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Potential dependence of the bifurcation structure in generalized Duffing oscillators
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The features of various bifurcations in forced Duffing oscillators are extensively investigated by means
of numerical simulation. Some common features in four types of potential well are found. With refer-
ence to the transition boundaries in parameter space, the infiuences of local symmetry properties of the
potential well on the bifurcation routes are indicated and definite functional forms of the border line in
co-k space separating the region with simple stable period-1 solutions from the region with complicated
solutions are determined. A method combining Floquet theory with harmonic balance is presented to
describe the mechanism of the transitions.
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I. INTRODUCTION

Since the discovery of the Lorenz attractor [1] in 1963,
a number of researchers have paid much attention to
finding the global features of chaos and routes to chaos.
Indeed, owing to the great efforts in theoretical and ex-
perimental work, enormous progress has currently been
made in this field [2—4]. The most important finding in
this subject is that the routes to chaos in nonlinear
dynamical systems exhibit a universal manner and can be
characterized by several scaling constants; this is reminis-
cent of the situation in phase transitions [5,6]. So far,
three scenarios of routes to chaos have been mentioned.
They are the Feigenbaum [7], intermittency [8], and
quasiperiodic routes [9], and are related to the period-
doubling (PD) bifurcation, saddle-node (SN) bifurcation,
and Hopf bifurcation, respectively [10,11].

Basically, from the view point of local bifurcations the
PD can be classified into two types. One is supercritical
and the other is subcritical. Both occur with one of the
eigenvalues crossing the unit circle at —1. In the former
case, there is an exchange of stability from one stable
state to the other stable states. The latter has no ex-
change of stability; instead, stability is lost locally at the
bifurcation point [10,11]. The intermittent routes are
also classified into three types [10,11]. For type-I inter-
mittency it is associated with SN bifurcation and the
stable state becomes unstable with the dominant eigenval-
ue passing through +1. For type-II intermittency it is
associated with the subcritical Hopf bifurcation; two ei-

genvalues cross the unit circle in the complex plane. And
for type-III intermittency it is associated with a subcriti-
cal PD bifurcation; the dominant eigenvalue passes
through —1. However, in practical physical systems,
these bifurcations often tangle with each other in a corn-
plicated manner. The dynamics of transition of such sys-
tems has been extensively studied along the line of these
scenarios by many authors [12—15].

Among these systems, the forced DuSng oscillator
governed by the equation

X+kx+ =F sin(tot)
d V(x)

dx

is one of the most important systems to elucidate the
chaotic dynamics, where V(x) is an anharmonic potential
function, k is the phenomenological damping factor, F is
the driving amplitude, co is the driving frequency, and the
overdot denotes the derivative with respect to time t.
This equation has been utilized to model a wide variety of
physical systems such as the optical bistability in the
multiple-photon absorption process, soft and hard
springs, buckled beam, four-wave interaction, and plasma
oscillation [12—15], etc. In general, the potential func-
tion V(x) is described by

V(x)= —x +—x'+~x
2 3 4

with u, I3, and y coefficients. By means of some transfor-
mations [16],either P or y can be set to zero. Actually, it
embraces four types of potential. The potential
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picture about the dynamic transition in the Duffing oscil-
lator, and to act as a guide for uncovering the dynamical
behavior in real experiments. A method combining Flo-
quet theory and harmonic balance is applied to interpret
the observations and thus to obtain an understanding of
the predominant mechanism of the various kinds of tran-
sitions.

The paper is organized as follows. Section II describes
the method and the observations in the numerical experi-
ment. Section III provides a mathematical way to sys-
tematically analyze the above results. Finally, con-
clusions are given in Sec. IV.

II. NUMERICAL EXPERIMENT

X'+"=X' DH (X") 'H—(X") (2)

where H(X")=X" Px(X*)=0 an—d the superscript (i)
indicates the iteration count. From the eigenvalue of the
Jacobian of fixed points, DPx(X*), not only the criterion
of the stability of the fixed point can be determined but
also the type of the local bifurcation.

From previous work [18—21,23], we know that as re-
gards to various potentials Eq. (1) can be reduced to the
simpler forms which are shown in Table I. Only three
controlled parameters (k, co, and F) need be considered in
tracing the transitions. Because the equations cannot be
solved exactly, here, numerical computation with the
fourth-order Runge-Kutta algorithm is employed. The
transitions are characterized by tracing the time evolu-

tion, phase portrait (x(t),x(t)} and the Fourier spec-
trum. Besides that, for the periodically forced oscillators
as in our cases, the transitions can be identified from the
stroboscopically sampled data (x(n), x(n)) at t =2nn/co, .
where n is an integer. This has been done. This reduced
two-dimensional set is referred to as a Poincare sec-
tion and a corresponding map Px(x(n), x(n))
~(x(n +1),x(n +2)) is called a Poincare map. Let us
assume that Px(X*)=Px(x*,x ') =X", then
X*=(x*,x') is a fixed point of Px. The fixed point in

the Poincare section is just equivalent to the limit cycle in
the phase space. Hence the transitions of limit cycle can
be inferred from the variations of the corresponding fixed

point, while an effective method of tracing the fixed point
may be nontrivial. Here, a method based on the
Newton-Raphson algorithm is used to trace out quickly
both the stable and unstable fixed points [24]. If Px(x, x )

is smooth, then the fixed point X* can be calculated by
iterating from an initial guess x ' ' using the relation

In order to get as much information as possible, two
scanning procedures, by varying co at a fixed F (frequen-

cy scanning) and by varying F at a fixed co (amplitude
scanning), are made with k as a parameter. Consequent-

ly, all the thresholds of possible transitions in terms of
controlled parameters can be obtained experimentally in

the state diagram [18—21,23]. Some salient results are
presented in the following.

A. For the case of V, potential (a= 1 and P= —1)

The state diagram is shown in Fig. 2(a). The transition
boundaries include hysteresis (dashed line), PD (solid

line), crisis (short-dashed —long-dashed), and intermitten-

cy (dotted line). The shape of the transition boundaries
looks like a swallow tail in each resonant region. The
typical bifurcation diagrams obtained with the method of
amplitude scanning at fixed frequencies co =0.48, 0.54,
0.86, 1.1, 1.8, and 2.1 are detailed in Fig. 2(b}. In the pri-

mary resonant region (marked A&), right after the hys-

teresis loop, the Feigenbaum route is observed with exci-
tation frequency at the right-hand side of the interception
point of the hysteresis boundary and crisis boundary with

roc„=0.8 12. When the excitation frequency is set at the
left-hand side of co&„,due to the hysteresis induced crisis
and intermittency, two kinds of basins are exhibited in

the system. One either follows the type-I intermittency
route to chaos or escapes the well. The other follows the
Feigenbaum route to chaos in which the chaotic attractor
finally is to be destroyed by the crisis as the driving am-

plitude is increased further. In the secondary resonant
region (marked 8, ), the transitions are more complicated.
For cocz & co & co~~, the first PD is subcritical, where the
PD and hysteresis jump occur simultaneously. At the on-

set point of subcritical PD the eigenvalue is proven to be
equal to —1 ~ Subsequently the route of the subcritical
case follows the Feigenbaum scenario. For co & chic~, the
observed solution follows the type-III intermittency with
the eigenvalue also crossing —1 and then escapes
through the unbounded side. The second return map,
x(n +2) versus x (n), with frequency co=1.74 and
F =0.459 is shown to demonstrate this situation in Fig.
2(c). We note that the occurrence of subcritical PD and
type-III intermittency is due to the asymmetrical poten-
tial of the system. The same as in the primary resonant
region, the strange attractor destroyed by the boundary
crises can also be discovered in this region (co & toes ) by
the proper initial conditions (or by the method of fixed
excitation force and scanning frequency). Furthermore,

TABLE I. Reduced forms of Eq. (1) used in this work.

x+kx+ /aux —/P(x'=F singlet

x+kx+ )a)x —
~y ~x'=F singlet

x+kx+)a(x —)y)x'=F singlet

~o= +7&1 c =
I aPI

k I
—k /cop, 0—co/cop,

F, =F//ac/
~o=&W, c =~o/&lrl,
k I

—k /co, 0—co /cop,

F, =F/[ac]
~o =& la I, c =~o/& I r I,
k I

—k /cop, 0—co/cop,

F& =F/1 acl

2'+ k ~z +2 +2 =F1sin(07)

2 +k lz +2 z =F1sin(07 )

2 +k
&
2+2 +2 =FI sin( Q7 )
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as co & cozen, the first PD is supercritical.
In the estate diagram, we note that the curve of PD

folds back (i.e., the transition boundary of the last reverse
PD) at a frequency near co —= 2. The complicated solu-
tions exist only with the parameters inside the shaded re-
gion as shown in the inset of Fig. 2(a). According to our
experiments, it is worth mentioning that the folding fre-
quency ~z, corresponding to the folding point, is found
to be a function of the damping factor k with a simple
form,

k
coF(k) =a)osech

ko

where the constants coo=2.215 and k0=1.78; see Fig.
2(d). This equation can be used to determine whether a
complicated or simple solution can be applied in this non-
linear system.

B. For the case o potential V2 (a= —1 and y = 1)

The state diagram is shown in Fig. 3(a). As regards the
motion in one of the local wells, the shape of the transi-
tion boundaries also looks like a swallow tail. The super-
critical PD and type-I intermittency are observed at the
primary resonant region (marked At). And the subcriti-
cal PD bifurcation and type-III intermittency are found
at the secondary resonant region (marked B,). These sit-
uations are similar to the previous case. The bifurcation
diagrams are shown in Figs. 3(b) —3(g). After the oc-
currence of intermittency or Feigenbaum route to chaos,
the motion will hop between the two valleys. With fur-
ther increasing the excitation amplitude up to curve H„,
the solution becomes stable with the swing throughout
two valleys. In this situation the dynamics of the swing
closely resembles the case of the infinitely bounded poten-
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FIG. 2. (a) The state diagram for the asymmetrical one-well potential with controlled parameters k =0.1, a= 1, and P= —1. Re-
gions A

&
and 8& correspond to the primary and subharmonic resonance, respectively. The solid line { ) denotes the threshold of

period doubling, the dashed line ( ———
) denotes the threshold of hysteresis jump, the dotted line (- . . ~ ) denotes the threshold of

intermittency, and the short-dashed —long-dashed ( ———-) denotes the threshold of crises event. The curve E, represents the border
line of escaping the potential well. (b) Bifurcation diagrams for amplitude F scanning with driven frequencies co=0.43, 0.&4, 0.86,
1.10, 1.80, and 2.1. {c) The second return map with frequency co=1.74 and F =0.459. (d) The folding frequency co+ as a function of
the damping factor k, where the solid line is from Eq. (3) and the dashed line is from the experimental results.
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tial ( V4 ), while the small effect of the bump in the well is

negligible.
Since the observation of the relationship between the

low-frequency noise (1/f) and the hopping phenomena
in nonlinear dynamics [13—15], the subject has been of
current interest. In the primary resonant region with
co(1.14 the hopping starts right after the occurrence of
intermittency and results in a low-frequency noise. This
is illustrated by the typical case with co= 1.1, as shown in
Figs 4.(a)—4(c) depicting the return map, Fourier spec-
trum, and time evolution, respectively. These are
classified as intermittency-induced hopping [19]. While
co&1.14 the hopping begins via the effect of the crisis
preceded by a Feigenbaum route and also produces the
low-frequency noise with 1/f shape in the spectrum [18].
But for co (1.14, in which case the boundary crisis inter-
rupts the hysteresis structure, the strange attractor of one
of the branches of the hysteresis loop suddenly disap-
pears, and the hopping phenomenon does not appear. In
order to further compare the basic nature of the type-I
and type-III intermittency-induced hopping the return
maps, Fourier spectrum, and time evaluations with fre-
quency co=2.2 are shown in Figs. 4(d) —4(f), respectively.
For both types the time evolution is equally likely to be in
either valley and gives rise to the low-frequency noise.
For type-III intermittency, the eigenvalue precisely
crosses —1, and the time evolution contains a subhar-
rnonic with growing amplitude, and a fundamental with
decaying amplitude in the laminar region, and has a
strong component with frequency near half of the excita-
tion one. The second return map, x (n +2) versus x (n),
as shown in Fig. 4(d), provides a further means to
differentiate type-III intermittency from type-I. In type-
III intermittency two dense sets cross the diagonal of the
second return map; while for type-I intermittency, the
two dense sets are just tangent to the diagonal of the first
return map. This is an essential difference between type-
III and type-I. It is evident that the essential mechanism
of the occurrence of the 1/f noise in both cases comes
from the hopping between the two attractors.

In the state diagram, Fig. 3(a), the curves of period
doubling are also folded. The folding frequency coF is
found to be dependent on the damping factor k. And this
relation can be fitted to satisfy the following equation:

2

(a ) a=0.1

1.5-

F 1-

0.5-

0
0.2 0.4 0.6 0.8 1.2 1.4 1.52 1.6

swallow-tailed form is shown in Fig. 5(a) with damping
factor k =0.1, driving frequencies from co=0.2 to 1.6
and amplitude from F=0 and 2.0. The transitions in-
clude hysteresis, symmetry breaking (SB), PD, crisis and
intermittency. The Feigenbaum and intermittency routes
to chaos are observed at, respectively, the right- and left-
hand sides of the crossing point with frequency
co& =0.714. With suitable choice of initial conditions (or
properly chosen scanning amplitude and frequency), the
destructive boundary crisis due to the unstable orbit of
hysteresis can also be observed with frequency co less than

cop( k) =coo 1
k

k0
(4) l re=0.6 *0.8 gp's1. 52

where the constants coo=3.247 and ko=2. 045; see Fig.
4(g). If the driving frequency is beyond the folding fre-
quency co~(k) and the driving force amplitude does not
exceed the boundary H„,the complicated solution cannot
occur. A similar result has also been discovered in the
case with a sinusoidal period potential well but with
coo= 1.473 and ko= 1.656. Equation (4) provides a cru-
cial condition to determine whether the solution is simple
or complicated.

C. For the case of V3 potential (a= 1 and y = —I )

The state diagram for the transition boundaries with

Xn

FIG. 5. (a) The state diagram of the symmetrical one-well
Duffing oscillator with controlled parameters k =0.2, a = 1, and
y= —1. Curve ( ———) denotes the threshold of symmetry
breaking, the solid line ( ) denotes the threshold of period
bounding, the dashed line ( ———

) denotes the threshold of
hysteresis jurnp, the dotted line (. ~ . ) denotes the threshold
of intermittency, and the short-dashed —long-dashed line
( —-—-) denotes the threshold of crisis event. The curve E,
represents the border line of escaping the potential well. (b) Bi-
furcation diagram for amplitude F scanning with driving fre-
quencies co=0.6, 0.8, and 1.52, where the marked S denotes the
onset of the symmetry breaking.
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D. For the case of V4 potential (a= I and P= I )

The potential is symmetrical and is infinitely bounded
as ~x~~ ~. The state diagram is shown in Fig. 6(a). The

20.00
(0

ip)
/, ' I I

IIi
/s) Ig/ I /& /

I
/g

/~

i

)

15.00- I
I

rj
Hg'

F 10.00-t
I ASy, g

/
5.00 ) / I ~

/ /
/

''I%so 1.00

H1
~a~ - 4 —— —— 1'

1.50 2.00 2.50

toe [represented by curves (short-dashed —long-dashed)].
Due to the fact that the potential barrier is finite, the
transition sequence will be the Feigenbaum or intermit-
tency routes to chaos followed by escaping the potential
barrier. The typical bifurcation diagrams are shown in
Fig. 5(b). It seem that the symmetry property of the well
can suppress the occurrence of the bifurcations including
the type-III intermittency and subcritical period dou-
bling. The curve of PD folds back with folding frequency
coF near 1.54. With the driving frequency higher than the
folding frequency coF, only the simple period-1 solutions
are obtainable.

shapes of the transition boundaries are no longer like the
swallow tail and can be classified into two groups with
characteristic shapes associated with odd and even reso-
nances. In the group of odd resonance the shape appears
as a horn [24] and only the hysteresis jump is observed
without the occurrence of any period doubling. Whereas
for the group of even resonance the transition with sym-
metry breaking is first observed, then hysteresis and
period doubling are observed as shown in Fig. 6(b) with
co=1.2. The boundaries of the two groups intersect at
the higher excitation amplitudes. It is interesting to note
that the shape of thresholds of symmetry breaking is
similar to the head of a dolphin with a bump at the
upper thresholds. It gives rise to a repeated sequence of
SB and reverse SB (RSB) in an amplitude scanning, for
example, at frequency co=0.9 in the region of the bump.
The bifurcation diagram is shown in Fig. 6(b). This be-
havior can be attributed to the coupling of higher-order
harmonics.

III. MATHEMATICAL ANALYSIS

In order to understand the mechanism behind the bi-
furcations described above, we apply the Floquet theory
and the harmonic balance method to analyze the transi-
tions. The approach is brie Ay described as follows.
Based on the numerical results, first, we assume that the
differential equation (I) has a stable periodic solution xo
satisfying xo(t+T)=xo(t), where T is the period of
external force. In general, one or two dominant modes
are selected. Then, a small perturbation 5 is added to xo
to test the stability. Substituting x =xo+6 into Eq. (I)
and taking the potential into account, we obtain a linear-
ized equation as

(b) d6 d6+a + + g Q„cos(nr+g„)6=0,
d7.2 d7

(5)

Ql
C
C
C0
V)

RgB

I N

SB

j e =09

X„
FIG. 6. (a) The state diagram of the infinitely bound symrne-

trical one-well Duffing oscillator with controlled parameters
k =0.1, a=1, and y=1. Curves H„'s ( ———) denote the
thresholds of hysteresis jump, curves SB„'s( ———) denote the
thresholds of symmetry breaking, and curves C( ) denote
the onset of the first period doubling. (b) The bifurcation dia-
grarns at co=0.9 and 1.2. The dashed line ( ———

) corre-
sponding to the other state is obtained with different initial con-
dition.

where n is integral, ~ is the normalized time, and the
coefficients Ir, P, Q„,and g„areall functions of k, F, co,

a, /3, y, and the amplitude of xo. Equation (5) is referred
to as the Hill equation [25]. According to the Floquet
theory, the solution 5(r) satisfies 6(r+ T') =@5(r), where

p is a Floquet multiplier and T' the least period common
to the coefficients in Eq. (5). The instability boundaries in
the P Qplane are the curves -on which the Floquet multi-
plier p is equal to +1.

In the meantime, P and Q are functions of the ampli-
tude of xo as well as driving force. Thus a locus in the
P Qplane is obtain-ed in amplitude scanning. The oc-
currence of transition can be predicted when the locus in-
tersects with the instability boundaries with p=+1. And
then the type of transition can be characterized from the
polarity of the Floquet multiplier. This straightforward
method has the advantage of predicting the transitions by
inspecting the geometry of the instability boundaries.
Moreover, the forward and reverse bifurcations can be
figured out as well. In what follows the properties of the
various types of bifurcations in each potential well by
means of this method will be discussed.
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A. For the case of the asymmetrical potential V&

The equation of motion can be described as

x +kx +ax +px =F sin( cot ) . (6) x ( t ) =C + A sin(cot +8, ) +D sin( —,
' cot + 6}2), (13)

the subharmonic resonant region, the solution x0(t) is
modified to

From the Fourier spectrum of the numerical simulation,
the solution in the period-1 region can be written as

xo(t}=C + 3 sin(cot+ 0,}, (7)

where C, A, and 8& are constants to be determined [see
Appendix A, Eqs. (A 1)—(A3)]. To test how the transition
occurs, a small perturbation 5 is added to the periodic
solution xo(t). After some algebraic manipulations, the
linearized equation with the periodic coefficient for 5(r)
is obtained as

d5 d5+Ic +[P +Q, c o(s r+P, )] 5=0,
d d 7' (8)

where a=k/co, v=cot+8, +n. /2, P =(a+2pC)/co,
$, =0, and Q&

= —2pA/co . In Eq. (8) two possibilities
of instability arise. One is with Floquet multiplier
p=+1, and the other is with p= —1. We now investi-
gate in detail these two cases.

For @=+1,the solution of 5(r) has 2m period and can
be approximated as

5(r) =5o+5,cos(r+P, ),
where 5o, 5„and((}, are constants. The solution 5 has the
same period as xo and corresponds to an SN bifurcation.
In experiment, it accounts for the hysteresis jurnp. The
condition for a nontrivial solution is

2P
Q =2P(P —1)+ (10)

For p = —1, the solution 5(r) has a period 4n. and can be
approximated as

5(r)=52cos —+$2 +53cos +$3
37

The least frequency of solution 5 is half of that of excita-
tion. It corresponds to PD. The condition for the ex-
istence of a nontrivial solution is

where D and 0z are, respectively, the amplitude and
phase of the subharmonic term. The relations among C,
A, D, 0&, 02, and F are expressed in Appendix A, Eqs.
(A4) —(A8). The bifurcation feature in amplitude scan-
ning can be easily elucidated by examining the relation
between driving amplitude F and subharmonic amplitude
D. From Eqs. (A4) —(A8), a typical curve of F as a func-
tion of D at co= 1.8 is extracted and shown in Fig. 7(c). It
illustrates that the existence of hysteresis occurs in the re-
gion with F„(=4.115))F)Fd(=2.308). In addition,
two more features in Fig. 7(c) are discussed subsequently.
At first, the subharmonic is not generated until F reaches
a threshold value F„.When F is decreased from a value
above F„,the subharmonic signal D will jurnp abruptly to
zero at F =Fd. This feature, in general, accounts for the
observation of the occurrence of the hysteresis loop in the
case of the subcritical PD bifurcation.

By examining geometrically the functional relationship
between the driving force F and the subharmonic ampli-
tude D at the bifurcation point, we see that the sign of the
slope BF/c}D at D =0, obtainable from Eqs. (A4) —(AS),
can be applied to differentiate the types of the PD bifur-
cation. For the supercritical type, from the functional re-
lation of D versus F, we see that the amplitude D in-
creases monotonically, and a single stable solution exists
after the onset of bifurcation, and the slope BF/c}D is
positive thereafter; whereas for the subcritical type, the
functional relation of D versus F indicates that there ex-
ists an unstable state whose slope is less than zero, and a
jump occurs immediately at the onset point F„.It thus
turns out that the criterion for differentiating the subcrit-
ical and the supercritical PD bifurcations is the sign of
the slope dF/BD=0 at D =0. Figure 7(d) shows the
slope as a function of frequency co. Note that the type of
PD bifurcation is changed at the two critical frequencies
co„(= 1.419) and co,z( =1.985). In other words, the
thresholds of supercritical and subcritical PD can be pre-
dicted also. The calculated results are in quite good
agreement with the state diagram of the numerical simu-
lation as shown in Fig. 7(e).

1 2(9—4P)Q
4 (9—4P) +36~

12~Q

(9—4P) +36ic

B. For the case of potential V&

The equation of motion can be described as

x+kx+ax+yx =F sin(cot) . (14)

The sequences of transition can be predicted by examin-
ing the interception points of locus and instability boun-
daries of Eq. (10) and Eq. (12), which are detailed in Figs.
7(a} and 7(b).

From the previous numerical experiment, we see that
the PD bifurcation can be either supercritical or subcriti-
cal, depending on the driving frequency. In order to elu-
cidate this behavior of the subcritical PD occurring at

Because the local well is asymmetrical the solution in
the period-1 region can be assumed as

xo(t) = C + 2 sin(~t+ 8, )+8 sin(2cot +02), (15)

where C, A, 8, 0, , and 02 are constants to be determined
[see Appendix B, Eqs. (B1)—(B5}]. For the testing of
linear stability, the same equation of 5 as Eq. (8) is used
with coefficients Ic= k/co, r= ~t+ 8,+P,



3480 WANG KAO HUANG AND GOU

2

(a)
1.0

(b)

Q 1 Q 0.5-

0
0.0 0.5 1.0 1,5

0.0
0.0

P

(c) ~ =18
6-

5-
Fu4-

Q5-
C3

II
O

0
3-

Fd
2-

0

D

I

I

I
I

QI
~ I I

-05—

I

I

Wgg

Q.5

04-

03-

0,2-

0.1

0
0.2

I

1.0
I

1.4 2.2

=Q. 92 and O.86, (b) ~=1.8 and 2.21. The=+I hand the locus on the P Qp»n«o~ l~l ~-FIG. 7. The stability boundaries with p= an
d V d t the starting and ending point of the ys-us. The marked points U an eno e edashed line denotes the instability part of the locus.
m litude F and the amplitude of the subharrnonic Dteresis jump, respectively. (c) The functiona pnal relationshi between the driven amplitu e an e a

rd and downward jurnp, respectively. (d Thepo he threshold value of the hysteresis upwar an
s ope

denotes the calculation obtained by the single-mode stabilitynotes numerical results, the solid line ) denotes the ca cu ation o ain
n obtained b the two-mode stability boundary.boundary and the dashed line (

———) denotes the calculation o taine y e w-



45 POTENTIAL DEPENDENCE OF THE BIFURCATION. . . 3481

P =[2a+3y(2C + A +B2)]/2ro2,

Q& =3y [ [2CA —AB sin(82 —28&)]2

+ [ AB cos(82 —28, ) ] ]
' /ro

AB cos(8~ —28, )
—2CA

y= tan
AB cos(82 —28, )

The same as the previous case, the situation with p = + 1

corresponds to SN bifurcation, and p= —1 corresponds
to PD bifurcation. The instability boundaries and locus
are detailed in Figs. 8(a) and 8(b) for various co. For
cu & 1.35, the locus meets the boundaries first with
p=+1, then with p= —1. Hence the transition se-
quence is hysteresis followed by period doubling. The
cusp point of hysteresis is at co=1.35, where the locus is
tangential to the instability boundary p = + 1. Only
period doubling is observed for co&1.35. At co=3.25,
the locus is again tangent to the instability boundary so
that period doubling disappears for co) 3.25 and the fold-
ing frequency coF is determined.

In order to further explore the behavior of subcritical
PD at the co=3 region, we examine the solution xo(t) as
expressed in Eq. (13). Here, the amplitude of the second-
harmonic term B is very small and thus can be neglected
for simplicity. The relations among C, A, D, 0&, 82, and
F are listed in Appendix B, Eqs. (B6)—(B10). A typical
curve of F as a function of D with co=2.7 is shown in
Fig. 8(c). Obviously, the hysteresis loop occurs with the

driving amplitude F between F„and Fd, which corre-
spond to the dashed line in the state diagram within re-
gime B,. Also from the criterion of r)F/r}D =0 at D =0,
the frequency range of subcritical bifurcation can be
found to lie within co„=2.103 and ~,2=2.817. And
then, the event of the reverse period doubling can be pre-
dicted to occur at F„where the amplitude of the subhar-
monic term shrinks to zero, as F is monotonously in-
creased. The analytic results are in very good agreement
with the numerical ones presented in Fig. 8(d).

C. For potential V3

The equation of motion is the same as Eq. (14), where
a&0 and y (0. The solution in the period-1 region can
be written as

xo(t)= A sin(rot+8, ), (16)

where 3 and 0, are constants to be determined. By the
same approach as described before, we obtain the linear-
ized equation Eq. (8) for 5, with coefficients a.=k/2',
r=2(rot+8, ), P =(a+3y A /2)/4', and

Q &

= —3y A /gro . Unlike before, however, now the Flo-
quet multiplier p= —1 corresponds to the instability of
hysteresis with an extra cot term generated, whereas
p= + 1 corresponds to SB with the emergence of dc and
the second harmonic. The instability boundaries are ob-
tained in the P Qplane as sh-own in Fig. 9(a). In this
figure, for co(0.917 the locus first meets the hysteresis

1.0
(b)

Q 05-

0.0-0.5 0.0
P

0.5

5.0,
F (c)

4.0

3.0

2.0

1.0—

Fu ——
F

I

0.1
Dcl !&Du

0.2 0.3 0.4 0.5
0'

FIG. 8. The instability boundaries with @=+I and the loci on the P Qplane for (a} co= 1.1-and 1.35 (b) ra=2. 7 and 3.25. The
dashed lines denote the part of the locus within the unstable regions. The starting point and ending point of the hysteresis jump are
denoted by U and V, respectively. (c) The functional relationship between the driven amplitude F and the subharmonic amplitude d
with co=2.7. The points F„andFd denote the threshold value of the hysteresis up and down jump, respectively. And F, denotes the
threshold value of the reverse period doubling. (d) Comparison of the result of numerical simulation (solid line), the results obtained
by the Floquet theory ( 0 ) and the results obtained by the harmonic balance method (~ ) in the state diagram.
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boundary with p = —1 and then the SB one with p = + 1.
So the transition sequence is hysteresis first and then fol-
lows SB. The cusp point is at co=0.917. For co &0.917,
only symmetry breaking is observed. Consequently, all
the thresholds can be calculated with the aid of the above
method. The comparison of the calculated results with
the numerical ones is shown in Fig. 9(c).

From the numerical results shown in Fig. 5(b), we
know that PD is preceded by symmetry breaking. To
find the thresholds of PD, the solution xo(t) as in Eq. (15)
is employed. The transition boundaries of PD are again
determined by the criterion p = —1. The instability
boundaries and the locus are shown in Fig. 9(b) for vari-
ous driving frequencies. The calculated results are also in
satisfactory agreement with the numerical ones as shown
in Fig. 9(c).

D. For potential V4

where A, B, O„and 03 are constants to be determined
(see Appendix C). The behavior of hysteresis has been
studied [22,23]. Here, we concentrate on analyzing the
behavior of SB. To find the instability conditions of SBz,
the linearized equation for 6 is obtained as

d6 d6+a. +5[P +Q, cos(~)+ Qzcos(2r+ 1(z) ]=0,
d7.2 d7.

(18)

with

&=2(rut+Hi), P= [1+—', (A +8 )],k 1

2' 4'

Q) = [ —,
' A —5A 8 —4(1—9' )8 —38 ],9

16'

Q2 A 2829

16'
The equation of tnotion is also the same as Eq. (12), but

with cz&0 and y&0. Based on our previous observa-
tions, the solution with controlled parameters up to
threshold H3 can be well approximated as

y, =ri —m. —2tan ' 3AB sing

3A
2

3AB cosg—

1.5

1.0

0.5

xo(t)= A sin(rot+01)+8 sin(3cot+8s), (17) According to Floquet theory, the solution 5 with Floquet
multiplier p equal to + 1 is roughly equal to
5o+5zcos(r+Pz), which corresponds to the emergence of
dc and even harmonic 2'. Here, the higher-order terms
are assumed too small to be considered at the onset of
symmetry breaking. The instability boundary in the P Q-
plane with 5 equal to 5o+5zcos(r+P~) satisfies

(c)
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Q2cos P2P —1—
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FIG. 9. (a) The instability boundaries with p=+1 and the
loci on the P Qplane for co=0.6, 0-.8, 0.917, aud 1.52. (b) The
instability boundaries with p= —1 and the locus on the PQ-
plane for co=0.9 and 1.52. The dashed lines denote the part of
the loci within the unstable region. The starting point and end-

ing point of the hysteresis jump are denoted by U and V, respec-
tively. (c) Comparison between the analytic results (o ) and nu-
merical simulation results ( ) in the state diagram.

In the meantime, the locus with the s shape is plotted in
the P Qplane as sho-wn in Fig. 10(a). Curves 8, and B~
are the instability boundaries, corresponding to driving
amplitudes with F =1.427 and 3.961, respectively. The
instability boundary is movable, depending on the driving
force. The onset points of SB and RSB are graphically
determined. As the locus catches up with the instability
boundary Bj at point S, the SB occurs. When the locus
intercepts with curve Bz at point RS, the RSB occurs.
According to our analysis, the locus with the driving fre-
quency within the neighborhood of co=0.78 is mostly
along the right-hand side of the instability boundary as F
is varied. This property leads to the appearance of a
bump that resembles a dolphin head, occurring at
co =—0.78. A comparison of the calculated results is
shown in Fig. 10(b). It is quite in agreement with the nu-
merical results. It is believed that if a correction term
54cos(2&+$4) were added to 5, then, the analytic results
would be much closer to the numerical ones. From the
above analysis we conclude that the curious bump of the
upper transition boundary indeed originates from the
coupling between fundamental and high-order harmon-
1cs.
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is observed in the system with the locally asymmetrical
well only.

(3) For the potentials possessing inflection points, the
folding back PD can be obtained. From the experimental
results, the border line separating the simple periodic
solutions from the complicated ones in these systems can
be expressed in analytic form. This relation connecting
coF and k allows us to determine which kind of solution
(simple or complicated) can be taken in accordance with
the strength of the frequency at a constant damping in
the Duffing oscillator. For the case of the symmetrical
potential wells (V2 and sinusoidal) the simple relation
co~=coo[1 —(k/ko) ] is obtained. For the case of the
asymmetrical one ( V& ), the relation becomes
co~=coosech (k/ko).

(4) A classical method combining Floquet theory with
harmonic balance is presented to calculate the transition
boundaries. Here, we get a satisfactory prediction of
transition threshold in the numerical simulation, especial-
ly for symmetry breaking, the first PD, and the last re-
verse PD. Actually, the state transitions in a forced sys-
tern with lower dissipation can be well described from the
inherent instability boundaries of the Mathieu equation.
Moreover, a crucial condition is also pointed out to
differentiate the subcritical PD bifurcation from the su-
percritical PD bifurcation. The supercritical PD bifurca-
tion can be determined directly by the condition

0.6 0.7 0.8 0.9 1.0

FIG. 10. (a) The curves B, and B2 described by Eq. (19)
denote the instability boundaries with Floquet multiplier @=1.
The solid line is the locus with two-mode solution Eq. (18) for
co=0.79. (b) Comparison of the numerical and analytic calcula-
tion of SB2. The dotted line is the numerical result and the solid
line is from the analytic calculation.

IV. CONCLUSIONS

In this paper, we have extensively investigated the
features of the routes to chaos in Duffing oscillators for
four types of potential. Several salient properties are
summarized as follows.

(1) The transition boundaries in the state diagram re-
veal the self-similar behavior in each resonant region.
For the cases of the potentials V, , V2, and V3, each pos-
sessing an inAection point, the transition boundary line in
each resonant region resembles a swallow tail. The
swallow-tail-shaped transition boundary includes the fol-
lowing bifurcation types: PD, hysteresis jump, hysteresis
induced intermittency and crisis; while, for the V4 poten-
tial, its pattern appears as a horn shape.

(2) The influences of the locally symmetrical potential
on the bifurcation are indicated. The type-I intermitten-
cy in connection with the supercritical PD bifurcation is
observed in all the systems, while the type-III intermit-
tency in connection with the subcritical PD bifurcations

BF &0,
BD D=o

and the value of D will jump immediately at the bifurca-
tion point.
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APPENDIX A

Substituting Eq. (7) into the Eq. (6) we obtain the rela-
tion among C, A, 0&, and F as

F = — (aC+PC )[(kco)—+(a—co +2PC) ],2= 2
(Al)

A = ——(aC+PC ),2= 2
(A2)

tan(0, )= kco

a —co +2PC
(A3)

BF &0,
BD D=o

where the functional dependence of F on D is obtained
from the harmonic balance method, and the value of D
can increase monotonically with F near the bifurcation
point. While for the subcritical PD bifurcation we have
the condition
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Substituting Eq. (13) into Eq. (6), we obtain

A = [(kco) +(2a+4PC —
—,'co ) ],1

D = 2aC —2C —A

(A4)

(A5)

tion among C, A, D, O, , O2, and F as
2

m + k coD
9y2A 2D2C2

2

4Cn —mD =0,

(B6)

(B7)

D 2
'2

F2= —co A+aA+2PCA + ( —'co —a —2PC)
2A 4

(2Al —mD) + 2kcoA +
2

=4A F, (B8)

2

A+ D kco

4A

'2

(A6)
tan(282 —8, ) = 2m

k coD
(B9)

tan(8, —282) = —co +4a+8PC
2k co

(A7)

4kcoA +kcoDtan8, =
2mD —4AI

(B10)

4kcoA +kcoD
—4co2A2+4aA+8PCA +D (co /2 —a —2PC)

(A8}

APPENDIX B

Substituting Eq. (15) into Eq. (14), we obtain the rela-
tions among C, A, 8, O„O2,and F as

where

1 = —co A +a A +y ( —,
' A '+ 3C A + ', AD )—,

m = ,'co D——+aD+y(,'D +3C—D+—', A D),
n =aC+y(C +—', CA + ', CD ) . —

APPENDIX C

(2m) +(4kcoB) =(3yCA )

2Cn —mB =0,
(lA 2mB )2+(kcoA 2+4kcoB2)2 A 2F2

(B1)

(B2)

(B3)

Substituting Eq. (17) into Eq. (14), we obtain the rela-
tions among A, 8, O&, O&, and F as

(1—co ) A + —,
' A —

—,
' A B cosrl+ ', AB =F c—os8, , (Cl)

2m
tan(8~ —28, ) =

4kco8

kcoA +4kcoBtan8, =
2mB —IA

(B4}

(B5)

—kcoA+ —,'A 8 sing=F sinO&,

(1 9co }B+',—B'
—,'A'co—sg+——', A B =0,

3kcoB+ —,
' A sing=0,

(C2)

(C3)

(C4)

where

I = —co A+aA+y( —,'A +3C A +—', AB ),
m = —4co B+aB+y(—,'B +3C B +—,

' A B),
n =aC+y(C + ,'CA +——'CB )

F =[—(1 —co )A + —,'A —
—,'A B costi+ ', AB ]-

+(cokA + —,'A B sinri) (C5)

where g =0&—3O„from which the constants A, O„B,
and O~ can be determined. For convenience, the relation
between F and A, B can be expressed as

Substituting Eq. (13) into Eq. (14), we obtain the rela- via Eqs. (Cl) and (C2).
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