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Target maneuver has long been a problem of tracking small 
targets with the K h a n  Blter. We describe an incremental model 
for mancwer detection and estimation for use in target tracking 
with the Kalmao filter. The approach is similar to the multiple 
Kalman filter bank, but with a memory for the maneuver status 
for the track under consideration. The advantage of this approach 
is that the target acceleration can be -re accurately estimated 
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Backing of small targets with the Kalman filter 
[16] has been an active research subject during the 
past twenty years. By modeling the position and the 
velocity as a state vector, a dynamic equation is usually 
used to describe the movement of targets. By recursive 
calculation, the next state of a target can be easily 
estimated and a trajectory describing the movement 
history can be maintained. 

Usually, there are three phases in the life of a 
trajectory; the initialization stage, the maintenance 
stage, and the deletion stage. The initialization stage 
is the creation of a new track. Hypothesis testing 
of those measurements that are not used to update 
the existing tracks is used to decide whether or not 
a new track is to be created. The deletion of a track 
is done by testing the track quality indicators to 
justify whether or not a track is to be maintained. 
We mainly discuss the maintenance stage. In this 
stage, the main concern is the maintenance of the 
trajectory. When there is more than one return at a 
measurement time, the system has to decide a best 
return measurement according to its track estimations. 
Besides the target-originated measurements, there exist 
other types of measurements, such as clutter caused 
by background noise, man-made jamming and thermal 
noise of the internal system, etc. 

is the detection of the target maneuver and the 
estimation of its amount. Several approaches have 
been proposed to solve this problem, such as nonlinear 
estimation [17, 81, input estimation [7l, and the 
extended Kalman filtering [15]. Thorp [20] described 
a technique that switches, between two Kalman filters 
when maneuver is detected. Augmented state filter is 
another popular approach [3, 141. In this method, the 
state vector of the Kalman filter is augmented while 
maneuver is detected and is restored to the original 
state dimension while the maneuver vanishes. The 
drawback of such approach is that there is a delay 
between the time when the maneuver actually occurs 
and when it is detected. 

is usually used [18, 121. With this set of distinct 
maneuver events, a bank of Kalman filters is 
used simultaneously to predict a set of next state 
estimations. Then, Bayes' rule is used to calculate 
the posterior probability of an acceleration given the 
measurements. This approach is not flexible since the 
maneuvers are usually random and unknown in the 
real world. Thus, an improved algorithm for maneuver 
estimation is introduced here. 

In our method, the tracking filter is still based 
on the Kalman filter. However, a separate vector 
to record the acceleration is incorporated into the 
system equation. If, there is no acceleration, the vector 
assumes a value of zero. Owing to the steady state 

In the maintenance of a track, a difficult problem 

In the above approaches, a set of known maneuvers 
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characteristics of the Kalman filter, there must be a 
perturbation to cause a large deviation in estimation. 
So, if there is a large deviation between the estimation 
and the measurement, we assume that there is a 
change in the target acceleration. Using the known 
maneuver value of the previous time as the reference, 
a set of incremental maneuver is assumed. This set of 
incremental values together with the reference is used 

and is defined as 

G(k)  = 
A2 

0 -  2 
A 0  

( 0  A 

=(?). 
to estimate the next states and Bayes’ rule is used to 
find the best possible one. Thus, for each track under 
consideration, besides the steady state estimation, 
N possible different positions 
assumed incremental maneuver values are estimated. 
According to the probability of the acceleration given 
the measurement the reference value is updated. Since 
the incremental acceleration is a vector form, we can 
describe it by a scale value and a direction unit. The 
amount of the incremental maneuver value is derived 
according to the sampling time interval, the noise 

Both F(k)  and G(k)  are constant matrices since the 
sampling interval A is assumed to be a constant for all 
k. The noise term v(k) is a zero-mean white Gaussian 
random process with known variance, 

to N 

E[v(k)vu)’] Q(k)bkj (6) 

where 
A4 A3 

Q(k)  = (F q (7) 
.covariance, and the object dynamic characteristics. -12 A212 

and q is the variance of the noise process and bkj is 
the delta function. 

with the probability of detection (I‘D), can be modeled 
as 

II. PROBLEM FORMATION The target-originated measurement, which occurs 

Let us consider a dynamic system in the multitarget 
environment with T parallel Kalman filters, where T z‘(k) = H(k)d(k)  + w(k) (8) 
is the total number of existing tracks currently under 
consideration. These state equations can be described 
as follows, 

where H(k) (USuUY independent of k), is a transition 
matrix and is defined as 

1 0 0 0  x‘(k + 1) = F(k)x‘(k) + G(k)u‘(k) + v(k), H(k) = (o o) = (12 0) (9) 
t = 1, ..., T (1) 

and w(k) is a zero-mean white Gaussian random 
process with diagonalized non-zero covariance matrix, where k is the scan index at time Ak, A is the 

sampling time interval, and the superscript t is the 
track number. The state vector is a four-dimensional 
vector of position and velocity, 

E[w(k)w(j)’] = R W & j  (10) 

and 
x’(k) = (x’(k) y’(k) P(k) Y’(k))’ (2) 

and U‘ (k) is the maneuvering vector, corresponding to 
the acceleration generated by the pilot at scan k for 
the tth track in both the x and y direction, 

u‘(k) = (X‘(k) Y‘(k))’. (3) 

F(k) is the transition matrix that transits the state 
vector from scan k to the next scan k + 1, and is 
defined as 

11 0 A 0 )  

\o  0 0 1 )  

where I2 is a 2 x 2 identity matrix. G ( k )  is also a 
transition matrix that transits the state vector according 
to the occurrence of any non-zero external force U‘@) 

R(k) = (”” ) 
0 RZ? 

where Rll and R z  are predefined variance in x and y 
direction, respectively. For convenience, the scan index 
k of F(k), G(k),  H(k), Q(k),  and R(k) can be omitted. 

The main idea that we estimate an incremental 
maneuvering change between any two time intervals 
k and k + 1, is that, for sufficiently small sampling 
time interval A, the amount of the abrupt change 
in maneuver is usually small. The new maneuver 
value after change is assumed to be the sum of the 
maneuver before change and a small increment. For 
detection, we partition the entire domain into several 
regions, and associate each region with an incremental 
acceleration vector. These regions represent the 
search area for a new target position if the target 
is accelerated by the corresponding acceleration. 
The number of partition is a tradeoff between the 
computation speed and the estimation accuracy. In 
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1 
Fig. 1. Example choice of U',(k). 

our experiment, we take eight incremental maneuver 
modes evenly around the entire plane as an example. 

new states are generated with these eight different 
maneuver deviation with respect to the reference 
maneuver. These eight incremental maneuver vectors 
distributed isotropically around the previous maneuver 
is shown in Fig. 1. 

For each track under consideration, eight additional 

The state prediction equations become 

% i ( k  + 1 1 k) = F%'(k I k) + GUL(k), 
(12) t=l, ..., T m = O  ,..., M - 1  

where T is the total number of existing tracks at scan k 
and M is nine in our case. 

The variables U',(k) indicate the nine maneuver 
values labelled from 0 to 8, defined as 

where 6'(k) is the previous maneuver value, 
C!,,(k)$(k) is the incremental value Ch(k)  is a 
scale matrix, and Ah (k) is a unit directional vector 
of the mth maneuver for the tth track at scan k. 
They are used to denote the amount of acceleration 
and the direction of acceleration relative to O'(k), 
respectively. 

As shown in Fig. 1, the reference acceleration 
o'(k) is the previous maneuver value. The unit 

directional vector of the rnth maneuver value is 
defined as 

Due to the variance of the measurement z(k + l), 
a validation region for each mode is set to take into 
account this measurement deviation. For this validation 
region, two conditions have to be considered. The 
first is when the validation gate is too large. In this 
case, ambiguity may arise as to which region a target 
belongs. The second is when the validation gate is too 
small. In this case, it is possible that a return signal will 
fall outside any of the validation regions. Therefore, 
the validation region and the incremental amount 
should be considered together. If one is kept fixed, the 
other has to be adjusted accordingly. In our approach, 
we choose a fixed gate size. The scale matrix is thus 
a function of the sampling time interval A, the gate 
size y2, and the innovation covariance S'(k + 1). It is 
derived in the Appendix as 

Ck[i ,  j](k + 1) = d2y2slSr[i,jJ(k 4 + 1)1 (15) 

where the indices i and j represent the row and 
column, respectively. 

With the nine estimated states in (12)) the 
predictions of the measurement for the tth track are 
as follows. 

Fig. 2 Search area of k',(k + 1 I k) €or incremental maneuver in Rg. 1. 

441 CHANG & LIN: INCREMENTAL MANEUVER ESTIMATION MODEL FOR TARGET TRACKING 



The innovation vectors between these estimation and 
the rth true measurement at scan k + 1 are 

Z',,(k + 1) = z,(k + 1) - Zk(k + 1 I k ) ,  

r = 1, ..., R(k + 1) (17) 
where R(k + 1) is the total number of measurements 
at scan k + 1. An illustration of possible &!,,(k + 1 I k) 
is shown in Fig. 2, where the points labelled from 0 
to 8 indicate the estimated positions for each of the 
assumed incremental modes. 

The validation region is defined with Zk(k + 1 I k) 
as the center. The distance between the measurement 
z,(k + 1) and the estimated position is normalized with 
the measurement covariance and is defined as 

dk,(k + 1)2 i Z L , ( k  + l)'S'(k + l>-'ZL,(k) 

(18) 
where S'(k + 1) = E[Z',,(k + 1 I k)Zk,(k + 1 I k)' I 
2 ( k  + l)] is the innovation covariance matrix. Since 
the r e tuc  is a Gaussian random process with mean 
equal to Z!,,(k + 1 I k) and covariance equal to S'(k + 
l),  the term d!,,,(k + 1)2 is the sum of M independent 
Gaussian random variables. Thus it will be a central 
X2distribution with M degrees of freedom; M being 
the order of the vector z,(k + 1). 

Ill. ASSOCIATION PROBLEM 

The purpose of the data assignment is to make a 
best pair between the return signals and the existing 
tracks under consideration. There exist several 
well-known algorithms to solve this kind of problem. 
They are the nearest neighborhood standard filter 
("SF) [4, 61, the probabilistic data association filter 
(PDAF) [4, 11, the joint probability data association 
filter (JPDAF) [4, 10, 91, the track splitting filter [4, 61, 
the multiple hypothesis tracking [ll], and the traveling 
salesman problem method [19], etc. 

After the estimation, the next thing is the 
verification of the goodness of these estimations. 
The verification is measured by the closeness of 
the estimation with the correct measurement. So, 
the problem with this is how to locate the correct 
measurement in the presence of noises. In the NNSF, 
the measurement that is nearest to the predicted 
estimation is used. The distance measure used is the 
weighted norm of the innovation defined as 

dL,(k + 1)2 = Zk,(k + l)'S'(k + 1)-1ZLr(k) 5 y2 

(19) 
where Zk,(k + 1) = z,(k + 1) - Zk,(k + 1) is the 
innovation corresponding to the measurement z,(k + 
1) with the estimation g!,,,(k + 1). 

are ignored. Only these within the gate are considered 
and the one closest to the estimation is chosen. 

From (19), measurements outside validation gate y2 

This is the simplest method for tracking a target in 
clutter environment. The problem with choosing the 
nearest neighbour is its high sensitivity to the false 
alarms. Thus its performance is not satisfatory in the 
multitarget environment. 

The PDAF is a suboptimal Bayesian algorithm. 
A track is updated with all the observations within 
its gate. Since only one of the validated returns 
falling within the gate is target originated, given N 
observations within the gate of the track t ,  there will 
be N + 1 hypotheses to be formed. The extra one 
is the case when none of the observations is valid. 
Using the results of [6, p. 3001, the probabilities (PL(k)) 
associated with the N + 1 hypotheses for the tth track 
and the rth return are 

where 

The assignment is based on these different hypotheses 
[2]. Results for a single target in clutter [5] have shown 
a significant decrease in the number of lost tracks 
when the probabilistic data association (PDA) method 
is compared with the standard nearest-neighbor 
correlation method. However, in multiple target 
environment, it is still not satisfactory. Data association 
in multitarget environment has to be considered 
as a global problem. JPDA considers the temporal 
relationship of the measurements. The main difference 
between this method and the previous one is that all 
combinations of measurements from the initial to the 
present time are used, rather than just in terms of the 
latest set of measurements [4]. 

The JPDA method is identical to the PDA except 
that the association probabilities are computed with 
all observations for all tracks. The state estimation 
gain and covariance are the same as that of PDA. 
The probability computation of (20) is extended 
to include multiple tracks. Thus, in the calculation 
of the probability P;(k), there are problems of 
increasing memory and computation requirements. A 
suboptimal ad hoc formula for the P;(k)s is proposed 
by Fitzgerald [13] as the following 
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and 

r = 1, ..., N (25) 
and the constant po is expected to improve the 
performance in the presence of clutter, and c is a 
normalization constant such that p:(k) = 1 is 
satisfied. The probabilities p:(k) are the likelihood 
ratios which are related to the normalized distance 
in (18). 

1% UPDATING PROBLEM 

In this section, the actual implementation is 
described. The system includes two parts, the 
maneuver updating and the state updating. In the 
maneuver updating, the final increment is considered 
to be the weighted average of all the increments. The 
probability densities associated with each mode are 
considered to be a Gaussian distribution with mean 
Zk(k + 1 I k) and variance S'(k + 1) as in (16). The 
original recursive technique for computing 6'(k + 1) 
is developed in detail by Moose [14]. It is developed 
for the model of multiple Kalman filters with fixed 
maneuver mean. f i r  uniform sampling time, it 
following form 

O'(k + 1) = 

M-1 
Uk(k)P{U'(k + 1) = U',(k) IZ'(k 

m =O 

P{U'(k + 1) = U',&) IZ'(k + 1)) 

1 = -P{Z'(k + 1) I U'(k) = U',(k)} 
c 

M-1 

x c P{O'(k) = 1 Z'(k))O,i. 
i = O  

(27) 
The meaning of these terms are as follows. 

1) The variable c is a normalization constant that 
satisfies 

M-1 

P{U'(L + 1) = U',(k) I Z'(k + 1)) = 1. (28) 
m =O 

2) The term P{Z'(k + 1) I U'(k) = Uk(k)) on 
the left-hand side of (27) are Gaussian distribution 
functions with mean 2k(k + 1 I k) as in (16) and 
variance S'(k + 1). 

3) The probability 0,i = P{c ' (k )  = U',@) I 
O'(k - 1) = Uf(k)} is obtained from semi-Markov 
considerations [14]. For many tracking situations, it is 

resonable to assume that the consis!ency of the center 
mode U'(k) with the previous one U'(k - 1) is of 
higher probability. Unless the case abruptly changes, 0 
can be approximated by a value p near unity for i = rn 
and (1 - p ) / ( M  - 1) for i # m. 

The recursive update equations for the case of a 
single target are given in [4]. In the case of multiple 
targets and multiple maneuver modes, the probabilities 
of data association (k) are taken into consideration. 

tth track using the mth maneuver mode is described in 
(12) as 

X',(k + 1 I k )  = FX'(k I k) + GUL(k), 
t = 1 ,..., T m = O  ,..., M -1.  

The state equation estimated at scan k + 1 for the 

(29) 

For each measurement z,(k + l), under the hypothesis 
that the rth validated return is from the tth track with 
the mth maneuver mode, the state is updated by 

2Lr(k + 1 I k + 1) = X',(k + 1 I k + 1) 

+ W'(k + l)ZL,(k + 1) r = 1, ..., R(k)  

(30) 

where Z',,(k + 1) is the innovation defmed in (17), 
W'(k + 1) = P'(k + 1 I k)H'S'(k + l)- l  is the filter 
gain and S'(k + 1) is the innovation covariance and 
is updated using the state prediction covariance as the 
following 

S'(k + 1) = HP'(k + 1 I k)H' + R. (31) 

Using the total probability theorem, the conditional 
mean of the overall state of the tth track at time k + 1 
can be written as 

A'(k + 1 1 k + 1) = E[P(k + 1)  I 2 ( k  + l)] 
= E[P(k + 1) I06,2(k + 1)1p(e', 1 Z(k + 1)) 

R ( k + l )  M-I 

r = l  m=O 

x P{Okr I 2'(k + 1)) 

= A;(k + 1 I k + 1)&(k + 1) 

(32) 
r i l  m=O 

where g(k + 1 1 k + 1) = %'(k + 1 I k) and Xk,(k + 1 I 
k + 1) is the updated state estimation conditioned on 
the event 
correct. Using the fact that 

that the rth validated measurement is 

R(k+l)  M-1 

Pk(k + 1) + P X k  + 1) = 1 (33) 
r= l  m=O 

and substituting (30) into (32), the state update 
equation is as follows. 
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Multiple Maneuvering Targets Tracking 
4 0 ,  I 
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Multiple Maneuvering Targets Tracklng 

C 

2 
0 a 
I x 
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scan k 

(b) 

_ _  
0 10 20 30 40 50 60 

scan k 

(c) 

Fig. 3. Actual and estimated positions of example. (a) Trajectory in X-Y plane. @) X position versus k. (c) Y position versus k. 

X'(k + 1 I k + 1) = Xf(k + 1 I k) + W'(k + l)Z'(k + 1) 

(34) 
where 

R(k+l) M-i 

Z'(k + 1) = Z',,(k + 1)pkr(k + 1) (35) 
r=l m=O 

is known as the combined innovation. 
The overall error covariance associated with the 

updated state estimator is derived in [4]. It is modified 
to our model as 

P(k + 1 I k + 1) = p;(k + l)P'(k + 1 I k) 

+ (1 - p;(k + l))pr(k + 1 I k + 1) + P(k + 1) 

444 

where 
R(k+l) M - 1  

p(k + 1) = W'(k + 1) &,(k + 1) 

x Zhr(k + l)Zhr(k + 1)' 

- Z'(k + l)Z'(k + 1)' W'(k + 1)' 

(37) 
1 

and 

p',(k + 1 I k + 1) = [I- W'(k + l)H]P'(k + 1 I k) 
(38) 

is the covariance of the state updated with the correct 
measurement, i.e., in the absence of measurement 
origin uncertainty. 
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(f) 

Quality ( # I )  - o,05 I I 1 
XY-acceleration ( # I )  
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scan k scan k 

(9) (h) 

Fig. 4. Statistics of track 1. (a) X velocity versus k. @) Y velocity versus k. (c) X acceleration versus k. (d) Y acceleration versus k. 
(e) rms position error (x in solid line, y in dotted line). ( f )  rms velocity error (x in solid line, y in dotted line). (g) rms acceleration error 

(x in solid line, y in dotted line). (h) Quality index. 

V. SIMULATION AND RESULTS 

Computer simulations are used to evaluate the 
proposed incremental maneuver estimation model. A 
Monte Carlo simulation of 50 runs was obtained and 
the rms values of the estimation error were computed. 
The dynamic models for the targets have been digitized 
using the sampling period A normalized to 1s and the 
state vectors have been represented in a 2-dimension 
Cartesian coordinates. Furthermore, only position 
measurements are assumed so that the measurement 
transition matrix H(k) = (I2 0) is used in (9) for 
all k. The initial conditions of the filter are assumed 

to be the starting positions of the targets which are 
usually obtained from another search radar. During 
the simulation, false targets are generated by a normal 
distribution with the true target location as the mean. 
This is used to test the effectiveness of the association 
model. 

The covariance matrix Q(k) of the plant noise 
w(k)  is defined in (7), with the associated variance 
q equal to 0.o11an2s-4. The measurement noise 
covariance matrix R(k) for v(k) in (11) is defined 
with R11 = RZ = 0.01km2, the off-diagonal terms 
are zero assuming that all the measurement noises 
are uncorrelated. The probability of validation was 
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(9) 

2, 
Quality (#2 )  

I 

20 40 60 

*can k 

(h) 

Fig. 5. Statistics of track 2. (a) X velocity versus k. @) Y velocity versus k. (c) X acceleration versus k. (d) Y acceleration versus k. 
(e) rms position error (x in solid tine, y in dotted line). (0 m s  velocity error (x in solid line, y in dotted line). (g) rms acceleration error 

(x in solid line, y in dotted line). (h) Quality index. 

chosen to be PG = 0.95 with X = 0.2. The probability 
of detection was chosen also to be PO = 0.95. The 
corresponding threshold of the validation gate, as 
obtained from the table of x; distribution is r2 = 
6.0. In order to investigate the performance of the 
incremental maneuver estimation model for tracking 
maneuvering and nonmaneuvering targets in clutter 
environment, the ad hoc formula in JPDAF’ is used. 

The initial conditions of the trajectories are 
listed in BbIe I. The maneuver events are listed in 
Tible 11. The true trajectory and the estimated position 
(indicated with a circle) are plotted in Fig. 3. These 
targets pass through the same location at different 

times. For illustration, the details of track 1 in this 
example are described below. This track starts at the 
position (1.5, 20.5). Due to its small initial velocity, 
the movement of this target is very slow. As can be 
seen in Fig. 3, most of the initial trajectories are quite 
near the initial point. The target moves first toward 
the positive Y direction, then turns to the negative Y 
direction due to the negative acceleration applied at 
time scan 10. In Fig. 4(a) and @), we show the true 
(solid line) and the estimated (dotted line) velocities. 
To investigate the maneuver following capability 
of the proposed model, a staircase-like maneuver 
command is applied to both the x and y directions. 
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Fig. 6. Statistics of track 3. (a) X velocity versus k. @) Y velocity versus k. (c) X acceleration versus k. (d) Y acceleration versus k. 
(e) rms position error (x in solid line, y in dotted line). (0 rms velocity e m r  (x in solid line, y in dotted line). (g) rms acceleration error 

(x in solid line, y in dotted line). (h) Quality index. 

The result shown in Fig. 4(c) and (d) indicates that TABLE I 
Initial Positions and Velocities of Example the performance of the maneuver following capability 

is quite satisfactory. The dotted line is the estimated 
maneuver value. The delay between the estimated 
value and the true maneuver is the set up time that 
is common for all steady state systems. Since, in our 
model, the all-neighbors association method is used, 
abrupt maneuver change can still be detected. The 
estimated maneuver value will approach the true state 
as long as the maneuver is applied long enough. 

Fig. 4(e) shows the rms errors of the position 
estimation in both the x (solid line) and y (dotted line) 
directions versus scan index k. Fig. 4(f) shows the rms 

errors of the velocity estimation x (solid line) and y 
(dotted line) versus scan index k. Fig. 4(g) shows the 
rms errors of the acceleration estimation x (solid line) 
and y (dotted line) versus scan index k. These errors 
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(x in solid line, y in dotted line). (h) Quality index. 

WLE I1 
Maneuver Events of Example 

Note: Unit of manewec is km/s2. Scan k indicates time when 
manewer is applied. 
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are the consequence of the state noise sequence v(k) 
and the measurement noise sequence w(k). 

To compare with other approaches, such as the 
fading memory average method, the quality indicator 
of the average of the innovations is also calculated. 
Let the effective window length be n = 4, the fading 
factor resulted from [8] is equal to 0.75. The quality 
indicator as shown in Fig. 4(h) appears to be smooth 
when the system is stable; it is an apparent indication 
that the maneuver is detected and estimated almost 
simultaneously. The subsequent figures show the 
details of tracks 2-6. 
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Fig. 8 Statistics of track 5. (a) X velocity versus k. (b) Y velocity versus k. (c) X acceleration versus k. (d) Y acceleration versus k. 
(e) rms position error (x in solid line, y in dotted line). ( f )  rms velocity error (x in solid line, y in dotted line). (g) rms acceleration error 

(x in solid line, y in dotted line). (h) Quality index. 

VI. CONCLUSION 

The conventional approaches for tracking in the 
environment of multiple targets with maneuver are 
not all satisfactory, such as the Kalman filter bank 
with known external force or the sliding window 
method. These methods suffer from the problem of 
computation load or time-lag. 

In our experiment, the proposed incremental 
maneuver detection model has shown good maneuver 
following capability. Moreover, it needs only a finite 
number of Kalman filters to handle all possible 
maneuver values. And it responds quickly as maneuver 

occurs. Also when there is an abrupt maneuver change, 
the model can still track the targets in short time. 

APPENDIX. DERIVATION OF SCALE MATRIX 

For a return falling within these regions (rn = 
0,. . . ,7) associated with maneuver, the innovation is 
first normalized with the covariance matrix S(k + 1). 
That is 

d,(k + 1)2 = Z,(k + l)'S(k + 1>-'Z,(k + 1) (39) 

where Z,(k + 1) is Z,(k + 1 I k) - &(k + 1 I k) and is 
equal to HGC,A,. 
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Fig. 9. Statistics of track 6. (a) X velocity versus k. @) Y velocity versus k. (c) X acceleration versus k. (d) Y acceleration versus k. 
(e) rms position error (x in solid line, y in dotted line). ( f )  rms velocity e m r  (x in solid line, y in dotted line). (9) rms acceleration error 

(x in solid line, y in dotted line). (h) Quality index. 

In our case, we set this distance to be at least twice 
larger than the gate size y2. With 2y2 = d,(k + 1)2, we 
have the following equation 

2y2 = (HGC,A,)’S-~(HGC,A,) 

A4 
4 

= - (c,A, )’s- (c, A, ) 

(40) 
A4 
4 

= -A:,c:,s-~c,A,. 

With the fact that ALA, = 1 and assuming that this 
scale matrix C, is diagonal, the following result can be 

obtained 

4 
cm[i, j](k + 1) = Jzr221~[i, j l(k + 1>1 (41) 

where the indices i and j represent the row and 
column, respectively. 
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