
Many-sorted First-Order Logic Database Language

J. S. H. YANG*, Y. H. CHINt AND C. G. CHUNG*
* Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050, R.O.C.

^Institute of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, 30043, R.O.C.

A database languages based on Many-Sorted First-Order Logic (MSFOL) have many advantages over one based on
One-Sorted First-Order Logic (OSFOL). The advantages includes ease-of-expressiveness, efficiency, and the
abstraction mechanism. Many database researchers have used OSFOL to view the Relational Data Model (RDM) ;
however, no RDM has been modelled by MSFOL. This paper first gives a formal definition for MSFOL and then its
advantages of expressiveness and of abstraction are illustrated. Two reduction algorithms which can transform an
MSFOL-based language into\from an OSFOL-based language are given. The semantic equivalence between languages
based on MSFOL and Typed OSFOL is also proved. Recent extensions of RDMs require aggregation, classification,
and generalisation/specialisation mechanisms which MSFOL-based languages can provide, but OSFOL-based languages
cannot.

Received January 1989, revised August 1989

1. INTRODUCTION

Many researchers12 use OSFOL to interpret the RDM3

from the model-theoretic viewpoint. In particular,
Reiter45 added some enhancements by using type
predicates with OSFOL (hereafter, called Typed OSFOL)
to view the RDM. Pirotte6 mention that MSFOL can be
used to view the RDM, but they did not describe how it
could be used, none did, they describe its advantages in
relation to OSFOL.

A many-sorted logic-based language is easy to use
because of its expressiveness and more efficient than a
One-sorted logic-based language. The sort structuring of
MSFOL can provide abstraction mechanisms, such as
classification and generalisation.1 The concept of such
mechanisms, adopted from Artificial Intelligence, en-
hances the semantic capabilities of the RDM. The major
contributions of this paper are (1) to illustrate the
differences between these two logics; (2) to give two
syntactic reduction algorithms between the wffs of an
MSFOL-based language and a Typed OSFOL-based
language; (3) to prove that these two types of languages
are semantically equivalent, and (4) to describe the
advantages of using an MSFOL to view the RDM and
extended RDM.

In Section 2, an example is presented for the purpose
of illustration. Section 3 reviews the model-theoretic
view of the RDM by using OSFOL and Typed OSFOL.
Section 4 gives a formal definition of MSFOL and
compares the definition with that of OSFOL. Section 5
gives the two reduction algorithms and proves their
correctness. Section 6 explains the advantages of an
MSFOL-based language. Finally Section 7 summarises
the results of the paper and discusses the possible
extensions of the logic.

2. RELATIONAL DATABASE EXAMPLES

A library application in Table 1 is used as an illustration.
Domain names such as NAME, BOOK_NAME, ...
divide the library application universe into different
domains. Relations are defined as the aggregation7 of the
column names of LIBRARY_NAME, LOCATION,
One or more column names can be defined over the same
domain. They are aliases of the defined domains. The

range of those column names is the same. This two-level
abstraction, domain and relation, provides a logical
representation distinct from the physical implementation.
However, the modelling capabilities of the RDM are still
limited by the tuple-oriented structure.

3. RELATIONAL DATABASE VIEWED
THROUGH ONE-SORTED FIRST-ORDER
LOGIC

In this section, previous approaches of using OSFOL
and Typed OSFOL to view the RDM are illustrated. The
abstraction capabilities are examined by using the
example given in Section 2.

3.1 Model-theoretic view of using OSFOL

From the viewpoint of OSFOL (without function
symbols), the RDM3 is a first-order formal system, and
the relational calculus is based on the first-order predicate
calculus.6 A relational database (with the schema and
instances) is viewed as a first-order interpretation with
respect to model-theory.15 The union of all domains is
the universe D. Column names are variables. Relation
names are predicates. Tuples (instances) of relations are
the ground wffs, and relational queries correspond to the
open wffs of OSFOL. Query evaluation is the process of
truth functional evaluation of the first-order open wffs
with respect to an interpretation. With the accommo-
dation of integrity constraints (which are closed wffs),
an interpretation should be a model of the integrity
constraints. Some assumptions (implicit rules) of RDMs
such as the Closed World Assumption, Unique Name
Assumption, ...etc.,5 can also be represented by first-
order closed wffs.

The following examples are the wffs corresponding to
the queries and constraints in Table 1.

In these examples, all the variables/constants are
defined in one universe. Consequently, we only use the
variable/constant and the predicate to represent the
meaning of the query, for instance, the second query of
Table 2, 'Get the BOOK_TITLE of BOOKs BORROWed
by John', is represented by the wff
(BOOK(x)|BORROW(John,x,_)), in which

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 129
CPJ35

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

J. S. H. YANG, Y. H. CHIN AND C. G. CHUNG

Table 1. A library application relational data model

(1) Relational Database Scheme
DOMAINS:

NAME CHAR(20), PLACE-NAME CHAR(20), BOOK_NAME CHAR(60),
PERSON_NAME CHAR(20), YEAR NUMBER(4), AMOUNT INTEGER(2),
ID NUMBER(6), DEPART_CODE CHAR(6), LEVEL_CHAR(2),
PLACE_CODE CHAR(8), DATE NUMBER(2)"/"NUMBER(2)7"NUMBER(2).

RELATIONS:
LIBRARY(LIBRARY_NAME: DOMAIN NAME, LOCATION: DOMAIN PLACE_NAME)
BOOK(BOOK_TITLE: DOMAIN BOOK_NAME, AUTHOR: DOMAIN PERSON_NAME,

PUBLISHER: DOMAIN NAME, YEAR: DOMAIN YEAR,
LIBRARY_NAME: DOMAIN NAME, PLACE: DOMAIN PLACE_CODE,
#_OF_COPIES: DOMAIN AMOUNT)

BORROWER(BORROWER_NAME: DOMAIN PERSON_NAME,
#_OF_BOOKS: DOMAIN AMOUNT)

STUDENT(ID: DOMAIN ID, STUDENT_NAME: DOMAIN PERSON_NAME,
DEPART: DOMAIN DEPART_CODE, LEVEL: DOMAIN LEVEL.CODE)

FACULTY(ID: DOMAIN ID, FACULTY_NAME: DOMAIN PERSON.NAME,
DEPART: DOMAIN DEPART_CODE)

BORROW(BOOK_TITLE: DOMAIN BOOK_NAME,
BORROWER_NAME: DOMAIN PERSON_NAME, DATE: DOMAIN DATE).

(2) Queries
1. Find BORROWER_NAME of BORROWERS who BORROWed more than 3 BOOKs.
2. Get the BOOK_TITLE of BOOKs BORROWed by John.
3. Find the BOOK_TITLE and BORROWER_NAME of BOOKs that are BORROWed by some AUTHOR.
4. Find the BOOKs whose AUTHOR is also the PUBLISHER.
(3) Constraints
1. A BORROWER cannot BORROW more than 5 BOOKs.
2. A BORROWER must be either a STUDENT or a FACULTY.

John is a constant of the column name
BORROWER_NAME, x is a variable for BOOK_TITLE
('_' means that we do not care about the column value.).
The meaning of variables/constants and their corre-
sponding column names cannot be expressed in one-
sorted logic. For example, if we present as
BORROW(BORROWERNAME(John),BOOKTITLE
(x)), then this is a second-order formula. Also, those
variables/constants, in the view of OSFOL, are ranged in
the only sort, the universe; hence the search space of each
variable/constant is bigger.

3.2. Typed One-Sorted First-Order Logic

In Ref. 4, a Typed One-sorted First-order Logic (typed
OSFOL) is denned. Except for a class of unary predicate
symbols, typed OSFOL is the same as OSFOL. These

unary predicates are called simple types. Other types can
be created from simple types by using the operators V,
A and ->. Type predicates are used to restrict the range of
variables/constants. Typed wffs are also defined as the
wffs of OSFOL, except that all the variables are typed.

The following example represents the queries and
constraints of Table 1 in a Typed OSFOL-based
language.

Type predicates can restrict the range of variables/
constants in the formula. For instance, in the first query,
the unary predicate BORROWER_NAME(x) restricts
the usage of variable x in the domain of
BORROWER_NAME. Such a restriction not only
improves the efficiency of a language by reducing the
search space of a variable, but also provides a mechanism
for expressing the classification (Ref. 7) of a variable.
According to Ref. 4, complex type predicates can be

Table 2. Queries and constraints of Table 1 represented in an OSFOL-based language

(1) Queries
1. Find BORROWER_NAME of BORROWERS who BORROWed more than 3 BOOKs.

(BORROWERS, _) | (3y)(BORROWER^,.y) Ay > 3))
2. Get the BOOK_TITLE of BOOKs BORROWed by John.

(BOOK(x)|BORROW(John,x,_))
Find the BOOK_TITLE and BORROWER-NAME of BOOKs that are BORROWed by some author.

((BOOK(x),BORROWER(y,_))|BORROW(y,x,_))
Find the BOOKs whose AUTHOR is also the PUBLISHER.

3.

4.
(BOOK(x,, x2, x3, x4, x5, x6, x7) | x2 = x3)

(2) Constraints
1. A BORROWER cannot BORROW more than 5 BOOKs.

(Vx)(Vy) (BORROWER(x,y)-^ysj5)
2. A BORROWER must be either a STUDENT or a FACULTY.

(Vx) (3y) (3z) (BORROWER(x,_)^(STUDENT(_,y) AX = y) V (FACULTY(_,z,_) AX = z))

130 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

MANY-SORTED FIRST-ORDER LOGIC DATABASE LANGUAGE

Table 3. Queries and Constraints of Table 1 represented in a Typed OSFOL-based language

(1) Queries
1. Find BORROWER_NAME of BORROWERS who BORROWed more than 3 BOOKs.

(BORROWER_NAME(x) | (3y) (#_OF_BOOKS(y) A BORROWER(x,y) Ay > 3))
2. Get the BOOK_TITLE of BOOKs BORROWed by John.

(BOOK_TITLE(x) | BORROWER_NAME(John) A BORROW(John, x_))
3. Find the BOOK_TITLE and BORROWER_NAME of BOOKs that are BORROWed by some AUTHOR.

((BOOK_TITLE(x),BORROWER_NAME(y))|BORROW(y,x,_))
4. Find the BOOKs whose AUTHOR is also the PUBLISHER.

(BOOK(x,,x2,x3,x4,x5,x6,x7)|
BOOK_TITLE(x,) A AUTHOR(x2) A PUBLISHER(x3) A YEAR(X 4) A L I B R A R Y _ N A M E (X 5) A PLACE(X 6)
A #_OF_COPIES(x7) A x2 = x,)

(2) Constraints
1. A BORROWER cannot BORROW more than 5 BOOKs.

(Vx) (Vy) (BORROWER_NAME(x) A #_OF_BOOKS(y) A BORROWER(x,y) ^ y < 5)
2. A BORROWER must be either a STUDENT or a FACULTY.

(Vx) (3y) (3z) (BORROWER_NAME(x) A STUDENT_NAME(y) A F A C U L T Y _ N A M E (Z) -» (x = y) v (x = ;

defined from simple type predicates; hence the gen-
eralisation (Ref. 7) concept in the variable level (not in
the predicate level) can be supported. For example, the
following definition

BORROWER_NAME
= STUDENT_NAME V FACULTY_NAME

means that 'A BORROWER_NAME is either a
STUDENT_NAME or a FACULTY_NAME' and has the
same meaning as the second constraint of Table 3.
However, an MSFOL-based language (to be explained in
section 4) is proposed to enhance the expressive power
and to support the explicit representation capabilities of
those abstraction mechanisms.

4. MANY-SORTED FIRST-ORDER LOGIC
(MSFOL) BASED LANGUAGE

The main difference between OSFOL and MSFOL is
that in MSFOL, the universe is divided into sorts;
consequently, variables and constants are defined in
sorts. Predicates belong to the product of sorts. The
motivation for defining sorts in MSFOL is the same as
defining type predicates in Typed OSFOL (Ref. 4), and
a sort is used to restrict the usage of symbols. For
example, (Vx)(Vy)(3z) BORROW(x,y,z) is an
OSFOL formula, where variables x, y, and z are ranged
over the whole universe. To make the sentence more
meaningful, we can insert some type predicates to restrict
the range of x, y and z, and make it

(Vx) (Vy) (3z) BORROWER_NAME(x)
ABOOK_TITLE(y)
A DATE(z)-> BORROW(x, y, z).

This is a Typed OSFOL formula, which is obviously
more meaningful than an OSFOL formula. In MSFOL,
the corresponding sentence is simply written as

/W XBORROWER_NAME\

(VyBOOK_TITLE)

(3zDATE) (BORROW(x,y,z)),

where x, y, and z are defined in the sorts
BORROWER_NAME, B0OK_TITLE, and DATE res-
pectively. Intuitively, this formula is easier to express
than that of a Typed OSMOL formula by simply
counting the number of predicates in the formula. The
advantages will be further illustrated in Section
6.

MSFOL was mentioned in Refs. 6, 8; however, they
described neither the way of using MSFOL nor the
differences between OSFOL/Typed OSFOL and
MSFOL. MSFOL has a powerful mechanism, called sort
structuring. Sort structuring provides the same effect as
the classification and generalisation/specialisation ab-
straction mechanism (Ref. 7) which is commonly used in
most of current extensions of the RDM, and in Semantic
Data Models.9

Sort Structure

Three kinds of sort structures can be defined in MSFOL,
namely: disjoint, hierarchical, and lattice. They are used
to divide the universe of discourse. The disjoint sort
structure is in which all sorts are disjoint. The hierarchy
sort structure is in which a sort can be defined as a
subsort/supersort of another sort. For example,
STUDENT_NAME and FACULTY_NAME can be
defined as two subsorts of BORROWER_NAME, and
consequently BORROWER_NAME is the supersort of
STUDENT_NAME and FACULTY_NAME. The last
one, the lattice sort structure is in which sorts can be
defined as the union, intersection, and difference on the
subsort/supersort of other sorts. Figure 1 shows an
example:

BORROWER_NAME
/ \

STUDENT_NAME FACULTY_NAME
/ \ / \

UNDER_STUDENT_NAME GRA_STUDENT_NAME LECTURER_NAME

Figure 1.

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 131
9-2

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

J. S. H. YANG, Y. H. CHIN AND C. G. CHUNG

The meaning is that 'GRA_STUDENT_NAME is a
subsort of FACULTY_NAME and STUDENT_NAME\

As shown in above, the supersort corresponds to the
concept of generalisation, and subsort corresponds with
the concept of specialisation. These two abstraction
mechanisms can be used to classify objects and to
represent a hierarchical/network relationship among
objects in designing a database.

The following section defines MSFOL, and illustrates
the features of using MSFOL.

Formal definition of MSFOL

The formal definition of MSFOL is in four parts; the
language's definition is given in Definition 1, the
semantics of a relational interpretation are given in
Definition 2.0, the truth assignment is given in Definition
2.1, and the model definition is given in Definition 2.2. A
brief discussion precedes each formal definition.

The MSFOL based language

There are some variations in the definitions of the
MSFOL-based language which is derived from an
OSFOL. A new symbol, called the sort symbol, is used to
restrict the range of variables/constants and a relation
that of predicates. Complex sorts can be defined from
simple sorts. A sort can be either a subsort or a supersort
of another sort. A hierarchical or a lattice sort structure
can match the structure of real world applications, and
the sort's subsort/supersort relationships can be explicitly
represented. The added structure of MSFOL-Based
languages make it possible to more efficiently perform
more kinds of operations than with OSFOL-based
languages.

The definition of equality predicates puts some
restrictions on the variables and constants which can be
compared. If two symbols are defined from the same sort
or in the same path of a sort hierarchy, they are
comparable; otherwise they cannot be compared as the
formula is not well-formed. If BOOK_TITLE is a sort and
JSH Yang is a constant of the sort STUDENT_NAME,
then the predicate =NAME(xB00K-TITLE, ' JSH Yang') is
illegal, because the constant ' J S H Yang' and the variable
x are in two different sorts, notwithstanding the two
sorts, STUDENT_NAME and BOOK_TITLE, are both
subsorts of the sort NAME.

Each sort has distinct universal and existential quanti-
fiers which are used with the variables of that sort. Sorted
variables/constants and sorted quantifiers have an effect
similar to the data type used in a programming languages.
Furthermore, the two levels of abstraction in MSFOL,
the sorts/variables and predicates, is more flexible to use
than OSFOL with the type predicate approach (Ref. 5)
(to be explained in the Definition 2).

Definition 1: MSFOL based language

An MSFOL-based language is a pair (A, W), where A is
an alphabet of symbols and W is a set of syntactically
well-formed formulae the symbols of A which comprises:

1. Logical symbols: punctuation symbols such as
parentheses: (,), <,> and sentential connective symbols:
-S V, A, ->,•-».

2. Sorts: a non-empty finite set of symbols S, each of

which represents a simple sort and to which the following
rules are applied when the sorts are defined: (a) a simple
sort is a sort, (b) if s1 and s2 are sorts, then JX A S2, S1 V S2

and -<s1 are also sorts.
S2, S1

Example 1

If STUDENT_NAME and FACULTY_NAME are simple
sorts, then we can define BORROWER_NAME as the
supersort of STUDENT_NAME and FACULTY_NAME.
That is, BORROWER_NAME = STUDENT_NAMEv
FACULTY_NAME. This is the concept of generalisation7

and STUDENT_NAME/FACULTY_NAME is a
specialisation7 of BORROWER_NAME.

3. Variables: for each sort s, there are finite number of
variables v{,vs

2,....

Example 2

If x is a variable defined over sort NAME, then it is
denoted as xNAME.

4. Quantifier symbols: for each sort s, there is a
universal quantifier symbol Vs and an existential quanti-
fier symbol 3 r

When a variable is quantified, it is denoted as V8;t
8 or

3sx
s. Without ambiguity, we may write Vx5, 3 Xs or

V.x,y,3,x,y.
Assume s is a subsort of s', then Vsx

s, VSJC", or
3g x

s, 3S x
s are legal and x should range in sort s only.

5. Constant symbols: for each sort s, there is a
finite set of constant symbols, each of which is said to
be of sort s. Constants can be superscribed as
' JSH Yang STUDENT_NAME, I n m o s t c a s e s > t h e superscripts
can be omitted when the meaning is clear.

6. Predicate symbols: for each n-tuple <J1, ...,.?„> of
sorts for n > 0, there is a finite set of n-place predicate
symbols, each of which is said to be of sort (slt ...,sn).

Example 3

BORROW(BOOK_TITLE,BORROWER_NAME,
DATE) is the predicate of sort <BOOK_NAME,
PERSON_NAME, DATE) (the concept of aggregation7).

7. Equality Symbols: for each seS, there is an equality
symbol = s . It is a predicate symbol of sort <s, s}. That
means, the two terms of this predicate are in sort s. For
subsort st of s2, the symbol = , could be used as the
predicate symbol of sort <5X,52>.

Example 4

If STUDENT_NAME is defined as a subsort of
BORR0WER_NAME,then =STUDENT NAME(xSTUDENT-NAME,
yBORRowER_NAME) i s a l e g a l p r edicate. The infix form of the
xhnur r>rpHi<-atp ic VSTUDENT_NAME _ w
aoove predicate is x — STUDENT_NAMEV

BORROWER_NAME

8. Terms: any variable or constant symbol of sort s is
a term of sort s.

9. Atomic Formulae: an atomic formula P(r1,...,rn)
consists of a predicate symbol P of sort (slt ...,•?„> and
terms rv...,rn of sort slt ...,sn, respectively. Wis defined
as:

10. Well-formed formulae (wffs): Wffs are defined
recursively by using the connectives--, v , A , -»-, <-> and the
quantifiers Vs and 3S as follows: (a) An atomic formula is
a wff. (b) If w1 and w2 are wffs, then -•(w^), (wt) V (w2),

132 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

MANY-SORTED FIRST-ORDER LOGIC DATABASE LANGUAGE

(wj A (w2), (wj) -> (w2), and (n^) <-> (»v2) are wffs. (c) If w
is a wff and xes , then V.xMx') and 3sxV(xs) are wffs.

The meaning of V, xMx5) is ' For all x which belong to
sort s, w is the case' and 3sxV(x!) is 'There is an x which
belongs to the sort s, such that w is the case.'

11. Open wff: a wff which contains one or more free
variables. A free variable is a variable which is not
quantified.

Example 5

Assume STUDENT_NAME is defined as the subsort
of sort BORROWER_NAME. Then (vx

STUDENTNAME)
(^DEPARTMENT yBORROWER-NAME | S y U D E N T (_ , X , Z, _) A x

= NAMEY)) a n d STUDENT(xID,ySTUDENT-NAME, 'Computer
Engineering', 5) are both open wffs.

The meaning of the first open wff is 'List the
departments and names of borrowers who are students',
the meaning of the second one is ' List the id. and names
of the students who are in the Computer Engineering
department'.

12. Closed wffs: a wff which contains no free variable.

Example 6

(VSTUDENT_NAMEX) (VBOO^TITLEY) (^DATE*) (BORROW(x,
y,z)) which means 'For all x and y which are
STUDENT_NAMES, and BOOK_TITLES, respectively,
there exists a DATE in the predicate relation BORROW.'

13. Ground wffs: a wff which contains no variables
(only constants).

Example 7

STUDENT(173215, 'JSH Yang', 'computer engin-
eering').

Relational interpretation

The interpretation (semantics) of an MSFOL-based
language is described as follows. For each sort, there
associates a domain Dt. Quantifiers are defined over sorts
and restrict the quantified variables to be in the domain
of the sort. For example, if cl,c2,...,cn are the finite
number of constants of sort s, then Vsx'w(x') has the
same meaning as w(cj) A w(c2) A ... A w(cn), and 3, xV(x')
means w(cx) V w(c2) V ... V w(cn). Predicate is defined and
ranged over the product of sorts of its terms. Equality or
other comparison/arithmetic operators are defined as
binary predicates of sort <s, s") (where s and s' are
compatible sorts). The result of equality comparison is
to assign a truth value.

Definition 2.0: Relational interpretation of an MSFOL
based language

The interpretation / of an MSFOL-based language is
defined as follows:

1. To the quantifier symbol V, and 3,, / assigns a non-
empty set De. Ds is called the universe of / of sort s.

The universe of discourse is the union of sorts'
universe, denoted as D = U, De.

2. To each constant symbol c of sort s, I assigns a
point c in Dt. Without loss of generality, hereafter, all
constant symbols are treated the same as the point in D
and are denoted as c* or just c).

3. To each predicate symbol P of sort (sx, ...,*„>, /
assigns a relation P £ D x...xD, .

4. To each variable vs in Vs of sort s, I assigns a
function / : Vs -> Ds which maps each variable into the
corresponding domain.

5. For each equality predicate the following general
properties apply:

• Reflexivity Vs x{x = s x),
• Symmetry V8 x, y((x = s y) -* (y = , x)),
• Transitivity Vs x, j , z((x =,y) A()> =,Z)->(X = S Z)) ,
• Substitution V x1,y1, ...,VBnxn,yn

(P(x1,...,xn)A{x1=Siy1)A...A(xn=Sriyn)->P(y1,...,
yn))-

Remarks

Other arithmetic/comparison operators such as +, — *,
..., > , <, ...etc. can also be defined as predicates in
the same way as equality, and have their own usual
properties.

Truth Assignment and Satisfactions of MSFOL Wffs

Truth assignment and satisfaction are similar to OSFOL.
The true value of a ground atomic formula is evaluated
by finding out whether the formula is in the definition of
the predicate. For example, to evaluate the true value of
STUDENT(173215, 'JSH Yang', 'Computer Engin-
eering', 5) we find whether the tuple <17321 5,' JSH
Yang','Computer Engineering', 5> is in the relation of
the predicate STUDENT(ID,STUDENT_NAME,DE-
PART,LEVEL). Wffs constructed by using logical
connectives (i.e. A , V , -•, ->-, <->, V, 3) are evaluated with
their usual meaning using the truth tables as defined
below. The evaluation of the truth value of a closed wff
is to find out whether it is in, or is implied by, the axioms.
The evaluation of the truth value of an open wff is to find
a relation, and a set of «-tuples, which satisfy the wff.
From the above two definitions of Definition 2.0, we can
easily find out that the yes/no query evaluation in an
RDM corresponds to the evaluation of a ground wff, and
the evaluation of common queries corresponds to the
evaluation of open wffs. The deductive capabilities or
integrity constraints maintenance of a RDM corresponds
to the mechanism of specification, derivation, and
evaluation of closed wffs.

Definition 2.1: Truth assignment and satisfactions

1. Truth assignment

The truth assignment for a closed wff (atomic formula/
ground wff), with respect to an interpretation /, is the
truth functional result of the terms of the wff. The
following truth table show the truth assignment for the
closed wffs with logical connectors: (»v, and w2 are
assumed to be closed wffs).

Truth

" i

true
true
false
false

Table

not Wj

false

true

w,

true
false
true
false

ivt v w.

true
true
true
false

true
false
false
false

true
false
true
true

true
false
false
true

THE COMPUTER. JOURNAL, VOL. 35, NO. 2, 1992 133

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

J. S. H. YANG, Y. H. CHIN AND C. G. CHUNG

2. Satisfaction

The satisfaction of a closed wff, with respect to the
interpretation /, means that the wff with the truth
assignment to the terms of the wff is true in the
interpretation. It is denoted by \=,w. Assume w1, w2
and w are closed wffs in set W. P is a predicate, and
tY, t2, ...,/„ are terms, the following are the definitions:

(a) \=,P(t1,...,tn)iffP(t1,...,tn)eW.
(b) t=7 wx A w2 iff t=, Wj and N , w2.
(c) t=7 vvx V w2 iff F=, w1 o r l=7 vv2.
(rf) t=7 ->w iff no t t=, w.
(e) t=, Wi-s-vfj iff N=/-iw1 v w2.
C/0 >=/ wi *-*• W2 i f f •=/ (wi -> wi) A (w2 -> Wj).
(g) \=,(Vsx

8)w iff for all constants c of Ds, which are
assigned to variable and \=Ilx c] w.

(A) t=7 (3, JCO w iff t=7[^c] -(V.**) -w.
(i.e. for some constant c of Z), which is assigned to
variable x of same type and t=7 w.)

Valid wffs and model
Some assumptions used by the RDM, such as the Closed
World Assumption, Unique Name Assumption, ...etc.
are the common implicit rules of RDM (Ref. 5). These
rules can also be represented by first-order closed wffs
and they are valid wffs. Similarly, the integrity constraints
can be represented as the closed wffs in MSFOL. The
database (interpretation) should be a model of these
integrity constraints.

Definition 2.2: Valid wffs and model

1. Valid Wffs:
A wff w is valid iff N7 w, that is, w is true for every

interpretation.
2. Model:
An interpretation is called a model for some set of

wffs, if it is an interpretation in which all wffs in the set
are true.

Notice, MSFOL is a first order variation; hence the
completeness and compactness of first-order logic are
reserved; however, we shall contrast the expressiveness,
efficiency, ease-of-use of an MSFOL-based language as
opposed to an OSFOL-based language.

The following examples represent the queries and
constraints of Table 1 in an MSFOL-based language.

5. REDUCTION ALGORITHMS BETWEEN
A TYPED FIRST-ORDER LANGUAGE AND
A MANY-SORTED FIRST-ORDER
LANGUAGE

From the above definitions of MSFOL, the major
difference between an MSFOL-based language and an
OSMOL-based language are the syntactic variations of
sorts and sorted symbols. The interpretation of an
MSFOL is similar to OSFOL's, except the restriction of
using the language symbols and the sort structuring.

In this section, two algorithms and examples are given
to make a syntactic reduction between the wffs of an
MSFOL-based language and a Typed OSFOL-based
language in order to prove that these two types of wffs
are syntactically equivalent. Since a first-order language
is composed of the wffs of the underlying logic (please
refer to 'Definition 1: MSFOL based language'), the
equivalence of these two kinds of wffs also implies the
equivalence of these two languages. The correctness of the
two algorithms is proved from the point of view of
interpretation (semantics) of the given language; there-
fore these two languages are semantically equivalent in
that sense.

Syntactic reduction from MSFOL to typed OSFOL
Reduction algorithm 1: (To reduce an MSFOL wff to a
Typed OSFOL wff)
Input: an MSFOL wff
Output: the corresponding typed OSFOL wff
Procedure:

(1) Replace each sorted universal/existential quanti-
fier by a universal/existential quantifier (i.e. Replace Vg
and 3, with V and 3).

(2) For each sorted variable/constant, insert the
corresponding unary predicate in the left-hand side of
the formula.

(3) Connect the unary predicates inserted by the
previous step with the A sign and use the -»• sign to
connect with the formula.

(4) Replace each sorted variable/constant by an
unsorted variable/constant, such as x for xs,..., and etc.
(e.g. If the MSFOL wff is (V,*8) (V8, / ') (w(w\ / ') , the
result of the above three steps is (Vx) (Vy) (s(x) A s'(y) ->•
w(x,y)).)

(5) Repeat the above steps until there are no sorted
variables/constants and sorted universal/existential
quantifiers left.

Table 4. Queries and constraints of Table 1 represented in an MSFOL-based language

1. Find BORROWER_NAME of BORROWERS who BORROWed more thant 3 BOOKs.
(xBORRowER_NAME|(3y#_oF_BooKS) (BORROWER(x, y) A y > 3))

2. Get the BOOK_TITLE of BOOKs BORROWed by John.
(x BOOK_TITLE| B O R R O W (J o h n x _))

3. Find the BOOK_TITLE and BORROWER_NAME of BOOKs that are BORROWed by some AUTHOR.
((xBooieTm.EyBORRowER.NAME) | BORROW(y, x,_))

4. Find the BOOKs whose AUTHOR is also the PUBLISHER.
VBOOK_TITLE VAUTHOR ..PUBLISHER
X X 2 X 3

V*_OF_COPIES\

(2) Constraints
1. A BORROWER cannot BORROW more than 5 BOOKs.

(VxB0RR0WER_NAME) (Vy#_OF_B00KS) (BOR ROWER(X, y) -> y i
2. A BORROWER must be either a STUDENT or a FACULTY.

(yxB0RR0WER_NAME) (3ySTUDENT_NAME\ (gzFACULTY_NAME\ (x _ y \

5)

134 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

MANY-SORTED FIRST-ORDER LOGIC DATABASE LANGUAGE

Example 8
L e t (yBORROWER_NAME\ /^ySTUDENT_NAME\ (^FACULTY-NAME)

((x = y) v (x = z)) be a closed wff of MSFOL (with
abbreviation for V and 3). following the above algorithm,
the corresponding type closed wff of OSFOL after the
reduction is

(Vx) (3y) (3z) ((BORROWER_NAME(x)
ASTUDENT_NAME(y)
A FACULTY_NAME(z)) •* (x = y) V (x = z))

Syntactic Reduction from Typed OSFOL to MSFOL

Reduction algorithm 2: (To reduce a Typed OSFOL wff
to an MSFOL wff)
Input: a Typed OSFOL wff
Output: the corresponding MSFOL wff
Procedure:

(1) Find each variable/constant which is in a unary
predicate on the left-hand side of the formula, and the
unary predicate is one of the special type predicate (e.g.
x of s(x), c of s'(c), ...).

(2) Replace each variable/constant with the sorted
variable/constant by using the predicate symbol as its
sort symbol, and eliminate the predicate (e.g. replace x
with Xs and eliminate s(x),...).

(3) Replace each universal/existential quantifier with
the sorted universal/existential quantifier by using the
variable's sort of quantified as its sort.

(4) Repeat the above steps until all the variables/
constants and universal/existential quantifiers are
sorted, then eliminate the ->• sign if there is no predicate
remaining on its left-hand side.

Example 9

Let

(Vx) (3y) (3z) ((BORROWER_NAME(x)
ASTUDENT_NAME(y)
A FACULTY_NAME(z)) -» (x = y) V (x = z))

be a typed closed wff of OSFOL. Following the above
algorithm,
/yx80RR0WER-NAME\ /^ySTUOENT.NAME)

(^FACULTY-NAME) ((x = y) y (^ = z))

is the corresponding closed wff of MSFOL (with
abbreviation for V and 3).

ness of the algorithm can be proven by the following
induction:

(1) Vŝ (-.vv(.v*)) is equivalent to Vx(s(x)^—w(x)).

Proof

By the definitions of MSFOL, the meaning of
Vsx"(-ivv(xs)) is that ->H'(C1) V ->w(c2) v ... V ->w(cn) is
true. We can say that Vx(s(x)^-<w(x)) means 'If x is
restricted to the range of s then ->w(x) is true.' By
the OSFOL definition, it has the same meaning.

(2) 3,x'(->w(xt)) is equivalent to 3x(s(x)->-'»v(x)).

Proof
The proof is similar to (1) above. The meaning of
3sx

s(^w(xs)) is the same as 3x(s(x)-> -'w(x)) both
equivalent to -'wic^ A --H^C,,) A ... A ^w(cn).

(3) Vsx
sVs.y'(H'(xs)Vvv'O's)) is equivalent to

V x Vy(s(x) V s'(y) -> w(x) V ' ()

Proof

By the definition of MSFOL, the meaning of
Vs x

sVs, f\w/xs) V w'(ys')) is (w(c«) v w\ci)) A (w(cs
2)

V w'(c()) A ... A (w(cs
n) V w'(cf)) A (w(cl) V w'(c2')) A ...

A (w(c2
n) V w'(cs

m)) is true, and similarly the meaning of Vx
Vy(.?(x) A s'(y) -»• W W v w'{y)) is the same as above.

(4) 3sx3s,y(w(x)vw'(y)) is equivalent to
A s'(y) ->• w(x) V w'(y))

Proof

Similar as to the above, the meaning is
(w(ci) V w'(cf)) V (w(c2) V W{c{)) V ... V (w{c'n) V w'(c*;))
V (w(c[) V w'(4)) V ... V (w(c'n) V w\csj) is true.

6. ADVANTAGES OF MANY-SORTED
FIRST-ORDER LANGUAGE
It has been shown that an MSFOL-based language has
the same expressive power as a Typed OSFOL-based
language; however, the restricted usage of symbols and
the sort structuring in MSFOL can provide more
advantages than either an OSFOL-based language or a
Typed OSFOL-based language. The followings are the
illustrations.

Correctness of the reduction algorithms

Using induction and two connective symbols -> and V,
the correctness of the Reduction algorithm can be
proven. Other connective symbols can be derived from ->
and v ; therefore they are omitted.

Theorem 1

The two reduction algorithms are correct.

Proof
Assume in s and s', there are c\, c\,..., c'n and cj', c2',..., c^
finite number of constants respectively, and the correct-

More efficient implementation

Observation 1

The implementation of an MSFOL-based language can
be improved by reducing the search space of variables.

In an MSFOL-based language, all variables are
defined in sorts, there is no need to use a unary type
predicate to restrict the usage of variables; hence the
number of predicates in the MSFOL wff is less than the
corresponding wff in Typed OSFOL; therefore, im-
plementation of an MSFOL-based language is more
efficient than that of a typed OSFOL-based (or OSFOL-
based) language, if the criteria for efficiency is the
number of predicates to be evaluated.

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 135

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

J. S. H. YANG, Y. H. CHIN AND C. G. CHUNG

Early detection of syntax errors
Observation 2

In an MSFOL-based language, a sort syntax error in a
logical (or comparison) predicate such as equality, can be
detected earlier than in a Typed OSFOL-based language.

Since variables are defined in sorts and each sort has
its own quantifiers and logical/comparison predicates;
syntax errors can be detected by syntactic analysis rather
than at the interpretation (execution) level as with a
Typed OSFOL-based language does.

Operation Prevention

Observation 3

Some semantically meaningless operations can be
detected when parsing MSFOL-based language.

For reasons similar to those above, if the terms in a
formula of a sorted logic have no sorts in common, they
cannot intersect with each other. In one-sorted logic,
there is no such restriction. Therefore the problem of the
natural join ambiguity which could occur with an OSFOL-
based language would be presented by an MSFOL-based
language.

Example 10

Compare the following two operations:
(1) The natural join of the relations BOOK and

BORROW on the domain BOOK_TITLE,
(2) The natural join of the relations LIBRARY and

BOOK on the domains LIBRARY_NAME and
BORROWER_NAME.

The first operation is allowed by an OSFOL, a
Typed OSFOL, or an MSFOL-based language since
the join operation is based on the same domain. The
second operation is intuitively meaningless, since
LIBRARY_NAME and BORROWER_NAME are in
two different domains. Such a situation can be detected
by an MSFOL-based language as an syntax error
while an OSFOL-based language would permit it. In
a Typed OSFOL-based language, the variables for
LIBRARY_NAME and BORROWER_NAME can be
restricted by using different types predicates, such
meaningless operations can also be prohibited during the
evaluation time. However, for an MSFOL-based
language, the syntax error can be detected at compile/
interpret time rather than at evaluation time as
OBSERVATION 2 describes.

Abstraction mechanism

The sort structuring of an MSFOL-based language
provides the generalisation/specialisation abstraction
mechanisms to divide the universe into a hierarchy or a
lattice structure. This is neither supported by an OSFOL-
based language nor by a Typed OSFOL-based language.

7. CONCLUSIONS AND FURTHER
RESEARCHES

The formal definition of an MSFOL-based language is
given and the semantic equivalence between a Typed
OSFOL-based language and an MSFOL-based language
is proven. The efficiency and abstraction mechanism in
an MSFOL-based language provides an appropriate
interpretation to the recent extensions of the RDM (Ref.
10). The complexity of both Reduction algorithms is
O{mri)\ where m is the number of quantifiers and n is the
number of variable/constant symbols.

With other abstraction mechanisms such as attribute/
role, classification/instantiation, functional relationship,
and object oriented features provided in recent semantic
data models (Ref. 9), it would seem that an MSFOL-
based language is more promising than an OSFOL-
based language for interpretations of these models. The
comparison of abstraction mechanisms of an OSFOL-
based language, a Typed OSFOL-based language, and
an MSFOL-based language is summarised in the
following table.

Table 5. Comparison of abstraction mechanisms

RDM

aggregation
classification
generalisation

OSFOL

yes
no
no

Typed OSFOL

yes
implicitly
no

MSFOL

yes
explicitly
yes

From the taxonomy of data models (Ref. 10), the
current trend in data modelling is to provide more
structural and dynamic mechanisms to reflect the real
world application in an object-based manner. Examples
are the semantic data models such as TAXIS,11 SDM,12

IFO13 or SHM + .14 These structural and dynamic
mechanisms also provide abstraction capabilities for
designing a database. The results provide a formal basis
to interpret database models through the extensions of
classical logic. MSFOL gives structural mechanisms and
provides a better interpretation than that of OSFOL or
Typed OSFOL. The logic interpretation of behaviour
modelling and constraints handling should be studied
next.

A proper and sound logic interpretation for a database
model could, by using MSFOL, give a formal basis for
evaluating the power of various data models, and can
provide a deep understanding of the capability of a data
model. The symbolic deduction capabilities of logic
might also provide the features for knowledge reasoning
and deduction required in the field of Artificial In-
telligence.

Acknowledgement

We are grateful to professor P. J. H. King of Birkbeck
College, University of London, and professor Daniel J.
Buehrer for their dedication to revise the paper.

REFERENCES
1. J .M.Nicolas and H. Gallaire, Data Base: Theory vs.

Interpretation, In Logic and Databases (H. Gallaire and
J. Minker eds.), pp. 33-54. Plenum Press (1978).

2. R. Reiter, Data Bases: A Logical Perspective, In
Proceedings of the Workshop on Data Abstraction, Databases

and Conceptual Modeling, pp. 174-176. Pingree Park,
Colorado (1980).
E. F. Codd, A Relational Model of Data for Large Shared
Data Banks, Communication of ACM 13 (6) 377-387
(1970).

136 THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

MANY-SORTED FIRST-ORDER LOGIC DATABASE LANGUAGE

4. R. Reiter, On the Integrity of Typed First Order Data
Bases. In Advances in Data Base Theory, edited H. Gallaire,
J. Minker and J. M. Nicolas, pp. 137-157. Plenum Press
(1981).

5. R. Reiter, Toward a Logical Reconstruction of Relational
Database Theory. In On conceptual Modelling, edited M. L.
Brodie, J. Mylopoulos and J. W. Schmidt, pp. 191-223.
Springer-Verlag, N.Y., (1984).

6. A. Pirotte, High Level Data Base Query Languages. In
Logic and Databases, edited H. Gallaire, and J. Minker,
pp. 409-436. Plenum Press (1978).

7. J. M. Smith and D. C. P. Smith, Database Abstractions:
Aggregation and Generalization, ACM Transaction On
Database Systems 2 (2) 105-133 (1977).

8. H. Gallaire, J. Minker and J. M. Nicolas, Logic and
Database: A Deductive Approach, ACM Computing
surveys, 16 (2) 153-185 (1984).

9. R. Hull and R. King, Semantic Database Modeling:
survey, Application, and Research Issues, ACM Computing
Surveys, 19 (3) 201-260 (1987).

10. M. L. Brodie, On the Development of Data Models. In On
Conceptual Modelling, edited M. L. Brodie, J. Mylopoulos
and J. W. Schmidt, pp. 19-47. Springer Verlag (1984).

11. A. Borgida, J. Mylopoulos and H. K. T. Wong,
Generalization/Specialization as a basis for Software
Specification. In On conceptual Modelling edited M. L.
Mylopoulos and J. W. Schmidt, pp. 87-114. Springer-
Verlag (1984).

12. M. Hammer and D. McLeod, Database description with
SDM: A Semantic Database Model, ACM Transaction on
Database Systems 6 (3) 351-386 (1982).

13. S. Abiteboul and R.Hull, IFO: a Formal Semantic
Database Model (Preliminary Report). In Proceedings of
ACM SIGART-SIGMOD Symposium on Principles of
Database Systems, pp. 119-132 (1984).

14. M. L. Brodie and D. Ridjanovic, On the Design and
Specification of Database Transactions. In On Conceptual
Modelling, edited M. L. Brodie, J. Mylopoulos and J. W.
Schmidt, pp. 277-306. Springer-Verlag (1984).

Announcements

17-20 JUNE 1992

ICCAL' 92 Fourth International Conference on
Computers and Learning, Acadia University,
Nova Scotia, Canada. 50 papers, 6 invited
speakers, workshops, tutorials, panels,
exhibitors.

Contact: Dr Ivan Tomek, Jodrey School of
Computer Science, Acadia University, Wolf-
ville, Nova Scotia, Canada, BOP 1X0. Tel:
(902) 542-2201. Fax: (902) 542-7224. E-mail:
internet: iccal@ Acadia U. ca.

24-26 JUNE 1992

Thirteenth International Conference on
Application and Theory of Petri Nets, Sheffield.
Petri Nets Tutorial, Sheffield, 22-23 June 1992

The Thirteenth Annual International Petri
Net Conference will be organised by The
School of Computing and Management Sci-
ences, Sheffield City Polytechnic, England.
Papers will be presented in areas of application
and theory of Petri nets. The language of the
conference is English.

Topics

System design and verification using nets
Causality /partial order theory of concurrency
Analysis and synthesis, structure and behav-
iour of nets
Net-based semantical, logical and algebraic
calculi
Higher-level net models
Timed and stochastic nets
Relationships between net theory and other
approaches
Symbolics net representation (graphical,
textual, ...)
Computer tools for nets
Experience with using nets, case studies

Educational issues related to nets
Applications of nets to:
• office automation
• flexible manufacturing
• programming languages
• protocols and interfaces
• hardware structures
• real-time systems
• performance evaluation
• operations research
• embedded systems

The conference takes place under the aus-
pices of: AFCET SIG 'Systemes Paralleles et
Distribues' and CNRS-C3, AICA, BCS SIG
'Formal Aspects of Computing Science',
EATCS and GI SIG 'Petri Nets and Related
System Models'.

Tools, Posters, Projects, Meetings and
Courses

The conference will also comprise:
• An exhibition of posters describing theor-

etical and practical results. Posters are
displayed throughout the conference.

• An exhibition of computer tools for Petri
nets. Tuesday will be the main day of the
tool exhibition and each tool will have its
own scheduled time for a coherent pres-
entation for a large audience. The length
of each presentation will be approx. 60 min.
Moreover, periods are set aside during the
conference in which tools can be demon-
strated for small groups. The organizers
will provide Macintosh, IBM PC and SUN
equipment. There will be an overhead
projection system for Macintosh and IBM
PC. It may, upon request, be possible to
supply other kinds of computer equipment.

• Short presentations of projects where nets
are put into practice. This section of the
conference allows the presentation of ex-
periences of using nets in on-going or
completed projects. The presentations will
take place in a special session during the
conference and each of them may be
supplemented by a brief report in the
proceedings.

• Meetings and courses with relation to Petri
Nets. Monday and Tuesday will be the
days for this activity. It is possible to
arrange meetings for different groups, e.g.
participants in international Petri Net pro-
jects. It is also possible to arrange small
educational courses, e.g. with respect to
some of the demonstrated Petri Net tools.
All activities are free of charge for the
participants.

Tutorial

The tutorial will concentrate on the basic
notions and fundamental concepts of Petri
Nets. There will be talks on Elementary Net
Systems, Place/Transition Systems, High
Level Nets, Coloured Petri Nets, Timed and
Stochastic Nets and Performance Evaluation.

History of the Conference

The conference was formerly called the Euro-
pean Workshop on Applications and Theory
of Petri Nets and the meetings have taken place
annually since 1980. The aim of the con-
ferences is to create a forum for discussing
progress in the application and theory of Petri
Nets. Typically, the conferences have 100-150
participants - one-third of these coming from
industry while the rest are from universities
and research institutions. The conference takes
place in the last week of June.

Organising Committee Chairman

Geoff Cutts, School of Computing and Man-
agement Sciences, Sheffield City Polytech-
nic, 100 Napier Street, Sheffield Sll 8HD,
England. Tel: +44 742 533 117. Fax: +44
742 533 161. Telex: 54680 SHPOLY G.

Details of the conference may be obtained
from :

Conference Services, Sheffield City Polytech-
nic, 36 Collegiate Crescent, Sheffield S10 2BP,
England. Tel: +44 742 532 576. Fax: +44
742 532 579.

THE COMPUTER JOURNAL, VOL. 35, NO. 2, 1992 137

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

