 
puted. The basic idea of the QRD RLS systolic array in 
[ 181 is to update the p X p matrix R using a sequence of 
Givens rotation matrices when a new row of data arrives. 
Suppose we have the QRD of the data matrix X at time m 
and expressed as X(m) = Q ( m ) R ( m ) .  Define 

When a new row of data arrives, we then have 

- 
QT(m)X(m + 1) = 



~ 
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This new row of data can be zeroed out by applying a 
sequence of Givens rotations 

G = G, * G2Gl 

where the (rn + 1) X (rn + 1 )  transformation matrix GI 
is defined by 

and y I  is the k x 1 i th desired response block vector 
GI = 

with 
a b c. s .  = 

‘ & F a ’  ‘&Ti? 
where a and b are elements of vectors in the i th and (rn 
+ 1)th rows under rotation. 

Fig. l(a) shows the systolic array proposed by Mc- 
Whirter in [ 181. It consists of a QRD triarray and a linear 
response array (RA). The rotation parameters are propa- 
gated from the boundary cells to the right for internal cells 
to update their contents, and the cosine parameters are 
also cumulated and propagated down diagonal boundary 
cells. Each skewed input row of data is zeroed out by the 
QRD triarray. The optimal residual is then obtained by 
the multiplication of the cumulated cosines and the ro- 
tated output of the desired response at the response array 
(see Fig. l(a)) [18]. 

where k is the block size and p is the order (i.e., number 
of columns) of the system. 

For a rank-k update QA 
have 

Q(n - 1)X(n - 

decomposition, suppose we 

Denote 

Q(n - 1) 0 -  
~- 

OT 1 I ,  
(7) 

then we have 

111. SYSTOLIC BLOCK HOUSEHOLDER TRANSFORMATION 
The Givens rotation method discussed above is a rank-1 

update approach since each input consists of one row of 
data. For the systolic block Householder transformation 
(SBHT), we need a block data formulation. Denote the 
data matrix as If we can find a matrix H(n)  such that 

H(n)Qk(n - l)X(n) = - llR:’l (9) 

then the new Q ( n )  is 

Q(n) = H(n)Qk(n - 1). 
and the desired response vector as 

An n x n Householder transformation matrix T is of 
the form 

where z E a’’ [SI. When a vector x is multiplied by T ,  it 
is reflected in the hyperplane defined by span{z}’. 
Choosing z = x f Ilxl12el, where el = [ l ,  0, 0, . * * , 01 
E a”, then x is reflected onto e ,  by T as 

Tx = *llxl12el. (12) 

That is, all of the energy of x is reflected onto the unit 
vector el after the transformation. We can zero out XTby 
applying successive Householder transformations as 

where XT is the k x p ith data block matrix 
- T  
x ( ~  - IJk + 1 

4- l j k + 2  

- x i  
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follows: 

1 
1 

i 
= i  0, * . * , 0 ,  0, x ; , ’ l + l ,  * . , *, , ,p  

R ( ! -  I’(n - 1) 

0, . . . , 0, X y ’ ,  . . . 
R“’(n - 1) 

0 
x ( I - l ’  

n.p 

0 

H ’ (n )  

for i = 1, - * . , p ,  where x f :  = x , ~ , , ,  R“’(n - 1) = R(n 
- I ) ,  and the resultant matrix H(n)  is 

H(n)  = H‘”“)H‘”’’(n) * . . H ‘ ” ( n )  (13) 

where each H‘”(n)  represents a Householder transforma- 
tion which zeros out the ith column of the updated X l ,  
i .e  x ( I - I )  .) n,r  . 

To obtain H“’(n) ,  denote 

where r I I  is the (1, 1) element of R(n - l ) ,  a: = r:, + 
Ilx,,, , ) I 2 .  Then from (1 1) 

hy/(n) ; OT j h{\JT(n) 

0 ; H g ( n )  

‘(,I ~ - I)A - I : . y] (14) 

where h$’>(n) is a scalar, h\:)(n) is a k x 1 vector, h$:’(n) 
= h\i’(n), and H$\’(n) is a k X k matrix given by 

~ _ _ _  

with u:l = llzlll: = 2(a: - U ,  r l l ) .  Define G I  = a: u1 r I I .  
(15) can be rewritten in a form without multiplication of 
the number 2 as 

where H{y’(n) E CRp x p  is an identity matrix except for the 
mth diagonal entry; H\;)(n) E Elpxk is a zero matrix ex- 
cept for the mth row; Hfy’(n) = H{yjT(n); and 

is symmetric with $,, = U ;  - amrmln, where U;  = r i m  + 
\lxFl; It can be easily seen that H(l;)(n)H$Jl’(n) = 0, 
H t ? ( n ) H g ’ ( n )  = 0, for Vi # j .  Thus we have the follow- 
ing lemma. 

Lemma 1: The Householder transformation matrix, 
H ( n )  E CRnk “, is orthogonal and is of the form 

(18) 

with 

Hll(n)  = H\Y’(n) . . . H\21’(n)H$?(n) 

H2,(n) = H$$’(n) . . . H$’(n)H&’(n). U (19) 

For the block size of k = 1 the Givens rotation method 
reduces to the special case of the rank-1 update House- 
holder transformation [ 5 ] ,  and the H matrix in Lemma 1 
becomes a Givens rotation matrix G of the form [ 181 

G(n) = [ --- I - - - I - - -  0 ‘ i z y l - i j  
where K(n)  is a p X p matrix, h(n) is a p x 1 vector, and 
y(n) is a scalar given by y(n)  = IIf= c, (n ) ,  n 2 p where 
c, (n)  is the cosine parameter associated with the ith Giv- 
ens rotation. 

_ - -  K(n) I 0 I h(n) 

hH(n) I 0 I y(n) 

A. Vectorized SBHT QRD Systolic Array 
Now we propose a vectorized systolic array to imple- 

ment the QRD based on the SBHT. Similar to the QR 
triarray of Gentleman-Kung [4], this array has both 
boundary and internal cells. The boundary cell takes an 
input of block size k from the above internal processor or 
directly from the input port, updates its content and gen- 
erates the reflection vector, and sends it to the right for 
the internal cell processing (see Fig. 2(a)). Define 

-it - 1 ) ’  : x ( I - l I ) 7 ]  
‘ 1 7 . 1  = [ O , - I  : rii : 0 I n - l ) k - i  . n.r 3 

3 P  
j =  1 ,  

and z, = X $ T  I ’  - u,e,,  where e, is a zero vector except 
for a unity at the ith position. When an internal cell re- 
ceives the reflection vector, instead of forming the matrix 
z,zTand performing matrix arithmetics, it performs an in- 
ner product operation to update its content rl, by doing 

j = i + 1, . - *  , p  (20) 
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Data of 
block size k 

If l/x1I2 = 0 then 
0 = 0. r = X r .  

end 

y = x. r = Ar 
else 

Y 

(b) 
Fig. 2 .  (a) SBHT QRD systolic array. (b) Processing cells of the SBHT 

QRD systolic array. 

and sends the reflected data x,,, downward for further pro- 
cessing. Fig. 2 shows the SBHT QRD array architecture 
and the processing cells. When the block size is k = 1 ,  
this vectorized array degenerates to the Gentleman- 
Kung’s Givens rotation triarray . 

IV. SBHT RLS ALGORITHM 

(Sip, such that the block-forgetting norm of 
The LS problem is to choose a weight vector w ( n )  E 

is minimized. The optimal weight vector $(n)  satisfies 

min II~(n)ll*~ = IIX(n)$(n) - y(n>IIAi (22) 
W 

where 

Ak(n) is a block-diagonal exponential weighting matrix of 
the form 

The exponential forgetting weighting X is incorporated in 
the RLS filtering scheme to avoid overflow in the proces- 
sors as well as to facilitate nonstationary data updating. 

The QRD of the weighted augmented data matrix at 
time n (in the block sense, it is equivalent to nk snap- 
shots), is given by 

where 

constitutes an orthogonal transformation matrix with Q, (n) 
E (Rp  nk spanning the column space of the weighted data 
matrix A,(n)X(n)  and Q2(n) E ( R ( n k - p ) x n k  spanning the 
null space, R(n) E (Sip x p  is an upper triangular matrix and 

Q(n>y(n> = I::::]. 
The optimal weight vector can be obtained by solving 

R(n) w (n)  = u(n).  (27) 

which lies in the null space of the weighted data matrix. 
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Now, suppose we have the data matrix up to time n - 

l a n d t h e Q R D o f A k ( n - l ) [ X ( n - l )  y ( n - l ) ] . T h e  

recursive LS problem here is to compute efficiently the 
optimum residual at time n from the results we have at 
time n - 1. In particular, we are interested in the new nth 
block of the optimal residual 

(29) C,(n) = X i W ( n )  - yn. 
From (8),  (9), and (18), (26) can be expressed as 

: 0 i ~q 

95 I 

We can see that Q2(n) is updated from Q l ( n  - 1) and Q2(n 
- 1) by 

On the other hand, the updated [uT(n) ,  U '(n)]' is 

where 

Therefore, from (28), (31), and (32), the weighted opti- 
mal residual vector can be obtained from parameters at 
time n - 1 by 

-AQl(n - l)u(n - 1) - Q;(H - l ) H ; l ( n ) ~ , ,  
= --__________------ 

- HT&)V,, 

where e(mln) denotes the estimate of e at time m, m 5 n ,  
given all of the data up to time n. The new nth block of 
the optimal residual is then obtained as 

[ 
By recursion on n,  we relate Q(n) and Q(n - 1) using 
(10) and have 

C,(n) = -Hl*(n)u, = - H g ( n ) H $ ) ( n )  * - H:P,'(n)v,. 
(35) 

For the block size of k = 1 ,  all vector parameters in (35) 
become scalars and can be expressed as 

P 

which was first shown by McWhirter in  [18]. Note that 
there are some differences between the optimal residuals 
estimated by SBHT and Givens rotation methods. To be 
specific, the optimal residual vector in (35) is given by 

1 
Lenk(nkInk) J 

while, the optimal residual estimated by the Givens rota- 
tion method in (36) is (30) 

e,(n) = en(nJn). (38) 

111 - 1 
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In this sense, the SBHT RLS gives a better estimate of 
the residual since it uses more data samples to estimate 
the optimal residual. As an example, consider k = 2.  Then 
the optimal residuals obtained from the SBHT RLS and 
Givens methods are [ezn - ,((2n - 1)12n), ezn(2n)2n)] and 
[e2,-  I((2n - 1)1(2n - l ) ,  e2,(2n)2n)], respectively. It is 
clear now that the SBHT RLS method gives a better es- 
timate for the previous residual than the Givens rotation 
method because the former makes use of the future data 
sample at time 2n to estimate the residual at time 2n - 1, 
while the latter does not. 

A .  Vectorized SBHT RLS Array 
In order to obtain the RLS filtering residual vector in 

the systolic array, we can use two possible approaches. 
The first approach is to generalize the architecture of 
McWhirter’s Givens rotation approach [ 181. A SBHT 
QRD array with a RA based on this approach is shown in 
Fig. 3 .  Since the U ,  in  (33) results from the reflection 
computation in ( 3 2 ) ,  therefore U ,  is obtained naturally 
from the output of RA. Each boundary cell then forms the 
matrix Hid and propagates it down the diagonal boundary 
cells. Since H t i  is generated earlier than H g )  for i < j ,  
(35) has to be computed from left to right involving ma- 
trix-matrix multiplications. As a result, each boundary 
cell performs the matrix multiplication to accumulate 
Hi;) when it is propagated down diagonal boundary cells. 
The matrix multiplications needed in the boundary cells 
in this approach are objectionable since they not only slow 
down the throughput but also increase the complexity of 
the boundary cells. We note, McWhirter’s original ap- 
proach based on Givens rotation worked well since only 
scalars need to be propagated down the diagonal boundary 
cells and the order of multiplications for the scalars is ir- 
relevant. 

Obviously, we prefer to compute (35) from right to left 
such that only inner product computations are performed. 
Instead of forming the matrix H i ;  and propagating it  
down, another approach is to use the facts that H i 2  can 
be expressed by using (17) and the reflection vectors are 
sent to the right from boundary cells as described in Sec- 
tion 111-A. From these observations, (35) can be com- 
puted in a manner similar to the internal cell operation. A 
new architecture shown in Fig. 4 is thus introduced to 
circumvent this problem. A column array of internal cells 
called backward propagation array (BPA) is added at the 
right-hand side to perform the backward propagation of 
U , .  Each row, say the ith one, needs 2 ( p  - i )  delayed 
buffers as shown in Fig. 4. The U ,  obtained at the output 
of RA is then backward propagated through the BPA. 
From (17), each cell of this array performs the operation 

k i n d  1 7 Skcwcd block input dam 

I6 Residual 

vector 

Fig. 3. SBHT RLS systolic array obtained by direct generalization of the 
Givens rotation array. 

Rcudual 
vmor 

7 Skcued block input data 1 hued 
response 

Backward Propagation 
Array 

Fig. 4.  New matrix-multiplication-free SBHT RLS systolic array. 

tions performed by the internal cell shown in (20).  The 
residual vector is obtained from the top of the newly ap- 
pended column array. 

The costs for this proposed architecture are: an in- 
creased latency time from ( 2 p  + l)t, of McWhirter’s Giv- 
ens method to 3pt,.,  where r,$ represents the processing time 

x:,; I )  
for the scalar operations used in the Givens rotation 
method and t,. is the processing time for vector operations 
used in the SBHT method; the number of delay elements 
needed increases from p to ET 2 ( p  - i) = p ( p  - 1);  and 
p additional internal processing cells. The operations of 
the boundary and internal cells are still given in Fig. 2(b). 

H&)D, = 0, - - ( 1  - I ) T  - 
(Xn.1  

$1 

(39) 

where 0, is an updated U , [ .  This is a subset of the opera- 

2 = P ,  . * *  3 2 ,  1 

n 1 -  
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These results clearly show that HT can be implemented 
simply on a systolic array to achieve massive parallel pro- 
cessing with vector operations. This provides an efficient 
method to obtain a high throughput rate for recursive LS 
filtering by using the HT method. 

V .  TWO-LEVEL PIPELINED IMPLEMENTATIONS 
The SBHT QRD array and the RLS array discussed in 

the above sections are derived using the conventional 
Householder transformation as shown in (1  I ) .  Due to the 
vector processing nature of the conventional method, the 
cells of both arrays perform vector operations such as in- 
ner products. This means the complexity of each cell is 
high and the I/O bandwidth is large in order to achieve an 
effective vector data communication. Each cell, due to the 
complexity of vector processing, may require a large pro- 
cessor. Clearly, this is not desirable for VLSI implemen- 
tation. Thus, we are motivated to find a suitable algorithm 
to pipeline the data down to the word level such that the 
I/O bandwidth as well as the complexity can be reduced. 
In addition, we still wish to achieve a high throughput 
which is needed in many modem signal processing appli- 
cations. 

The conventional approach in computing Householder 
transformation, y = Tq, based on (1 1) is to form first z 
and 1(z1)2 from x and then zTq/llz112 and q - 2z(zTq/1Iz(1*) 
as considered before. It can be stated in the following 
form: 

HT Algorithm (Conventional): 

Step 1. s,, = l1x1I2. 
Step 2. If S,, = 0, then y = q. 
Step 3. If S,, # 0 then 
(1) s = Js,, z = x + [s, o , o ,  * . . , 0IT, 
( 2 )  4 = s,, + sx1, s,, = zTq, 
(3) d = szq/4,  y = 

In [25 ] ,  Tsao pointed out that by skipping the compu- 
tation of 4 and avoiding the cumbersome intermediate 
steps of forming vector z for further computations, a mod- 
ified algorithm with smaller round off error and fewer op- 
erations can be obtained. Only step 3 of the conventional 
algorithm is modified as follows. 

ModGed HT Algorithm (251: 

Step 3. If S,, # 0 then 

- dz. 

(1) s = Js,, U = XI + s, 

( 2 )  s,, = x T q ,  
(3) y1 = -S,,/S, d = (41 - YJ/U, y ;  = 9; - k;, i = 

2 ,  * . .  > n. 
With this algorithm, the operations of the cells of the vec- 
torized systolic arrays can be modified as shown in Fig. 
5 .  As we can see, for the boundary cell, the vector U ,  
which consists of the weighted diagonal element of the 
upper triangular matrix and one column of the input data 
block (updated or not), can be sent out immediately when 
the input x is available, without waiting for any compu- 
tations as required in the implementation using the con- 

&" 

v 

Fig. 5 .  Operations of the processing cells by using the modified House- 
holder transformation. 

ventional algorithm. Due to this advantage and the mod- 
ified operations in the internal cells, we can then pipeline 
the vector operations down to the word level such that 
each cell only performs scalar operations, which will sig- 
nificantly reduce its complexity. 

A two-level pipelined implementation of the modified 
HT algorithm is given in Fig. 6(a). The boundary cell 
performs three major functions: square and accumulate, 
square root, and addition. For each data block, the bound- 
ary cell fetches one data sample, accumulates the squares 
of the samples, and sends the data to the right for internal 
cell. When all the data of the block are processed, the 
content of S is then sent down for square-root operation. 
The resultant s is sent to the right for internal cell as well 
as sent down to obtain U, which is then sent to the right 
when available. At the same time, when an internal cell 
receives a U , ,  it multiplies U ,  with an input x, and accu- 
mulates all these products to obtain S. When S is avail- 
able, it is sent down for division operation with s, which 
arrives at the same time, to obtain t; then r is sent down 
and U again arrives at the same time to compute d.  To 
compute y ,  of (3) in step 3 ,  we need registers to store U ,  

and x, temporarily. Since data from the next block are 
continuously being sent into the system, each internal cell 
needs 2(k  + 3) registers to store U, and x, as indicated in 
Fig. 6(a). When d is available, the y ,  are then obtained 
one by one and sent down for further processing. Data 
from the next block undergo the same processing. When 
a new d is available in the internal cell, the corresponding 
x, and U ,  are already waiting in the registers. Therefore 
the vector operations are successfully pipelined down to 
the word level. This means that by using the modified HT 
algorithm, we have not only pipelined the SBHT arrays 
at the vector level but also at the word level. The input 
data is now skewed in the word level as shown in Fig. 
6(a) rather than in the vector level as shown in Fig. 4. 
The functional descriptions of the processing cells for two- 
level pipelined implementation are given in Fig. 6(b). 

u t -  1 
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. Y k  

Y3 

Yz 
Y l  

sendight X r  
.? t Xzrz 
d o 2 = l , k  

, . ~ ~ , r ~ . ~ ~ ,  X~ fetch z,; S t S + z:; sendsight I,, 
end do 
r’ + X r ;  s t &; sendight  s,  
r + s; U t r’ + s: sendxight a. 

s‘ = 0. 
do I = l , A  + 1 

if I = I then 
S + S + u,Xr. sendsight U,. 
else 
fetch . r , - , .  5 = S + U , J , + ~ ;  send_right U?. 
end if 
f ~ t c i i  .E. r’ e Xr. f + - .Cis .  
f r tc l i  0 .  7. + f .  d + ( r ’ -  t ) / n .  
end d o  
d o l  = 1 . k  
y, = r ,  - du,,,: send.don.n yz .  
end do 

retc]> u t .  

v .  
y I 

v, 

(b) 
Fig. 6 .  (a) Architectures of the processing cells for two-level pipelined implementation. (b) Functional descriptions of pro- 

cessing cells for two-level pipelined implementation. 

n 
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TABLE I 
COMPARISONS OF THE SBHT A N D  GIVENS ROTATION METHODS 

Givens Rotation 

Number of cells 
Number of delay elements P 
Number of registers 0 
System latency 2p + 1 

( P 2  + 3 P ) P  

Cell complexity less 
Numerical stability good 

Since the most time consuming operation of this two- 
level pipelined implementation is the square root opera- 
tion which is also the critical operation in McWhirter's 
Givens rotation implementation, the throughput of this 
two-level pipelined implementation is as fast as that of the 
McWhirter's Givens array. However, with a longer pipe- 
line, a longer system latency for the SBHT method is ob- 
tained. This is due to the fact that the registers of the in- 
ternal cells have to be filled before we can obtain the 
residual vector. For the SBHT RLS systolic array of order 
p ,  we have ( p 2  + 3p)/2 internal cells, including the BPA. 
Thus, there are a total of ( p 2  + 3p)(k + 3) registers for 
the whole system. The system latency is given by t ,  = 
2p(k + 4) ,  which is linearly proportional to p and k .  
However, for the Givens rotation method, the system la- 
tency is only ts = 2 p  + 1 .  Comparisons of both RLS 
arrays based on the SBHT and Givens rotation are sum- 
marized in Table I. In general, the throughput of the 
SBHT RLS systolic array is as fast as the Givens rotation 
method. Of course, while the cell complexity of the SBHT 
array is higher, it does offer better numerical stability 1261. 
A detailed backward error analysis carried out by Wilk- 
inson showed that for an n x n matrix A ,  after n(n - 1)/2 
Givens rotations, the roundoff error in the upper triangu- 
lar matrix is in the order of O ( ~ , n ~ / ~ p l l A 1 1 )  [26, p. 1381, 
while a series of (n - 1 )  HT gives (3(KhnpllAll) [26, p. 
1601, with K~ and Kh being constants and p a machine 
floating point computation precision. 

VI. CONSTRAINED RLS PROBLEMS 

In the above sections, we have dealt with an uncon- 
strained RLS problem. The RLS systolic array considered 
there was motivated originally by the sidelobe canceller 
beamformation problem [ 181. Other practical motivation 
could have come from the adaptive filtering problem [6]. 
However, there are other signal processing applications 
which are modeled by a constrained RLS problem. The 
MVDR beamformation constitutes such an example [ 191, 
[20], [23]. It is interesting to determine whether a systolic 
array for an unconstrained RLS problem can also be used 
for a constrained RLS problem. In [ 191, McWhirter and 
Shepherd showed an extension of the unconstrained RLS 
array to the MVDR beamforming problem. Based on their 
approach, we shall also demonstrate the implementation 
of a MVDR beamformation problem using a SBHT RLS 
array. 

The MVDR beamforming problem is to minimize 

subject to the linear constaints of 
~ ( ' ) ~ w ' ' ) ( n )  = pc') ,  I = 1, * * . , L (41) 

where L is the number of constraints. We are interested 
in the a posteriori residual vector 

b!'(n) = XKW("(n). (42) 

111 - I 

The optimal solution of the weight vector is known [I91 
to be given by 

where M = XT(n)Ai(n)X(n)  is the weighted covariance 
matrix, R(n) is the upper triangular matrix resulted from 
the QRD of the weighted data matrix AkX(n),  and 

Therefore the optimal residual vector at time n is 

A crucial step needed is for the efficient recursive updat- 
ing of &)(n) .  A novel approach was proposed for per- 
forming this updating [19]. Specifically, from (8), (9), 
and (44) 

where b"'(n - 1 )  is an arbitrary ( (n  - 1)k - p )  x 1 
vector. Then from Lemma 1 ,  (8), and (9), we have 

= RT(n) * X-'(XH,,(n)a"'(n - 1)). (47) 

Thus, a"'(n) = h-2(XHll(n)a("(n - 1)) can be ob- 
tained by updating a(')(n - 1) in a way similar to that u(n) 
is obtained by updating u(n - 1) using (32). The only 
differences are the input for updating a"'(n - 1) is a zero 
vector and a scaling factor XP2.  Due to the structure of H 
in Lemma 1, the vector b'"( a )  plays no role in the updat- 
ing of a(')( e ) .  Furthermore, from (27) and (29), we have 

e,@) = XTR-'(n)u(n)  - y,. (48) 

From ( 3 2 ) ,  we see that u(n) results from the update of 
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l<c\idii,il Kc\idii:tl 
vccior vector 

Fig. 7 MVDR beamforming using the SBHT systolic array 

[ y ( n  - 1) : y,l, wherey, is the new input. Now replac- 

ing u(n) with u'"(n) and y, with a zero vector, we have 

VII. SYSTOLIC ARRAY FOR HYPERBOLIC HOUSEHOLDER 
TRANSFORMATION 

In some applications, the fixed window approach is 
preferred to the exponentially weighted window ap- 
proach. The updating of new data and downdating of old 
data must then be considered. Rader and Steinhardt [22] 
in 1986 proposed a hyperbolic Householder transforma- 
tion (HHT) to simultaneously perform upldowndating . Let 
us define a J-hyperbolic Householder matrix HJ as fol- 
lows: 

C,(n) = X,rR -yn)u' / ) (n)  (49) 

and from (45), we then obtain 

p ( I )  

&An). (50) C l j y n )  = ~ . 
II a%) II 

This equation reveals that by the proper scaling of 2,,(n), 
which can be obtained from the SBHT RLS systolic array, 
we can obtain the a posteriori residual vector, Cjf'(n), of 
the MVDR beamformation. Fig. 7 shows an extension of 
the SBHT RLS array for the new problem. Now one more 
data channel is needed for the RA to pipeline cumulation 
of l/u(')(n)l12, and the scaling of the residual vector is done 
at the bottom of the RA when a new ~ ~ u ( ' ) ( * ) ~ ~ ~  is avail- 
able. Each RA/BPA pair in Fig. 7 represents one of the 
K constraints. The optimal a posteriori residual vector of 
each linear constraint is obtained at the output of the cor- 
responding backward propagation array. 

As pointed out in [19], there are two ways to initialize 
the array. One method is to set R(0) = 61, where 6 is a 
small scalar, and thus from (44), ~ ( ' ~ ( 0 )  = 6-'c"', 1 = 1, 
. . .  , L.  Another method is to obtain R(n) to some time 
n,  then use (44) to obtain u(')(n). The details of a two- 
mode operation required for this initialization procedure 
are also considered in [ 191. 

HJ = J - 2hhT/llhll: (51) 

where h is a column vector, J is a pseudoidentity matrix 

J =  [ O  Zk 0 ]  

with Zp representing preserving the previous Cholesky fac- 
tor, I k  incorporating the new data for updating, - 1 k  dis- 
carding the old data for downdating, and 

zp 0 0 

0 0 - I k  

P p + k  p + 2 k  

llhll: = c h; + c h; - c h; 
r = l  1 = p + l  r = p + k + l  

is the J-pseudo vector norm. 

namely, 
We note that HJ is Hermitian and J-pseudo orthogonal, 

HJ = HT (52) 
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e 

I 

r = s .  

y,’ = z ; ’ - d . u , + I ,  i = 1 ,_ . . ,  k , 
(Y+>Y-) y , -=z ,  - d . u k + , + l , i = l , . . . ,  C .  

Fig. 9 .  Modified processing cells for the block HHT systolic array 

+ 
( Y + > Y - )  

--*k unit delay 

Fig. 8 .  Block hyperbolic Householder systolic array 

and 

HTJHJ = J .  (53) 
We can compress all of the J-pseudo energy of a vector a 
into its j th entry by premultiplying it (performing pseu- 
doorthogonal transformation) by Hj and choosing 

(54) h = Ja + auI 

a = (k‘j/Ilajll)liallJ. (55) 

with 

Here uj is a unit vector with all zeros except for its j t h  
entry. Then we have 

Hja = - a ~ j .  (56) 
An algorithm using HHT to update the block data ma- 

trix A = [a , ,  . * . , up] and downdate the matrix B = [ b , ,  
, b,] from the Cholesky factor R is given below: 

The HHT Up/Downdating Algorithm 

Fori = 1, * - * , p ,  do 
f i i  = J r f  + arai - brbi;  

For j  = ( i  + 1)’ * , p ,  do 
if rii < 0 ,  f . .  = 

I !  9 

f . .  = ( r . . r . .  + ara. - b ‘ b . ) / f i i ;  
a. = U .  - ( f . .  + r../f.. + r . . ) ~ :  

J J rj r j r r  r r f )  
b = b .  - ( f . .  + r . . / f . .  + r . . )b:  
i f r . .  < 0 a.  = -a. .  b .  = 

’ J  J’ J J ’  

JJ I J J J  

J J JJ J J J J  I I I ?  

End; 
End. 

Same as previous sections, it can be shown that Q’ = 
is the lower right 

submatrix of the hyperbolic Householder reflection matrix 
. . . where &$AL E a 2 k x 2 k  ’ 

in zeroing out the j th column of appended data 

Lx- y - 1  

with [X’ y’] and [ X -  y - ]  representing the new and 
old data block to be up/downdated, respectively. The re- 
sidual vector e therefore can be written as e = -A$’)’ 

- * ASp” U ,  which can be computed by a series of back- 
ward matrix-vector multiplications as given in previous 
sections. A block HHT systolic array for RLS filtering is 
given in Fig. 8. Fig. 9 depicts the modified boundary and 
regular processors based on Tsao’s algorithm. 

VIII. CONCLUSIONS 
In this paper, we have shown that the Householder 

transformation can be implemented on a systolic array. 
By using a two-level pipelined implementation, the 
throughput of the SBHT RLS systolic array can be as fast 
as that of the original Givens array in [ 181. While, the 
system latency is longer for the SBHT, it provides a better 
numerical stability than the Givens method. Clearly, the 
Givens array is i! special case of the SBHT array with a 
block size of one. In general, the block size is an impor- 
tant variable. A larger block size results in a better nu- 
merical stability, while the system latency is increased. 
Many known properties of the Givens array are also ap- 
plicable to the SBHT array. For example, the real-time 
algorithm-based fault-tolerant scheme proposed in [ 141 
can also be easily incorporated into the SBHT RLS array. 
From the results described in this paper, it shows that the 
Householder transformation method is useful in real-time 
high throughput applications of modem signal processing 
as well as in VLSI implementation. 
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