
Scanning Regular Languages by Dual Finite Automata*

Pei-Chi Wu Feng-Jian Wang Kai-Ru Young

Institute of Computer Science and Information Engineering

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.

pcwu@csunix.csie.nctu.edu.tw fjwang@twnctu01.bitnet

ABSTRACT

A regular language is generally accepted by a single finite automaton. An approach of dual finite
automata is presented here. An input string is scanned by two deterministic finite automata
(DFA's): reading from the string's head and tail respectively. One of them accepts the regular
language itself; the other accepts the language's reversal. Whether a string is accepted depends on
the states of both automata, when their reading heads meet. Dual finite automata can be applied in
compiler generation and parallel computing.

Keywords: finite automata, regular languages, compiler, parallel computing.

1. INTRODUCTION
Regular languages (sets) are generally used in compiler design, text editor, and pattern-

scanning language [1]. A regular language can be accepted by a single finite automaton scanning
with single reading head. An approach of dual finite automata is presented here. An input string is
scanned by two deterministic finite automata (DFA's): reading from the string's head and tail
respectively. One of them called obverse DFA accepts the regular language; the other called reverse
DFA accepts the language's reversal. The reverse DFA is constructed by reversing obverse DFA:
the initial state and final states are swapped, with transition function reversed. A reverse DFA's
state is represented by a set of obverse DFA's states: a set of possible states which may come back
to the start state of obverse DFA. An input string %032 is processed as follows: co 1 is processed left

to right by obverse DFA, and o~ 2 right to left by reverse DFA. A string is accepted when both

reading heads meet (i.e. between % and o~2) and states both are joinable, the state of obverse one is

included in that of reverse one.
The reverse DFA constructed after removing inaccessible states has minimum number of

states. It is shown that the space complexity of this approach is O(IL I+lL gl), linear to the size of the
regular language and its reversal.

Scanning string by dual finite automata can improve efficiency if both automata are
implemented as units of parallel computing. Another application is in our research of compiler.
Dual finite automata are used to recognize the sender and receivers of message path during bottom-
up parsing [5-7].

* This work is supported by National Science Council, Taiwan R.O.C., under contract No. NSC 80-
0408-E009-32.

12 ACM SIGPLAN Notices, Volume 27, No. 4, April 1992

2. SCANNING BY DUAL DETERMINISTIC FINITE AUTOMATA
Section 2.1 constructs the reverse DFA from the obverse DFA. Section 2.2 uses them in

scanning a string. Section 2.3 discusses the duality between them.

2.1 Constructing Reverse DFA
Let M and M ' respectively be the obverse DFA and reverse DFA for a regular language.

Definition 2.1 constructs the reverse DFA M ' from M. Theorem 2.3 proves the correctness of
construction.

Definition 2.1: Let obverse DFA M=(Q, E, 5, qo, F) with no inaccessible states. Let reverse DFA

M '=(2 Q, Z, 5', qo', F'), where ~i'(q', a)={ q l 5(q, a)~ q', q~ Q }, qo'=F, F'={ q ' l q'D{ qo}, q'E 2Q}.

q' here is a state of M' , and q is a state of M. Let q' be denoted as [ql', qj']. q~ q" if

q~ {ql', qj'}.

Lemma 2.2: ~5'(q', co)={ q l 5(q, 03R)~q ', qEQ}, q'~2 Q, toe E*.
Proof:

Basis. Itol=0, ~'(q', e)={ q I ~(q, eR)~ q'}=q' hold.

Assume Io31=n hold. ~'(q', to)={ q l 5(q, toR)~ q,}.
Induction. Let ct=ato, ae E, Iod=n+l.

8'(q', o0=~'(q', ato)=6'(5'(q', a), 03).

Let q"=~'(q', a)={ q I ~(q, a)~ q'}.
~'(q', ato)=~5'(q", to)={ q l 5(q, ~R)~q,,}

={ q l 5(~5(q, toR), a)~ q'}={ q l ~5(q, (ato)R)~ q'}.

~5'(q', CO={ q lS(q, ctR)~ q'}.

Lemma 2.3: M ' accepts L(M) R.
Proof:

to~ L(M).
¢=~ ~i(qo, to)~F=qo'.

¢=~ qo ~ ~'(qo', toR)={ q I ~(q, 0~)~ qo', q~ Q}"

~'(qo', toR)~ F ".
tore L (M 3.

Q.E.D.

Q.E.D.

2.2 Scanning by Obverse and Reverse DFA's
A string here is scanned by the obverse DFA starting from the string's head and by reverse

DFA from the tail. The states of both are joinable if the states of obverse one is included in that of
reverse one. Theorem 2.4 shows that a string is accepted if the state of obverse one and that of
reverse one are joinable.

13

Theorem 2.4: Let °31, c°2~*" t.°lm2eL(M) iff ~5(qo, ~1) ~ ~5'(qo', 032R) •
Proof:

~(qo, ~1) ~ ~'(qo', tO2R) •
~i(qo, ~) ~ { q I ~5(q, ~2)~ qo', q~ Q).

¢:* ~)(~(qo, c°1), °32)~ qo "=F"
¢=> ~5(q o, ~1~2)~F.
~=~ o3~%eL(M).

Q.E.D.

2.3 Dual Finite Automata
Theorem 2.4 seems inapplicable: 1) the reverse DFA from Definition 2.1 has exponential

size; 2) merging states by applying minimization process (e.g. [1, Algorithm 3.6]) may lose the
information necessary for state matching beiween two automata. An intuitive improvement is to
construct the minimum DFA's for L and L R first. It then applies Definition 2.1 to construct the

reverse of the smaller one. However, the space complexity is exp(min (IL I, IL El)), still inefficient.
The above treatments on L and L R are not elegant. In practice, most of the states in reverse

DFA are observed inaccessible. The DFA resulted from removing inaccessible states (as in
Definition 2.5) seems to be a minimum. This property is proved in Theorem 2.6. The space

complexity is then O(IL I+IL RI), linear to the size of the regular language and its reversal.

Definition 2.5: Let a function Reverse : DFA ~ DFA. Reverse(M), or M R, is the DFA resulting
after removing inaccessible states from M ' , where M ' is as defined in Definition 2.1.

Theorem 2.6: M R is a minimum DFA for L(M) R.
Proof (by contradiction):

Assume that there exist distinct states p ' and q' in M R, s.t. for any string tx~ E*, ~'(p', cO

entering F ' iff 5'(q', or) entering F ' . The following hold:

1) p'#q':
3qx~ Q, qx~ (p'-q')u(q'-p').

qx~ (p'r'~q'), and qx~ (~P'n--,q 3.

2) For any string ore Z*, ~i'(p', or) entering F ' iff ~'(q', tz) entering F':

~5'(p', ct)={ q l~(q, otR)~p ', qeQ}. ~)'(q', o0={ q lS(q, otR)~q ", q~Q}.

case (a) qo ~ 5'(p', o0. qo ~ 5'(q', tx).
~)(qo, °tR)~P ". ~)(qo, otR) ~ q"

case (b) qo ~ 8'(p', o0. qo ~ ~'(q', o0.
~)(qo, °tR)~P '. ~)(qo, otR) ~ q"

From 1) and 2), for any string tx~ Z*, 5(qo, ctR)v~cL,.

qx is inaccessible in M. ---~--.

Theorem 2.7: Let M be a minimum DFA for L(M). M and (MR) R are isomorphic.

Q.E.D.

14

Proof:
Both M and Reverse(Reverse(M)) are minimum DFA's for L(M), so they are isomorphic.

Q.E.D.
Reverse function is invertible up to an isomorphism (a renaming of the states), and its

inverse function is itself. It is interesting that a DFA can be minimized by applying Reverse
function twice: first constructing its reverse DFA and then transforming back. Reverse function can
be applied any times on a minimum DFA M: M, M R, (MR) R, ((MR)R) n, etc. Theorem 2.7 shows

that both M, (MR) R and M R, ((MR)R) R are isomorphic. We then call M and M n as dual
finite automata (under Reverse operator).

3. A N E X A M P L E
The obverse and reverse DFA's (M and M 3 for regular expression "01"+10"" are shown in

start

1

, 0

Figures 3.1-3.2.

0

1 0 1

start

0

Figure 3.1: Obverse DFA for 01"+10". Figure 3.2: Reverse DFA for 01"+10".

Figure 3.3 shows the transition functions of M and M' . A start state has an asterisk * on its
left; a final state is bold-faced; X means dead state. M " is reverse of M ' by renumbelring states of
M ' ([S2 , S3] =1, ..., [52] =6) and constructing reverse of M' . The transition function of M " is

8", equivalent to 8 as shown. The reverse DFA constructed from M ' is isomorphic to M.

0 1

*Si $2 $3
$2 X $2
S3 S3 X

5,

*[$2,S3]
[Si, $3]
[Si, $2]
[S3]
IS1]
[$2]

0 1 ~"

[S1, S3] [S1, S2] *[235]

[$3] [SI] [136]
[Si] [$2] [124]
IS3] IS1]
X X

[Sl] [s2]

Figure 3.3: Transition functions for M , M ', and M ".

0 I

[136] [124]

X [136]
[124] X

A string "0111", for example, is scanned by M and M' . There are five cases as shown in
Figure 3.4. The states of obverse and reverse DFA's are joinable in all five cases; "0111" is
accepted. There are also five cases for an input string "1010". As in Figure 3.4, one of the automata
goes to dead state in cases 1, 2, 4, and 5. The reading head of both automata 'meet only when M

15

scans "10" and M' scans "10" (right to left); where M enters S3, and 9vf' enters [S l] . S3 is not
in [S l] ; "1010" is rejected.

"0111"

e, 0111
0,111
01,11
011,1

0111, e

M M ' "1010"
sl [sl] e, 1010
$2 [$2] 1,010
$2 [$2] 10,10
$2 [SI,$2] 101,0
$2 [$2,$3] 1010,£

94 94'

S1 X

$3 X

$3 [$i]

X [Si,S3]

X [S2, S3]

Figure 3.4: Scanning the input strings "0111" and "1010".

4. APPLICATIONS AND FUTURE WORK
Scanning regular languages by dual finite automata can improve the efficiency in scanning

strings if each automaton is implemented by a computing unit. A daily use system command
directory listing, e.g. "ls dfa??.c" in UNIX, can be executed more faster: each file name in current
directory can be scanned with double speed. A scanner of dual reading head has no difficulties in
cooperating with a traditional parser. The tokens scanned by the reverse DFA can be stacked for the
later usages of parser. It is interesting whether a dual reading head parser can be constructed in
cooperating with a scanner. Other parallel techniques about lexicai analysis and parsing can be
found in [2, 4].

This work is partially conducted during our study on an object-oriented compiler
specification method [5, 6] and its message passing mechanism on parse trees [7]. Regular
expressions are used in modeling (specifying) propagations paths of messages in parse trees. Each
path is divided into two parts processed by dual finite automata. The sender and receiver(s) of a
path is recognized at their youngest common ancestor, when both the states of obverse and reverse
automata are joinable. The recognitions of propagation paths are done during bottom-up parsing.
We are also interested in extending the modeling language of propagation paths from regular
languages to other category, e.g. context-free languages.

References
1. Aho, A. V., Sethi, R., and Ullman, J. D., Compilers - Principles, Techniques, and Tools,

Addison-Wesley, 1986.
2. Donegan, M. K. and Katzke, S. W., "Lexical Analysis and Parsing Techniques for a Vector

Machine," ACM SIGPLANNotices, Vol. 10, No. 3, March 1975, pp. 138-145.
3. Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, 1979.
4. Sarkar, D. and Deo, N., "Estimating the Speedup in Parallel Parsing," IEEE Trans. Software

Engineering, Vol. 16, No. 7, July 1990, pp. 677-683.
5. Wu, P.-C. and Wang, F.-J., "An Object-Oriented Specification for Compiler," to appear in

ACM SIGPLAN Notices.
6. Wu, P.-C. and Wang, F.-J., "Applying Classification and Inheritance to Compiling," to appear

in ACM OOPS Messenger.
7. Wu, P.-C. and Wang, F.-J., "Message Passings on a Parse Tree," submitted to IEEE Computer

Society 1992 Int'l Conf. on Computer Languages.

16

