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We present an approximate analytical solution for the effects of topography on near-surface 
gravity-induced stresses in symmetric anisotropic ridges and valleys. The solution can be used for 
laterally constrained ridges and valleys consisting of isotropic, transversely isotropic, or orthotropic 
rock with horizontal or vertical layers. A parametric study on the effect of anisotropy type and degree 
of rock anisotropy on gravity-induced stresses is presented. The magnitude of the predicted stresses 
is of the order of the characteristic stress pgH, where H is the height of the ridge or depth of the valley. 
The approximate solution is limited to ridges and valleys with small slopes not exceeding 10%. 

INTRODUCTION 

Stresses induced by gravity in rock masses are often 
predicted using analytical solutions that model rock as a 
homogeneous, linear elastic, and isotropic continuum. The 
gravity-induced stress field is commonly described as result- 
ing from a vertical component due to the weight of overlying 
rock and a horizontal component which is v/(1 - v) times 
the vertical component, where v is the rock Poisson's ratio. 
The horizontal component is a consequence of assuming that 
horizontal displacements are zero, the condition of lateral 
constraint. However, measured horizontal stresses often 
differ from those predicted by the lateral constraint condi- 
tion. These differences have been attributed to the effects of 

tectonic, residual, and thermal stresses, erosion, lateral 
straining, anisotropy, and topography [Jaeger and Cook, 
1976; McGarr and Gay, 1978; McGarr, 1988]. The effects of 
rock mass anisotropy and topography on gravity-induced 
stresses in a laterally constrained elastic half-space are 
considered in this paper. 

Because of the processes that form rocks or because of 
later processes that move and deform them, many rocks are 
anisotropic, which means that their mechanical properties 
vary with direction. This variation is often related to the 
existence of well-defined rock fabric elements in the form of 

bedding, stratification, layering, schistosity planes, foliation, 
fissuring, or jointing. Mechanical anisotropy is generally a 
characteristic of foliated metamorphic rocks (schists, slates, 
gneisses, phyllites), stratified sedimentary rocks (shales, 
sandstones, limestones, coals), and rocks cut by one or 
several regular, closely spaced joint sets. All of these rocks 
display clear evidence of physical discontinuities and show 
one or several apparent directions of symmetry, and they are 
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usually mechanically anisotropic [Amadei et al., 1987]. For 
anisotropic rock masses the relation v/(1 - v) between 
vertical and horizontal stress components is no longer appli- 
cable. Expressions for the relationship between horizontal 
and vertical gravity-induced stresses in rocks with horizontal 
or vertical anisotropy are given by Amadei et al. [1987, 1988] 
and Amadei and Savage [1985]. These analytical solutions 
for gravity-induced stresses are limited in only being appli- 
cable to rock masses with flat ground surfaces. The effect of 
topography has been addressed by Ter-Martirosyan et al. 
[1974], Savage et al. [1985], Savage and Swolfs [1986], and 
McTigue and Mei [1981, 1987]. These solutions, however, 
consider the rock to be isotropic. 

In this paper an approximate analytical solution is given 
for gravity-induced elastic stresses in symmetric mechani- 
cally anisotropic ridges and valleys. In what follows, the 
elastic properties of anisotropic rocks are briefly described, 
the derivation of the approximate analytical solution is 
given, parametric studies for some examples are illustrated, 
and the limitations of this solution are discussed. 

ROCK ANISOTROPY 

The directional character of the linear elastic properties of 
anisotropic rocks can be assessed by testing specimens in 
the field or in the laboratory [Amadei, 1983; Wei and 
Hudson, 1988] and analyzing the results by the theory of 
linear elasticity for anisotropic media. A general form for the 
constitutive relation of an anisotropic elastic medium in an 
arbitrary x', y', z' coordinate system can be written in 
matrix form as 

= 

where (e) and (t r) are (6 x 1) column matrix representations 
of the strain and stress tensors, respectively, in the x', y', z' 
coordinate system and (C) is a (6 x 6) compliance matrix 
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with components cij (i, j = 1 -• 6). Equation (1) is also 
known as the generalized Hooke's law, and matrix (C) has 
21 distinct components if a strain energy function is assumed 
to exist in the medium. This type of anisotropy is called 
general anisotropy [Lekhnitskii, 1977]. 

In most practical cases, anisotropic rocks can be modeled 
as orthotropic or transversely isotropic materials in a coor- 
dinate system attached to their apparent structure or direc- 
tion of symmetry. Orthotropy implies that three orthogonal 
planes of elastic symmetry exist at each point in the rock and 
that these planes have the same orientation throughout the 
rock. (A plane of elastic symmetry exists at a point if the 
compliances of the anisotropic medium have the same values 
for every pair of coordinate systems that are the reflected 
images of one another with respect to the plane.) Transverse 
isotropy implies that at each point in the rock, there is an 
axis of symmetry of rotation and the rock has isotropic 
properties in a plane normal to this axis. This plane is called 
the plane of transverse isotropy [Lekhnitskii, 1977]. 

For a material that is orthotropic in an x', y', z' coordi- 
nate system, i.e., with planes of symmetry normal to the 
coordinate axes, equation (1) can be written as follows: 

i 1,21 1,31 

o o 
1,12 1 1,32 

i' ø ø0 1,13 1,23 1 

= 1 (2) 
y'z' 0 0 0 -'- 0 

G23 
1 

•,z, 0 0 0 -- 
G•3 

• 0 0 0 0 G• 
where El, E2, E3 are Young's moduli in the x', y', z' 
directions, respectNely, and G 12, G23, G 13 are shear moduli 
in planes parallel to the x'y', y'z', and x'z' coordinate 
planes, respectNely. Thus the shear compliance 1/G 12 char- 
acterizes the shear strain, 7•?', response to the shear stress 
r•?,. The Poisson's ratio pq characterizes the compressNe 
or tensile strain response in the j direction to a uni•ial 
tensile or compressNe stress acting in the i direction. For 
example, Pl2 characterizes the extensile strain response in 
the y' direction to a compressNe stress acting in the x' 
direction. 

Of the 12 elastic constants entering into equation (2), only 
nine are independent, owing to the following symmetw 
conditions [Lekhnitskii, 1977]: 

1,12 1,21 1,13 1,31 1,23 1,32 

E1 - E2 E1 - E 3 E2 - E3. (3) 
The orthotropic formulation can be used to characterize the 
deformability of rocks such as coal, schist, slate, gneiss, 
granite, and sandstone. For instance, the cleat and bedding 
planes of coal are often assumed to be planes of symmetry. 
Typical values of the nine elastic constants El, E2, E3, 1,21, 
1,31, 1,32, G12, G13, and G23 for those different rock types 
are given by Gerrard [1975] and Amadei et al. [1987]. 

For a material that is transversely isotropic, only five 
independent elastic constants are needed to describe its 
deformational response. In this paper these constants will be 
called E, E', 1,, v', and G' and are defined as follows: 

1. Constants E, E' are Young's moduli in the plane of 
transverse isotropy and in a direction normal to it, respec- 
tively. 

2. Constants 1,, 1,' are Poisson's ratios characterizing the 
lateral strain response in the plane of transverse isotropy to 
a stress acting parallel or normal to it, respectively. 

3. Constant G' is the shear modulus in planes normal to 
the plane of transverse isotropy. 

Equation (2) also applies to a material that is transversely 
isotropic in one of the three coordinate planes of the x', y', 
z' coordinate system. The elastic parameters entering into 
this equation can be expressed in terms of the five constants 
defined above. For example, if there is a plane of transverse 
isotropy parallel to the y'z' coordinate plane, we have 

E 3 = E 2 = E 

Ei=E' 

1'32 = 1,23 = 1, (4) 

! 

1,12 = 1,13 = 1, 

G12 = G13 = G'. 

In addition, G23 = G = E/[2(1 + 1,)], and using equation 
(3), 

E 

v31= v21= v' E" (5) 

The transverse isotropy formulation can be used to char- 
acterize the deformability of rocks such as schist, slate, 
gneiss, phyllite, siltstone, mudstone, sandstone, shale, and 
basalt. For such rocks the plane of transverse isotropy is 
assumed to be parallel to foliation, schistosity, or bedding 
planes. Elastic constants for rocks modeled as transversely 
isotropic materials are given by Gerrard [1975] and Amadei 
et al. [1987]. 

If the rock is isotropic, only two elastic constants are 
needed to describe its deformability: E = E', v = v', and 
G = G' = E/[2(1 + 1,)]. 

Except for isotropic symmetry, the constitutive equation 
for an anisotropic medium depends on the choice of coordi- 
nate system. In the x', y', z' coordinate system, the 
constitutive equation is defined in equation (1). In another x, 
y, z coordinate system, the constitutive equation can be 
expressed as 

( • )xy• = (A)( rr)xy z, (6) 

or 

•x all a12 a13 a14 a15 a16 

a21 a22 a23 a24 a25 a26 

a31 a32 a33 a34 a35 a36 

a41 a42 a43 a44 a45 a46 

as1 a52 a53 a54 a55 a56 

a61 a62 a63 a64 a65 a66 

(7) 
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Y/H =•'/e 

Fig. 1. Isolated symmetric ridge. 

where (e)xy z and (O')xy z are the (6 x 1) matrix representa- 
tions of the strain and stress tensors in the x, y, z coordinate 
system. As was shown by Lekhnitskii [1977], the compo- 
nents aij = aji(i, j = 1, 6) of the compliance matrix (A) 
depend on the components cij(i, j = 1, 6) of matrix (C) in 
equation (1) and the orientation of the x', y', z' axes with 
respect to the x, y, z coordinate system. 

The relationships between the elastic compliances a ij and 
the elastic compliances c ij [Lekhnitskii, 1977] are 

(C) = (Q)(A)(Q) t (8) 

where (Q) is a coordinate transformation matrix with com- 
ponents q ii given by Lekhnitskii [1977]. 

Equation (8) can also be solved for (A) in terms of (C) as 

(A) = (R)t(C)(R) (9) 

with (R) t = (Q)-I and (R) -1 = (Q)t. 

GRAVITATIONAL STRESSES IN ANISOTROPIC RIDGES 

AND VALLEYS WITH SMALL SLOPES 

Because mathematical difficulties appear to preclude an 
exact analytical solution for gravitational stresses in an 
anisotropic ridge or valley, a perturbation scheme similar to 
that given by McTigue and Mei [1981] is used to derive an 
approximate solution. The approximate dimensionless 
stresses are presented with an error of the order of e 2, where 
e is a characteristic slope of the ridge or valley. Since this 
approximate solution is sufficiently accurate only when e is 
very small, it will be shown that this solution is limited to 
predicting gravitational stresses in the near surface of aniso- 
tropic ridges or valleys that have •,•p 

Assumptions of the Problem 

The following assumptions (also used by McTigue and 
Mei [1981 ]) are made in the solution for gravitational stresses 
in an anisotropic ridge or valley: 

1. The ridge is assumed to be symmetric with a shape 
like that shown in Figure 1. H, L, and e = H/L << 1 are 
defined as the characteristic height, length, and slope, re- 
spectively. Also, the dimensionless coordinates 2 and p are 
normalized by L (2 = x/L and p = y/L), and the dimen- 
sionless surface configuration h(2) is normalized by H. The 
geometry of the ridge can be expressed as 

y = 

Y 

Y 

(c) (d) 

Fig. 2. (a) Orthotropic and (b, c, d) transversely isotropic rock 
masses with horizontal and vertical planes of elastic symmetry 
parallel to the coordinate axes. 

or 

y = h(2)H (11) 

Equations (10) and (11) can also represent the geometry of a 
symmetric valley when H represents the depth of the valley. 

2. Transversely isotropic and orthotropic rock masses 
with horizontal and vertical planes of elastic symmetry 
parallel to the coordinate axes as shown in Figure 2 are 
considered. This is a plane problem with no traction over the 
boundary and gravity acting in the -y direction. 

3. Dimensionless stress components are used where 
&x = Crx/pgH, O'y --- Cry/pgH, &z = crz/pgH, and •'xy : rxy/ 
p#H, where p is density and # is gravitational acceleration. 

Solution for Gravitational Stresses in Anisotropic 
Ridges and Valleys With Small Slopes 

As was shown by Amadei et al. [1987], gravity-induced 
stresses in a flat-lying anisotropic rock mass with horizontal 
and vertical planes of elastic symmetry can be predicted by 

cr x - pgy 

cr z- -al3 •+ a23 pgy (12) 
a33 /•11 

O'y = pgy r xy -- 0 

where tgij = aij - (ai3aj3)/a33 and aij are the elastic 
compliances of the rock mass in the x, y, z coordinate 
system attached to the half-space. The stress field defined in 
equation (12) was derived assuming no lateral displacements 
in the xz plane. 

Because of the existence of topography, a dimensionless 
stress function F(2, p) is used here to express how stresses 
depart from the gravitational stresses in a flat-lying anisotro- 
pic rock mass. When topography exists, then, the dimen- 
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sionless stress components in the half-space bounded by the 
topography can be expressed as 

]• 12 9 0 2F 
/311 E 0• 2 

• 02F 
&y = -+ • O• 2 (13) 

1 

•r z = (a13•r x + a23•'y) 
a33 

02F 
,7'xy • ß 

o57 o• 

Equation (13) satisfies the equilibrium equations and the 
compatibility equations in the lower half-space. As was 
proposed by Lekhnitskii [1939], F(œ, •) is a solution of the 
equation 

04F 04F 04F 

• + (2/3 12 + •66) 05720y2 + ]• 11 0y4 /•22 0574 •=o (•4) 

Second, the dimensionless stress function F(57, •) is as- 
sumed to be a power series in the small parameter e, e.g., 

F = F © + eF (1) + O(e 2) (19) 

Substituting equation (18) into equation (15), the boundary 
conditions are rewritten with an error of the order of e2 as 

Oh 

qxy-- EO'x •-• 4- O(E 2) 
Oh 

= ^ •+ O(e 2) •'y E r xy 057 

(20) 

(at :9 = eh). Substituting equation (13) into equation (20) and 
expanding about :9 = 0, equation (20) becomes 

02F(57, O) 03F(57, O) •12 Oh 
+eh =e h 

with the boundary conditions 

&x cos (n, 57) + •'xy COS (n, :9)= 0 0572 
?xy COS (n, 57) + •ry COS (n, :•)= 0 

at p = eh(57), where n is the outward normal to the surface 
of the ridge. Note that in the expression of &z in (13), the 
stress function F(57, •) is assumed to induce no strain in the 
z direction only (plane strain analysis). 

To solve equation (14) with the traction-free boundary 
condition (equation (15)), a pertubation scheme like that of •22 
McTigue and Mei [1981] is used. 

First, to define the direction cosines on the boundary 
surface, • = eh(57), recall that the unit normal (n) of a 
surface, f(x, y, z), is given as [Kreyszig, 1983] 

grad f 
n = • = cos (n, x)i + cos (n, y)j + cos (n, z)k 

Igrad fl 
(16) 

and 
where i, j, and k are the unit vectors in the x, y, and z 
coordinate directions, respectively, and grad = V = (O/Ox)i 
+ (O/Oy)j 4- (O/Oz)k. Then for the dimensionless surface 
configuration, h(57), 

(17) 

(18) 

v(y - 

Oh ( 1 2 057 2 

1 2 e 

n -- 

and thus 

1 2(Ohl 2 2 +"' 

cos (n, 57)= -e 

cos (n, p)= 1 

• E 

O 2F(57, 0) O 3F(57, 0) 
+eh 

Oh O 2F(57, 0) 

057 oy 2 
+ O(e 2) 

(21) 

Oh O 2F(57, 0) 
= -h- e + O(e 2) 

057 0570• 

Finally, substituting equation (19) into equations (14) and 
(21) and collecting like powers of e result in the two 
following boundary value problems: 

0 4F(ø) 0 4F(ø) 0 4F(ø) 
0574 + (2/•12 + •66) 05720p2 + •11 0p4 

-0 

O2F (0) 
(22) 

02F (0) 

057 2 
-h y=0 

/• 22 
O 4F(1) O 4F(1) O 4F(1) 
0574 + (2/312 + •66) 05720p2 + /311 0p4 

_ Oh O ( O 2F(ø) 1 O2F(1) /• 12 h h p = 0 
c3570• -- /3 ll 057 057 c]• 2 • 

(23) 

O2F (1) O (O2F(ø) 1 057 2 = 057 h 0570:91 =0 y=0. 
Equation (22) corresponds to the problem of a distributed 

normal traction acting on the flat surface of a half-space, 
whereas equation (23) corresponds to the problem of a 
distributed shear traction acting on the flat surface of a 
half-space. These two boundary value problems are solved 
using the complex variable method given by Lekhnitskii 
[1939] for stresses in anisotropic elastic half-spaces. By 
superposing equations (22) and (23), the traction-free bound- 
ary problem of interest can be approximated to O(e). 

The components of the dimensionless gravitational 
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stresses in the near-surface region can be obtained by 
expanding the stresses (equation (13)) about • = 0 and 
introducing equation (18). Thus 

/312 y 02F(ø)(5:, 0) 02F(1)(œ, 0) 
&x- t +e 

O 3F(ø)(œ, 0) 
-3- ) -3- 0(œ 2) 

0y 3 

h + O(g 2) (24) 

^ [ 1/3120 rxy = e 2 1311 0œ (h2) + •-• h O 2F(ø)(œ, 0)) 
O 3F(ø)(œ, 0) 

-- ) + O(e 2) 
05:0) 2 

For known values of [02F(ø)(5:, 0)]/O) 2, [02F(1)(5:, 0)]/ 
0) 2 [03F(ø)(œ 0)]/0) 3 and [03F(ø)(œ 0)]/0œ0) 2 the 
approximate gravitational stresses, with an error of the order 
of O(e2) in the anisotropic ridge, can be predicted. 

Consider a symmetrical ridge or valley for which h in 
equation (10) is such that 

2 
a 

= (25) a 2 + 5:2 

The plus and minus signs correspond to a ridge and valley, 
respectively. The geometry of the ridge and valley is defined 
in an 5:/e = x/H, p/e -- y/H coordinate system by two 
parameters: a and e. The slope of the ridge or valley at the 
inflection points is equal to (3X/•/8)(e/a), and the inflection 
points are located at x/H = +a/eX/-• and y/H - 0.75 for a 
ridge and -0.75 for a valley. 

Substituting equation (25) into equations (22) and (23) and 
solving the resulting two boundary value problems by the 
approach described by Lekhnitskii [1939] give for a symmet- 
ric ridge 

02F(ø)(5:, 0) a2A1 + aB15: 
5:2 + a 2 

O 3F(ø)(5:, 0) 
Op 3 

= -{2a 25:[A 1 (a 1 + a 2) -B 1 (/• 1 +/• 2)] 

+ a(5:2-a2)[Al(Igl+lg2)+Bl(al+a2)]}[(5:2+a2)2] -1 

(26) 

O 3F(ø)(5:, 0) 2a2A15: + aBl(5: 2- a 2) 
05:0)2 (5:2 + a2)2 

O 2F(1)(5:, 0) 

(a 1 + a 2)(A2 A3-B2B3 )-(fi 1 + 132) (A2B3 +A3B2) 

8(5:2+a2) 3 

and thus 

/•12 ) aA1 + B15: 
&x- 

1311 e 5:2 + a 2 

(a 1 +a 2)(A2A3-B2B3)-(fi l + fi2)(A2B3 +A3B2) 
-- E 

8(5:2 + a2) 3 

- )a{2as:[Al(a 1+ a 2)-B1 (/31+ ]32)] +(5: 2-a 2) 

ß [Al(/gl+/32)+Bl(al+a2)]}[(5:2 + a2)2]-l+o(e 2) 

^ •_ 
Txy -- E 

2 

•'y -- 2• + O(e 2) e a +5: 

/•12 2a45: 
fill ( a2 + 5:2)3 

(27) 

+ a3(,3B15:2 + 4aA15:- a2B1) 
aBl(5: 2- a 2) + 2a2A15: 

+ (a 2 + 5:2) 2 ) + O(e 2) 

&z = (a 13•-x + a23•'y ) 
a33 

where a•, a 2 and/3•, ]•2 are the real and imaginary parts of 
/x•, /x2, respectively, /xl, /x 2 and their conjugates are the 

/.1,4 _ 2/3•6/X3 = roots of/3•1 + (2/312 + J•66)# '2 - 2f126/x + J•22 
0, and where 

A1 = gig 2 - 

B1 = al]• 2 + a2]• 1 

A2 = a 3 - 3a5:2 

B2 = 5:3 _ 3a25: 

A3 = -2 
]•12 

fill 
as: + 8Bla 2 + 4Alas: 

B3 6 /• 12 2 2 = a - 12Ala 
fill 

For a valley the dimensionless gravitational stresses can 
be obtained by changing the sign of the second and fourth 
terms in &x and the sign of the second term in &y and •xy in 
equation (27). Note that the vertical dimensionless stress, 
6-y, in equation (27) is independent of the elastic properties 
of the medium for both ridges and valleys. 

When the ridge or valley is composed of isotropic rock, 
C•l = 6•2 -- O, J•l -' J•2 -- 1,A1 = -1,B1 = Oand-1312/1311 
= v/1 - v (v is the rock Poisson's ratio). Then, equation (27) 
reduces to 

v .,9 a 2 2 - 3v a(3a 4 - 6a25:2 - 5:4) 
X • • 1 - v e a 2 + 5:2 + e 2- 2v (a 2 + 5:2)3 

2a(a2 - 5:2 ) 
(a 2 + 5:2)2 ) + O(e2) (28a) 



3330 LIAO ET AL.' GRAVITATIONAL STRESSES IN RIDGES AND VALLEYS 

Y/H 

1 

0 

0 t I 
0 2 4 
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Fig. 3. Comparisons of the topographic surface for ridges of (a) 19.5%, (b) 9.75%, (c) 6.5%, and (d) 3.25% slope at 
the inflection point. Squares predicted by equations (30) and (31). Solid line predicted by equation (29). 

a 2 y Y (a/e) 2 
a 2 + œ2 + O(s2) (28b) H s (a/s) 2 + (œ/s) 2 

2 - 3 v 4a 4.• 2a 2œ• 
•xy = e 2) 2 - 2v (a 2 + .•2)3 - (a 2 + &2)2 + O(t• 

(28c) 

•'z = P( •'x -3- t3'y) (28d) 

Equations (28) are the same as the equations given by 
McTigue and Mei [1981], who used the Fourier transform 
method to solve the boundary value problems defined by 
equations (22) and (23). 

DISCUSSION OF THE APPROXIMATE SOLUTION 

Gravitational stresses in an elastically anisotropic ridge or 
valley can be approximated to O(s) by equation (27). The 
accuracy of the approximate analytical solution depends on 
the value of the characteristic slope s and the geometric 
parameter a for the ridge or valley. To estimate the accuracy 
of the approximate solution (equation (27)), the approximate 
gravitational stresses in an isotropic ridge (equation (28)) are 
compared with those determined with the exact solution for 
the isotropic ridge of Savage et al. [1985]. 

For the purpose of comparing the two solutions, the 
dimensionless expressions of the surface topography in 
equations (10) and (25) are normalized by the characteristic 
height H. Then the surface topography can be expressed as 

(29) 

Savage et al. [1985] define the surface topography by the 
following equation: 

x u a'u 
• (30) 

b b u2+a '2 

and 

12 

(31) 
b //2 + a '2 

where b is the ridge height. Note that in equations (30) and 
(31), a' has been used instead of a (as in the original equation 
of Savage et al. [1985]) in order to distinguish it from a in 
equation (29). 

Figure 3 shows the topography of a ridge predicted by 
equation (29) for a - 1/3, 2/3, 1, 2 and e - 0.1 which 
corresponds to slopes at the ridge inflection points of 19.5%, 
9.75%, 6.5%, and 3.25%, respectively. Also shown in Figure 
3 is the topography of a ridge predicted by equations (30) and 
(31) with a' - 3.333, 6.666, 10, and 20, respectively. These 
values of a' were selected to make the surface topography 
predicted by equation (29) similar to that predicted by 
equations (30) and (31). 

The accuracy of the approximate solution for stresses at a 
point in the isotropic ridge can be defined as follows: 
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Fig. 4. Contours of the error in the approximation solution for &x for isotropic ridges with (a) 19.5%, (b) 9.75%, (c) 
6.5%, and (d) 3.25% slopes at the ridge inflection points. 

ERR - x 100% (32) 
Se 

where S e and S a are the exact and approximate dimension- 
less gravitational stresses, respectively. When ERR - 0, the 
approximate solution coincides with the exact solution. 

Figure 4 shows the contours of the error in the dimension- 
less horizontal stress component &x for the four isotropic 
ridges shown in Figure 3. Figure 4 shows that the error 
increases as the value of the parameter a decreases (slope 
increases) and as the dimensionless depth (y/b) increases. If 
a 10% error is adopted, the approximate solution can be 
applied to predict the gravitational stresses (1) near the 
surface for ridges with 19.5% slope, (2) down to •9/s = y/b = 
0.6 along the axial plane (x/b - 0) and to greater depths 
away from the axial plane for ridges with 9.75% slope, (3) 
•own to p/s = y/b = 0 along the axial plane and to greater 
depths as x/b increases for ridges with 6.5% slope, and (4) in 
the full domain of Figure 4d for ridges with 3.25% slope. 

Similar studies that we conducted of the error in the 

dimensionless vertical stress &y for the isotropic ridges 
shown in Figure 3 show that the approximate solution can be 
reasonably used to predict the vertical stress in ridges with 
slopes less than 10%. Other studies comparing the exact and 
approximate solutions for &x and &y in symmetric isotropic 
valleys show that the approximate solution can be used to 

calculate the gravitational stresses in valleys with 10% slope 
at depths down to •/• = y/b -- -3. 

Of course, comparison between the exact and approxi- 
mate solutions is possible only in the isotropic case. A large 
anisotropy may invalidate the conclusion that the approxi- 
mate solution is limited to ridges and valleys with small 
slopes not exceeding 10%. 

ILLUSTRATIVE EXAMPLES 

We present two examples to investigate the distribution of 
gravitational stresses in anisotropic ridges and valleys: (1) 
ridges with 6.5% slope at the inflection points of the ridge 
(a = 1 and e = 0.1) and (2) valleys with 6.5% and 9.75% (a 
= 2/3 and e = 0.1) slopes at the inflection points of the 
valley. The ridges and valleys are considered to consist of 
different isotropic, transversely isotropic, and orthotropic 
rocks. The effect of the rock's elastic properties and the 
orientation of the elastic anisotropy on the gravitational 
stresses is presented. 

The gravitational stresses in anisotropic ridges and valleys 
are approximated by equation (27), which shows that the 
dimensionless vertical stress &y is independent of the rock's 
elastic properties. On the other hand, the other stress 
components, &x, &z, and '?xy, depend on the elastic proper- 
ties of the rock and the anisotropy orientation with respect to 
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Fig. 5. Effect of the ratios E/E', G/G', and v/v' on bx in symmetric ridges with a = 1, s = 0.1, and (a) E/E' = 1 
and G/G' = 1, (b) E/E'= 1.5 and G/G' - 1, (c) E/E' - 4 and G/G' - 1, (d) E/E' = 1 and G/G' - 4, (e) E/E' 
= 1.5 and G/G' = 4, (f) E/E' = 4 and G/G' = 4, (#) v/v' = 1.5, (h) v/v' = 2, and (i) v/v' = 3. Isotropy (Figure 
5a) and horizontal anisotropy (Figures 5b-Sf) with v = v' - 0.25. Horizontal anisotropy (Figures 5g-5i) with E/E' - 
G/G '= 1. 

the ground surface. Because of the linear relationship exist- 
ing between coefficients c ij and a ij of matrices (C) and (A) in 
equations (1) and (6), respectively, it can be shown that the 
stress components &x, &z, and •Cxy defined in equation (27) 
depend on dimensionless ratios of elastic properties. For a 
transversley isotropic rock mass with the elastic properties 
defined in equation (4), these ratios are v/v', E/E', and G/G'. 
For an orthotropic rock mass with the elastic properties 
defined in equation (2), the ratios are E2/E l, E2/E 3, v21, 
v31 , v32 , E2/G23 , E2/G13 , and E2/G12. The effect of the 
rock's elastic properties on gravity-induced stresses is pre- 

sented below in the form of contours for the dimensionless 

stress components, &x, &z, and •Cxy in the •, y/e coordinate 
plane. 

Figure 5 shows contours of &x for symmetric transversely 
isotropic ridges with horizontal planes of transverse isotropy 
where a - 1 and e - 0.1 (6.5% slope at inflection points). 
The ratios E/E' and G/G' vary between 1 and 4, v - 0.25, 
and v/v' varies between 1 and 3. These ratios cover the 
ranges determined experimentally for a broad range of 
anisotropic rocks [Amadei et al., 1987]. The overall shape of 
the contours of &x is influenced by the elastic constants of 
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= v' = 0.25. 
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the transversely anisotropic rocks. As the ratio E/E' in- 
creases, the contours of &x follow the ridge shape, whereas 
the contours of &x deviate from the ridge shape as the ratios 
G/G' and •,/•,' increase. The magnitude of &x depends 
strongly on the rock's elastic properties. At a given point, &x 
increases with the ratio E/E'. On the other hand, as the ratio 
G/G' increases, &x decreases, especially around the axial 
plane (œ = 0). An increase in the ratio •,/•,' causes an increase 
in &x at the ridge crest but a decrease at greater depths. 

Figure 6 shows the contours of &x in ridges exhibiting the 
vertical rock anisotropy shown in Figure 2c. For ridges 
consisting of comparable rock types, and at a given point, 
the magnitude of &x is the largest in the ridge exhibiting 
horizontal anisotropy and the smallest in the ridge with the 
planes of transverse isotropy that are vertical and parallel to 
the •, • coordinate plane. 

Figure 7 shows contours of &z for a horizontally anisotro- 
pic symmetric ridge. The overall shape of the &z contours 
nearly follows the ridge shape. At a given point, &z increases 
with E/E' but slightly decreases as the ratio G/G' increases. 
The effect of •,/•,' on &z can be shown to be similar to the 
effect of •,1•,' on &x. 

Contours of tl'xy for a horizontally anisotropic symmetric 
ridge are shown in Figure 8. Zero shear stresses occur along 
the axial plane because of symmetry, and signs on both sides 
of the axial plane are different. As can be seen in Figure 8, 

•'xy increases slightly with the ratios E/E'. Shear stresses can 
also be shown to increase slightly with increases in •,/•,' but 
are not affected by any changes in G/G'. 

Figure 9 shows contours of &x for symmetric orthotropic 
ridges where a = 1 and s = 0.1, exhibiting the anisotropy 
shown in Figure 2a. Different values of Young's modulus 
El, E2, E3 in the x, y, and z directions, respectively, are 
considered. The shear moduli G12 , G13 , and G23 are as- 
sumed to be equal and •q2 = •'2• - •'3• = •' = 0.25. Figure 9 
shows that the variation of &x is affected by changes in 
Young's modulus E•, E2, and E' 3 and is dominated by the 
values of the Young's modulus (E2) in the vertical direction. 
As E 2 decreases and E1 increases, the value of &x greatly 
increases at a given point. The value of &x increases some- 
what as E1 increases with a decrease in E3. For orthotropic 
ridges it can be shown that the trend in the variation of •'xy at 
a given point (excluding points on the axial plane where 
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(b) E] = 1/3E, E2 = E, and E 3 = 1/2E; and (c) E 1 - 1/2E, E 2 -- E, and E 3 = 1/3E with G12 = G13 = G23 = 
G = E/2 (1 + v) and v]2 = v21 = v31 = v= 0.25. 
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there are no shear stresses) is similar to that for 6- x in the 
orthotropic case. 

Figure 10 shows contours of &x in horizontally anisotropic 
symmetric valleys where a = 2/3 and s - 0.1 (9.75% slope at 
inflection points). This figure shows that a tensile region of 
6-x develops near the valley bottom in each case. The tensile 
region decreases as E/E' increases and slightly decreases 

with an increase of G/G'. It can be shown that as the valley 
broadens, the tensile zone increases for comparable rock 
types. 

The distributions of &x in orthotropic valleys with a = 1 
and s = 0.1 (6.5% slope at inflection points) are shown in 
Figure 11. As expected, the gravitational stresses in the 
valleys are influenced by El, E2, and E 3. Figure 11 shows 
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Fig. 11. Contours of &x for orthotropic valleys with a = 1, e = 0.1, and (a) E 1 = E, E 2 = 1/3 E, and E 3 -- 1/2 E; 
(b) E 1 = 1/3 E, E 2 = E, and E 3 = 1/2 E; and (c) E1 = 1/2 E, E 2 = E, and E3 = 1/3 E with G12 = G13 = G23 
= G = E/2 (1 + v) and vl2 = v21 = v31 = v= 0.25. 
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that a tensile b- x develops in the valleys. The tensile region is 
1 1 

the largest when El = 7 E, E2 = E, and E3 = • E and is the 
I 1 

smallest when E• = •E, E 2 = E, and E3 = 7E' 
Finally, as mentioned previously, by is independent of the 

elastic properties of the medium. Since the slopes are very 
small, the by stress contours follow the shape of the ridge or 
valley, even near the surface. 

CONCLUSIONS 

The approximate solution presented here can be used to 
predict gravitational stresses in the near surface of laterally 
constrained isolated ridges or valleys with small slopes. This 
solution can be used for ridges or valleys consisting of 
isotropic, transversely isotropic, or orthotropic rocks. The 
magnitude of the predicted stresses is of the order of the 
characteristic stress p•7H, where p is the rock density, •7 is 
gravitational acceleration, and H is the characteristic height 
of the ridge or depth of the valley. 

Horizontal gravitational stresses in anisotropic ridges with 
6.5% slope depend strongly on the degree and orientation of 
rock anisotropy. Nonzero compressive stresses develop at 
or near the ridge crests for all ridges with differently consti- 
tuted rocks. For the transversely isotropic ridges shown, the 
dimensionless horizontal stresses, 6- x and &z at a given 
point, increase with the ratio E/E', that is, when the rock 
deformability in the vertical direction is larger than that in 
the horizonal direction. The stresses 6- x and b- z increase at 
the ridge crest and decrease at greater depth with an increase 
in v/v', but stresses are little influenced by changes in the 
ratio G/G'. Dimensionless shear stresses •xy are not affected 
by the ratio G/G' but are slightly influenced by the ratios 
E/E' and v/v'. For the orthotropic ridges, Young's modulus 
in the vertical direction is the most dominant factor for the 

horizontal gravity-induced stresses. The horizontal gravity- 
induced stresses increase as the Young's modulus in the 
vertical direction decreases. Overall, at a given point in 
comparable ridges, gravitational stresses are the largest 
when the rock has horizontal transverse isotropy. 

For the gravitational stresses in anisotropic valleys with 
6.5% and 9.75% slopes, tensile regions of 6- x develop under 
the valleys. The extent of the tensile regions is influenced by 
the degree of anisotropy. For example, in the case of 
horizontal anisotropy, their extent decreases as the ratio 
E/E' increases, but the extent of the tensile regions is little 
influenced by a change in the ratio G/G'. Note also that 
gravitational stresses are influenced by changes in the valley 
slope. The tensile regions increase as the valley broadens. 

It is important to note the limitations of the approximate 
solution presented here. This approximate solution, like 
solutions presented previously for isotropic ridges and val- 
leys, is limited to small slopes not exceeding 10%. For 
steeper slopes in anisotropic rock masses, numerical meth- 
ods are required. 

Another limitation is that this solution applies, of course, 
only to symmetric ridges and valleys. Other topographic 
profiles will require the development of stress functions 
appropriate for those profiles. For some topographies, an 
approximate solution based on McTigue and Mei's [1981] 
Fourier transform method or numerical methods may be 
required. 

Finally, the assumption of lateral constraint allows no 

horizontal deformation. This condition, as McGarr [1988] 
emphasizes, is geologically unrealistic. However, the state 
of stress following from this assumption can be considered a 
reference state upon which tectonic stresses can be super- 
imposed [McTigue and Mei, 1981]. For example, a solution 
for the response in anisotropic media to far-field uniaxial 
tension and compression like that of McTigue and Mei [1981] 
could be derived by the methods given above and superim- 
posed on the reference state. Note that the hydrostatic 
reference state preferred by McGarr [1988] is obtained in the 
isotropic case when Poisson's ratio v is equal to one half. 
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