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ABSTRACT 

A regular language is generally accepted by a single finite automaton. An approach of dual finite 
automata is presented here. An input string is scanned by two deterministic finite automata 
(DFA's): reading from the string's head and tail respectively. One of them accepts the regular 
language itself; the other accepts the language's reversal. Whether a string is accepted depends on 
the states of both automata, when their reading heads meet. Dual finite automata can be applied in 
compiler generation and parallel computing. 
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1. INTRODUCTION 
Regular languages (sets) are generally used in compiler design, text editor, and pattern- 

scanning language [1]. A regular language can be accepted by a single finite automaton scanning 
with single reading head. An approach of dual finite automata is presented here. An input string is 
scanned by two deterministic finite automata (DFA's): reading from the string's head and tail 
respectively. One of them called obverse DFA accepts the regular language; the other called reverse 
DFA accepts the language's reversal. The reverse DFA is constructed by reversing obverse DFA: 
the initial state and final states are swapped, with transition function reversed. A reverse DFA's 
state is represented by a set of obverse DFA's states: a set of possible states which may come back 
to the start state of obverse DFA. An input string %032 is processed as follows: co 1 is processed left 

to right by obverse DFA, and o~ 2 right to left by reverse DFA. A string is accepted when both 

reading heads meet (i.e. between % and o~2) and states both are joinable, the state of obverse one is 

included in that of reverse one. 
The reverse DFA constructed after removing inaccessible states has minimum number of 

states. It is shown that the space complexity of this approach is O(IL I+lL gl), linear to the size of the 
regular language and its reversal. 

Scanning string by dual finite automata can improve efficiency if both automata are 
implemented as units of parallel computing. Another application is in our research of compiler. 
Dual finite automata are used to recognize the sender and receivers of message path during bottom- 
up parsing [5-7]. 

* This work is supported by National Science Council, Taiwan R.O.C., under contract No. NSC 80- 
0408-E009-32. 
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2. SCANNING BY DUAL DETERMINISTIC FINITE AUTOMATA 
Section 2.1 constructs the reverse DFA from the obverse DFA. Section 2.2 uses them in 

scanning a string. Section 2.3 discusses the duality between them. 

2.1 Constructing Reverse DFA 
Let M and M '  respectively be the obverse DFA and reverse DFA for a regular language. 

Definition 2.1 constructs the reverse DFA M '  from M.  Theorem 2.3 proves the correctness of 
construction. 

Definition 2.1: Let obverse DFA M=(Q, E, 5, qo, F) with no inaccessible states. Let reverse DFA 

M '=(2 Q, Z, 5', qo', F'), where ~i'(q', a)={ q l 5(q, a)~ q', q~ Q }, qo'=F, F'={ q ' l  q'D{ qo}, q'E 2Q}. 

q' here is a state of M' ,  and q is a state of M.  Let q' be denoted as [ql', .... qj']. q~ q" if 

q~ {ql', .... qj'}. 

Lemma 2.2: ~5'(q', co)={ q l 5(q, 03R)~q ', qEQ}, q'~2 Q, toe E*. 
Proof: 

Basis. Itol=0, ~'(q', e)={ q I ~(q, eR)~ q'}=q' hold. 

Assume Io31=n hold. ~'(q', to)={ q l 5(q, toR)~ q,}. 
Induction. Let ct=ato, ae  E, Iod=n+l. 

8'(q', o0=~'(q', ato)=6'(5'(q', a), 03). 

Let q"=~'(q', a)={ q I ~(q, a)~ q'}. 
~'(q', ato)=~5'(q", to)={ q l 5(q, ~R)~q,,} 

={ q l 5(~5(q, toR), a)~ q'}={ q l ~5(q, (ato)R)~ q'}. 

~5'(q', CO={ q lS(q, ctR)~ q'}. 

Lemma 2.3: M '  accepts L(M)  R. 
Proof: 

to~ L( M ). 
¢=~ ~i(qo, to)~F=qo'. 

¢=~ qo ~ ~'(qo', toR)={ q I ~(q, 0~)~ qo', q~ Q}" 

~'(qo', toR)~ F ". 
tore L ( M  3. 

Q.E.D. 

Q.E.D. 

2.2 Scanning by Obverse and Reverse DFA's 
A string here is scanned by the obverse DFA starting from the string's head and by reverse 

DFA from the tail. The states of both are joinable if the states of obverse one is included in that of 
reverse one. Theorem 2.4 shows that a string is accepted if the state of obverse one and that of 
reverse one are joinable. 
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Theorem 2.4: Let °31, c°2~*" t.°lm2eL(M) iff ~5(qo, ~1) ~ ~5'(qo', 032R) • 
Proof: 

~(qo, ~1) ~ ~'(qo', tO2R) • 
~i(qo, ~ )  ~ { q I ~5(q, ~2)~ qo', q~ Q ). 

¢:* ~)(~(qo, c°1), °32)~ qo "=F" 
¢=> ~5(q o, ~1~2)~F. 
~=~ o3~%eL(M). 

Q.E.D. 

2.3 Dual Finite Automata 
Theorem 2.4 seems inapplicable: 1) the reverse DFA from Definition 2.1 has exponential 

size; 2) merging states by applying minimization process (e.g. [1, Algorithm 3.6]) may lose the 
information necessary for state matching beiween two automata. An intuitive improvement is to 
construct the minimum DFA's for L and L R first. It then applies Definition 2.1 to construct the 

reverse of the smaller one. However, the space complexity is exp( min (IL I, IL El) ), still inefficient. 
The above treatments on L and L R are not elegant. In practice, most of the states in reverse 

DFA are observed inaccessible. The DFA resulted from removing inaccessible states (as in 
Definition 2.5) seems to be a minimum. This property is proved in Theorem 2.6. The space 

complexity is then O(IL I+IL RI), linear to the size of the regular language and its reversal. 

Definition 2.5: Let a function Reverse : DFA ~ DFA. Reverse(M), or M R, is the DFA resulting 
after removing inaccessible states from M ' ,  where M '  is as defined in Definition 2.1. 

Theorem 2.6: M R is a minimum DFA for L(M)  R. 
Proof (by contradiction): 

Assume that there exist distinct states p '  and q' in M R, s.t. for any string tx~ E*, ~'(p', cO 

entering F '  iff 5'(q', or) entering F ' .  The following hold: 

1) p'#q':  
3qx~ Q, qx~ (p'-q')u(q'-p'). 

qx~ (p'r'~q'), and qx~ (~P'n--,q 3. 

2) For any string ore Z*, ~i'(p', or) entering F '  iff ~'(q', tz) entering F': 

~5'(p', ct)={ q l~(q, otR)~p ', qeQ}.  ~)'(q', o0={ q lS(q, otR)~q ", q~Q}. 

case (a) qo ~ 5'(p', o0. qo ~ 5'(q', tx). 
~)(qo, °tR)~P ". ~)(qo, otR) ~ q" 

case (b) qo ~ 8'(p', o0. qo ~ ~'(q', o0. 
~)(qo, °tR)~P '. ~)(qo, otR) ~ q" 

From 1) and 2), for any string tx~ Z*, 5(qo, ctR)v~cL,. 

qx is inaccessible in M.  ---~--. 

Theorem 2.7: Let M be a minimum DFA for L(M).  M and (MR) R are isomorphic. 

Q.E.D. 
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Proof: 
Both M and Reverse(Reverse(M)) are minimum DFA's for L(M),  so they are isomorphic. 

Q.E.D. 
Reverse function is invertible up to an isomorphism (a renaming of  the states), and its 

inverse function is itself. It is interesting that a DFA can be minimized by applying Reverse 
function twice: first constructing its reverse DFA and then transforming back. Reverse function can 
be applied any times on a minimum DFA M: M,  M R, (MR) R, ((MR)R) n, etc. Theorem 2.7 shows 

that both M, (MR) R ..... and M R, ((MR)R) R . . . . .  are isomorphic. We then call M and M n as dual 
finite automata (under Reverse operator). 

3. A N  E X A M P L E  
The obverse and reverse DFA's (M and M 3 for regular expression "01"+10"" are shown in 

start 

1 

, 0 

Figures 3.1-3.2. 

0 

1 0 1 

start 

0 

Figure 3.1: Obverse DFA for 01"+10". Figure 3.2: Reverse DFA for 01"+10". 

Figure 3.3 shows the transition functions of M and M' .  A start state has an asterisk * on its 
left; a final state is bold-faced; X means dead state. M "  is reverse of M '  by renumbelring states of 
M '  ( [S2 ,  S3] =1, ..., [52]  =6) and constructing reverse of M' .  The transition function of M "  is 

8", equivalent to 8 as shown. The reverse DFA constructed from M '  is isomorphic to M.  

0 1 

*Si $2 $3 
$2 X $2 
S3 S3 X 

5, 

*[$2,S3] 
[Si, $3] 
[Si, $2] 
[S3] 
IS1] 
[$2] 

0 1 ~" 

[S1, S3] [S1, S2] *[235] 

[$3] [SI] [136] 
[Si] [$2] [124] 
IS3] IS1] 
X X 

[Sl] [s2] 

Figure 3.3: Transition functions for M ,  M ', and M ". 

0 I 

[136] [124] 

X [136] 
[124] X 

A string "0111", for example, is scanned by M and M' .  There are five cases as shown in 
Figure 3.4. The states of obverse and reverse DFA's are joinable in all five cases; "0111" is 
accepted. There are also five cases for an input string "1010". As in Figure 3.4, one of the automata 
goes to dead state in cases 1, 2, 4, and 5. The reading head of both automata 'meet only when M 
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scans "10" and M' scans "10" (right to left); where M enters S3, and 9vf' enters [ S l ] .  S3 is not 
in [ S l  ] ; "1010" is rejected. 

"0111" 

e, 0111 
0,111 
01,11 
011,1 

0111, e 

M M '  "1010" 
sl [sl] e, 1010 
$2 [$2] 1,010 
$2 [$2] 10,10 
$2 [SI,$2] 101,0 
$2 [$2,$3] 1010,£ 

94 94' 

S1 X 

$3 X 

$3 [$i] 

X [Si,S3] 

X [S2, S3] 

Figure 3.4: Scanning the input strings "0111" and "1010". 

4. APPLICATIONS AND FUTURE WORK 
Scanning regular languages by dual finite automata can improve the efficiency in scanning 

strings if each automaton is implemented by a computing unit. A daily use system command 
directory listing, e.g. "ls dfa??.c" in UNIX, can be executed more faster: each file name in current 
directory can be scanned with double speed. A scanner of dual reading head has no difficulties in 
cooperating with a traditional parser. The tokens scanned by the reverse DFA can be stacked for the 
later usages of parser. It is interesting whether a dual reading head parser can be constructed in 
cooperating with a scanner. Other parallel techniques about lexicai analysis and parsing can be 
found in [2, 4]. 

This work is partially conducted during our study on an object-oriented compiler 
specification method [5, 6] and its message passing mechanism on parse trees [7]. Regular 
expressions are used in modeling (specifying) propagations paths of messages in parse trees. Each 
path is divided into two parts processed by dual finite automata. The sender and receiver(s) of a 
path is recognized at their youngest common ancestor, when both the states of obverse and reverse 
automata are joinable. The recognitions of propagation paths are done during bottom-up parsing. 
We are also interested in extending the modeling language of propagation paths from regular 
languages to other category, e.g. context-free languages. 
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