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A Neural Network Approach to MVDR 
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Abstract-A Hopfield-type neural network approach which 
leads to an analog circuit for implementing the real-time adap- 
tive antenna array is presented. An optimal pattern of the array 
can be steered by updating the weights across the array in order 
to maximize the output signal-to-noise ratio (SNR). Further- 
more, it is shown that the problem of adjusting the array 
weights can be characterized as a constrained quadratic nonlin- 
ear programming. Practically, the adjustment of settings is 
required to respond to a rapid time-varying environment. Many 
numerical algorithms have been developed for solving such 
problems using digital computers. The main disadvantage of 
these algorithms is that they generally converge slowly. To 
tackle this difficulty, a neural analog circuit solution is particu- 
larly attractive in real-time applications with minimization of a 
cost function subject to constraints. A novel Hopfield-type 
neural net with a number of graded-response neurons designed 
to perform the constrained quadratic nonlinear programming 

I. INTRODUCTION 
MFORMING is one of the main functions of a 
sive phased-array processing system. It involves 
multiple beams through applying appropriate delay 

and weighting elements to the signals received by the sen- 
sors. The purpose is to suppress unwanted jamming interfer- 

uce the optimal beamformer response which 
contributions due to noise. The most com- 
technique for deriving the adaptive weights 
op gradient descent algorithm where the 

ght updates are derived from estimates of the correlation 
ween the signal in each channel and the summed output of 

array. This process can be implemented in an analog 
ion using correlation loops [l] or digitally in the form of 
Widrow least mean square (LMS) algorithm [2]. The 

fundamental limitation for this technique is one of poor 
ence for a broad dynamic range signal environment. 
different approaches for choo ing optimum beam- 

rmer weights are summarized in [3]. In many applications B 

none of those approaches is satisfactory. The desired signal 

canceller and preventing estima 
variance matrices in the maxi 

1 and noise co- 

concept of linearly constrained minimum variance (LCMV) 
beamforming is to constrain the response of the beamformer 
such that the desired signals are passed with specified gain 
and phase. The weights are chosen to minimize output power 
subject to the response constraint. When the beamformer has 
unity response in the look direction, the LCMV problem 
would become the minimum stortionless response 
(MVDR) beamformer probl is a very general 
approach employed to contro 

The weights of an MVDR-based beamformer should be 
updated in real time in order to respond to the rapid time- 
varying environment. Meanwhile, the evaluation of weights 
is computationally intensive and can hardly meet the real-time 
requirement. Systolic implementations of optimum beam- 
formers have been studied to improve the computational 
speed by a number of investigators. McWhirter and Shep- 
hered [5] showed how a triangular systolic array of the type 
proposed by Gentleman and Kung [6] can be applied to the 
problem of linearly constrained minimum variance problem, 
subject to one or more simultaneous linear equality con- 
straints. Their fully pipelined implementation requires O( p 2  
+ kp) arithmetic o cycle time where p is the 
number of antenna k is the number of look 
direction constraints. As an alternative to the digital ap- 
proach, an analog approach based on Hopfield-type neural 
networks could operate at much higher speed and requires 
less hardware than digital implementation. 

Tank and Hopfield [7] have shown how a class of neural 
networks with symmetric connections between neurons pre- 
sents a dynamics that leads to the optimization of a quadratic 
functional. Recently Lin [8] and Kennedy and 
Chua [9], [lo] extend ign of Hopfield network and 
introduced a canonical nonlinear programming circuit which 
is able to handle more general optimization problems. They 
showed that a canonical neural network assigned to solve the 
optimization problem would reach a solution in a time deter- 

rmer response. 
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mined by RC time 
plexity. Therefore, the converge speed of reaching the opti- 
mal solution is dramatically improved. Experiments show 

independent of signal power level and the computation time 
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of solving a linear array of 10 elements is about 0.1 ns for 
RC = 5 x 10-9. 

II. PROBLEM FORMULATION 
Considering a linear array composed of L isotropic an- 

tenna elements which receive signals from sources of varia- 
tion frequency fo located far from the array, xI(  t )  is defined 
as a complex output of the Ith element at the sampling time 
t ,  and can be expressed as [4] 

x l ( t )  = m( ~ ) e j 2 ~ f ~ ( t + 7 / ( ~ ~ + ) )  + nr( t )  + X I / ( t )  ( 1 )  

where 

is the time delay of the Ith element relative to a reference 
point chosen at origin. rl  is the position vector of the Ith 
element. O(0, 4 )  is an unit vector in the direction (8, 4 )  of 
the source, and c is the propagation speed of the plane wave 
in free space. 

The source amplitude m( t )  is characterized statistically by 

E [ m ( t ) ]  = 0 (3) 

E [  m ( t ) m * ( t ) ]  = Ps (4) 

where E[.] is the expectation operator, ps is the power of 
the source, and the asterisk denotes the complex conjugate. 
xIl( t )  is the component of the directional interferences re- 
ceived by the lth element and possess the same statistics as 
the source. In addition, nl( t )  is a white random noise with 
properties 

E [ n , ( t ) ]  = 0 ,  1 = 1 , 2 ; * * ,  L (5) 

E [ n I ( t ) n Z ( t ) ]  =0:6,,, I, k = 1 , 2 ; - . ,  L .  (6) 

Let the signal waveforms derived from the L elements of a 
beamformer be represented by an L-dimensional complex 
vector 

(7) 
and the weights of element outputs be represented by L- 
dimensional complex vector W, 

where T denotes the transpose of the vector. Then the output 
of the beamformer can be written as 

L 

y ( t )  = W T X / ( t )  = W H X ( t )  (9) 
I =  1 

where H denotes the complex conjugate transpose of a 
vector. 

Since each component of X(t) is modeled as a zero mean 
stationary process, the mean output power of the beamformer 
is given by 

p(w) = E [  Y ( t ) Y * ( t ) ]  

= WHRW (10) 
where R is the array correlation matrix. 

In order to achieve the optimal utilization of the mean 
output power of the beamformer, the weights are chosen 
based on the statistics of the data received at the array such 
that the output contains minimal influence due to noise as 
well as interference signals arriving from other directions. 
Different criteria exist for choosing optimum beamformer 
weights, which are summarized in [4]. A general approach is 
to constrain the response of the beamformer so that the 
desired signals are passed with specified gain and phase. The 
weights are chosen to minimize the output power subject to 
the required constraints. This has the effect of preserving the 
desired signal while minimizing contributions due to noise 
and interfering signals arriving from directions other than the 
direction of interest. Based on the above concept, determina- 
tion of weights with linear constraints to the weight vector is 
called the linearly constrained minimum variance beamfom- 
ing problem, which is usually formulated as 

min $(W) = WHRW (11) 
W 

subject to WHSo = r 

where r is a complex constant, So is 
associated with the look direction and is 

So = 1 exp j-cos8, , - . e ,  I ;  (2;d 1 
exp ( j-- * L d ( L -  

(12) 

the steering vector 
given by 

1) cos 8 , ) I T  (13) 

where d is the element spacing, h, is the wavelength of the 
plane wave in free space, and Bo is the look direction angle 
(the angle between the axis of the linear array and the 
direction of the desired signal source). 

The method of Lagrange multipliers can be used to solve 
(1 1) resulting in 

R-'So 
S f R -  'So 

W = r  

Note that in practice the presence of uncorrelated noise 
ensures that R is invertible. If r = 1 ,  then (11) is often 
termed the minimum variance distortionless response beam- 
former. 

The MVDR beamforming problem defined in both (11) 
and (12) is indeed a complex-value constrained quadratic 
programming problem, which cannot be solved by neural 
network directly. In order to meet the requirement of neural- 
based optimizer, one should convert it into a real-value 
constrained quadratic programming formulation. To achieve 
this goal, the complex vectors W, WO, and matrix R should 
first be decomposed into their real and imaginary con- 
stituents, or 

W = W, + j W i  

R = R ,  + j R i  

So = SOT + jSOi 

(15) 

( 16) 

and 
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where W,, R,, So, and W,, R , ,  S o l  are the real parts and 
imaginary parts of W, R, and So, respectively. 

Next, substituting (15) into (lo), the mean output power 
becomes 

WHRW = (Wr + j W , ) H ( R ,  + jR , ) (W,  + j W , )  

= W,TR,W, - W,TR,W, + WITR,Wr 

+ WfTR,WI + j[W;R,W, + WTR,W, 

- WITR,W, + WITR,WI]. (17) 

Since R is a positive-definite Hermitian matrix, both R, 
and R ,  are identified as the symmetric and skew-symmetric 
matrices, respectively. Employing the above fact, it can be 
shown that the imaginary part of WHRW vanishes and 
consequently 

WHRW = W,R,W, - W,TR,W, + WITR,W, + WITR,W, 

R, -R ;  
='.[Rj R,  1' 

v =  [;I. 
where v is a 2L-dimensional real weight vector defined by 

Similarly, the linear constraint can be written as 

For clarity, we let 

2R, -2R, 
G =  [2R,  2R, ] 
B =  

and 

e G, B, and e are (2L) x (2L) symmetric, positive- 
nite matrix, 2 x (2L) matrix, and (2 x 1) column vec- 

pectively . Therefore, the complex-value MVDR prob- 
comes the following equivalent real canonical quadratic 
mming problem with linear equality constraints 

min $(v) = $vTGv (24) 
V 

subject to f(v) = B v  - e = 0 (25) 

ere f(v) is a 2 x 1 column vector. 

111. A NEURAL-BASED CANONICAL NONLINEAR 
PROGRAMMING CIRCUIT 

o allow a beamformer to respond to a rapid time-varying 
environment, the weights should be adaptively controlled to 
satisfy (14) in real time. However, it is computationally 

intensive and is very costly to implement U 
components. Digital systolic implementations of optimal 
beamformers have been studied by a number of investigators 
[5]. They are usually designed to both compute and imple- 
ment the adaptive weights. As an alternative to the digital 
approach, an analog approach based on Hopfield-type neural 
networks could operate at a much higher speed and requires 
less hardware than digital implementation. It is shown that 
Hopfield-type neural networks can solve a number of difficult 
optimization problems [7]-[lo] in a time determined by the 
system RC time constants, not by algorithmic time complex- 
ity. Based on this fact, the neural-based analog circuits are 
suggested to be one of the favorable choices for the real-time 
implementation for solving the MVDR problem. 

Artificial neural networks contain a large number of identi- 
cal computing elements or neurons with specific interconnec- 
tion strengths between neuron pairs. The massively parallel 
processing power of neural network in solving difficult prob- 
lems lies in the cooperation of highly interconnected comput- 
ing elements. Tank and Hopfield 
networks have the real-time cap 
optimization problems, especially, the linear programming 
and signal decomposition/decision problems, by the pro- 
gramming of synaptic weights stored as a conductance ma- 
trix. Recently, Chua and Lin [8] and Kennedy and Chua [lo] 
have extended the method to deal with more general nonlin- 
ear programming problems. They proposed a canonical non- 
linear programming circuit, which includes dc voltage and 
current sources, multiport transformers and a network of 
conductances. Chua and Lin [8] also showed that the linear 
programming network of Tank and Hopfield is, in fact, a 
special case of the canonical nonlinear programming circuit. 
Since the risk of instability in the network is ever presented, 
Kennedy and Chua [ 101 introduced their modified canonical 
design which can guarantee the stability of the network 
solution. In order to obtain a robust and stable solution of 
MVDR problem in real time, the circuit proposed by Kennedy 
and Chua is particularly considered in the design of our 
implementation in this paper. 

The general nonlinear programming problem can be stated 
as the attempt to mi 

(26) 

This minimization is to be accomplishe 
inequality (or equality) constraints 

f J ( u l ,  u 2 ; * * ,  U,) 1 O(or = 0) ,  

where m and n are two independent integers 
The canonical nonlinear programming ci 

Fig. 1 consists of controlled current and voltage sources, 
nonlinear resistors, and linear capacitors. The voltages U, 
across the capacitors on the right-hand side of Fig. 1 repre- 
sent the values of the variables involved in the nonlinear 
programming. The currents i, through the voltage-controlled 
nonlinear resistors gJ(  f,(v)) represent 

1 sj 5 m (27) 
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site, resulting in the following expressions for P(v) :  

5 I g j (  f j ( v ) )  I , 
l m  
- g3 ( f j ( v )  ) , for square operator. 
2 j = 1  

for absolute value 
j =  1 

(30) 

+-if+) 1-i j=l 

P ( v )  = 

Moreover, the output of the j th constraint amplifier 
g j (  f j ( v ) )  can be defined as follows: 

I I 

Fig. 1. Canonical nonlinear programming circuit. 

where v = [U,, u 2 ;  * e ,  vJT. Note that the nonlinear func- 
tions g j ( . )  are used to impose the constraints in the circuit 
realization. By reading directly from Fig. 1, the circuit 
equations for the network are given by 

where i j  = gj( f j (v ) ) ,  and both a and p are positive scaling 
factors. 

Next, we would like to show that the circuit equation of 
(28) converges to a minimum of the cost function 4(v) 
subject to a set of constraints. Before discussing this critical 
issue, several considerations involved in the constrained 
problem should be identified. The constraints in (27) define a 
subspace of the multidimensional parameter space called the 
feasibility region. Solving a constrained problems is, hence, 
the process of finding that point inside the corresponding 
feasibility region (including the boundary) where the value of 
the cost function 4(v) is the minimum one. To solve a 
constrained problem defined in (26) and (27), we convert it in 
an equivalent unconstrained problem. The way to do this is to 
define a pseudo-cost function E(v) as follows: 

where $(v) is the original cost function, P(v)  is referred to 
as the penalty function, and a and p are called the accelera- 
tion factor and the penalty multiplier, respectively. 

Different penalty function alternatives can be used in prac- 
tice. Owing to the considerations in [8], [9], it can be 
concluded that for a function to qualify as a valid penalty 
function it must monotonically increase as the f j ( v )  deviates 
from the satisfaction of those constraints. In particular, either 
the absolute value or the square operator fulfills this requi- 

for equality constraint 
(31) 

f j ( v>  9 

= 1 U( - f j ( v ) ) f j ( v ) ,  for inequality constraint 

where U(.) is the unit step function. 
It is interesting to note that the pseudo-cost function E(v) 

can be identified as energy function for the system of circuit 
equations (28) and the system is ensured to be completely 
stable. By complete stability, the system will not oscillate, 
but will converge to a stable equilibrium state. For simplic- 
itly of analysis, it is assumed the first-order time derivative of 
E(v) exists and is continuous. In order to make the pseudo- 
cost function E(v) be differentiable, the square operator 
would be particularly considered in the penalty function. By 
using the fact that i j  = gj( f j ( v ) ) ,  the time derivative of E 
becomes 

I O .  (32) 

Since each c k  is strictly positive and ( d v k / d t ) 2  2 O for 
all k ,  the time derivative of the pseudo-cost function E(v) is 
always less than zero. This implies that the circuit will force 
E(v) to be monotonically decreased except at the equilibrium 
points where the time derivative vanishes. Nevertheless, the 
equilibrium points may be either local minimum or inflection 
points of E(v). The second-order conditions, which are 
defined in terms of the Hessian matrix V2E(v) of second 
partial derivative of E(v), must be derived in order to 
determine the status of those equilibrium points. It is shown 
in [12] that the equilibrium point is a local minimum if the 
Hessian matrix of E(v) is positive-definite. Usually, the 
Hessian matrix V2E(v) is an n x n symmetric matrix de- 
fined by 

a2E(v) 
VZE(V) = ~ [ avivj  ] 

where vi is the ith component of v .  

(33) 
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By substituting (24) and (25) into (29), we have 

a 
E(v)  = -vTGv + ~ ( B v  - e)T(Bv - e ) .  (34) 2 

As a consequence, its Hassian matrix becomes 

V2E(v) = a G  + 2pBTB.  (35) 

Since G and BTB are positive-definite and positive 
semidefinite, respectively, the Hassian matrix V2E(v) which 
is linear sum of G and BTB is positive definite. Therefore the 
equilibrium point is also the local minimum point. Further- 
more, the feasible region over which the constraints of (25) 
are satisfied can be shown to be a convex set. Since the 
Hassian matrix of (35) is positive definite throughout the 
feasible region, it is shown in [12] that any local minimum of 
E(v) is a global minimum over this feasible region. As a 
result, the circuit solution of the Hopfield-type network tends 
to a global minimum of the original cost function $(v) within 
the region over which the constraints are satisfied, when 
dEldt  = 0. 

IV . A NEURAL-BASED CIRCUIT IMPLEMENTATION FOR 

THE MVDR BEAMFORMING PROBLEM 

Basically, the circuit shown in Fig. 1 is used to solve a 
general nonlinear programming. In the case of MVDR-based 
constrained quadratic problem, a more compact neural-based 
circuit realization using the existing solid-state devices is 
possible. Usually, the circuit would include two particular 
modules. The first module is called the variable amplifier, 
which can perform the integral of a sum of (rn + 1) input 
currents ( -  aa4 /avk)  and (- piiafJ /auk) and then pro- 
duces the desired output variable v k .  Fig. 2(a) shows the 

mplementation of the variable amplifier consisting of 
an integrator and a unity gain inverting amplifier. Op amp 1 
Pro voltage v which is in proportion to the integral of 
the current I. The inverting amplifier including op 
amp 2 and resistor R reproduces this voltage, but with 
opposite sign. The second module is called the constraint 

ich is used to perform the constraint satisfaction 
.). Since the MVDR problem has two equality 

constraints, the output of each gJ( a )  would be identical to its 
input. Therefore the circuit realization of gJ( e )  is particularly 
simple and shown in Fig. 2(b). Without loss of generality, 

penalty multiplier p may be included in gj(*) .  Thus, the 
uit yields the input-output relation: 0 = -PI, where p 

represents the magnitude of the resistance, and 0 and I are 
an output voltage and an input current, respectively. If the 
input current I is equal to -fJ(v), then 0 = - p( -fJ(v)) = 

hould be noted that the canonical nonlinear program- 
ming circuit model uses both current i, and voltage vk  as 
variables. However, both iJ and uk are represented as "volt- 
ages" in the neural network implementation [lo]. By em- 
ploying the virtual short circuit property of the op amp [lo], 
these voltages would be converted to currents which are 
suitable for performing the weighted sum operation. Looking 
upon the circuit system dynamics of (28), the controlled 

pfJ(') = pgJ(fJ(')) = 

317 

Fig. 2. Basic blocks of neural circuit. (a) Variable amplifier. (b) Constraint 
amplifier. 

current sources a 4 /a  vk and d f J  /a  vk  should be determined 
prior to the implementation. From (24) and (25), it follows 
that 

and 

where gk, and bJk are the ( k ,  i )  and ( j ,  k )  entries of G and 
B, respectively. 

current a4/avk is a 
linear sum if the uk weighted by conductances gkl. In the 
case of linear constraints, the weights afJ(v)/avk are con- 
stants and so may be implemented directly as conductances. 
Combining (28), (36), and (37), one would obtain the state 
equations to the circuit implementation as 

Equation (36) shows that th 

and 

Note that the acceleration factor a is included in g k ,  and 
then g;, is defined as (agk,).  

According to (38) and (39), a circuit realization is shown 
in Fig. 3. It should be noted that the elements of the e,  G ,  
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Fig. 3. Schematic diagram of neural circuit for MVDR-based beam 
forming problem. 

and B matrices are realized directly as resistive connections 
and that their associated matrix entries correspond to conduc- 
tance values. Considering the j th row of the upper constraint 
block, the input current Ij to the j th constraint amplifier is 
given by 

2L 

Ij = ej + bji( - U;) 
i =  1 

L L  

= ej  - 1 bjiui 
i =  1 

where e, = 1 and e2 = 0. Note that the resistor bjj is 
connected to the negative output terminal of the ith variable 
amplifier. 

Thus, we would obtain the output voltage of the j th 
constraint amplifier as 

p I j  = p f j ( v ) .  (41) i . = O =  - 

Since gLi and bjj are connected to the output terminal of the 
ith variable amplifier and the output of the j th constraint 
amplifier respectively, the current Ik flowing into the kth 
variable amplifier is obtained by 

2L 2 

I k  = 1 g;jU; + 1 ijbjk. (42) 
i =  1 j =  1 

By using the fact that Cduk / d t  = - I k  for the kth variable 
amplifier, it yields 

As discussed in (40)-(43), it has been proven that the 
circuit schematic shown in Fig. 3 precisely implements the 
dynamic equation of (38) and (39) and then is applied to 
carrying out the optimal solution of the MVDR problem. 

V. ILLUSTRATED EXAMPLES 

To verify the effectiveness of MVDR-based neural analog 
circuit implementation, a linear array of ten elements with 
half-wavelength spacing is considered in the following exam- 
ples. The variance of white noise present on each element, 
i.e, U," is assumed to be equal to 0.1. In addition, there are 
two interference sources which fall in the main lobe and the 
first sidelobe of the conventional array pattern, respectively. 
The first interference makes an angle 72" (0 ,  = 72") with 
the line of the array and has the power which is taken to be 
30 dB more than the white noise power. And, the second 
interference makes an angle of 98"(8, = 98") and has the 
power which is 10 dB more than the white noise power. 
Based on the above assumptions, it is concluded that the 
power levels for these two interferences would be identified 
as 100 and 1, that is, p ,  = 100 and p 2  = 1, respectively. 
The look direction of signal is assumed to be orthogonal to 
the array. Three signal powers varied from 0 to 20 dB above 
the white noise power are employed in our example. 

The parameters gki  and bjk involved in the proposed 
circuit for this particular example could be obtained accord- 
ing to the value of each component in G and B. The 
2 x 20(L = 10) matrix B includes two 10 x 1 vectors asso- 
ciated with the look direction that are So, and So, shown in 
Table I. Another 20 x 20 symmetric positive-definite matrix 
G consists of both R ,  and R i  which are 10 x 10 matrices in 
terms of the signal power parameter p ,  and the acceleration 
factor a. More details about the expression of G' are shown 
in Table I. In addition, the penalty multiplier p in each 
constraint amplifier and the acceleration factor a are taken to 
be 0.4 and respectively. 

We have simulated the MVDR-based neural analog circuit 
described by (38) and (39) with the initial guess v(0) = 0, 
using the simultaneous differential equation solver (DVERK 
in the IMSL). This routine solves a set of nonlinear differen- 
tial equations based on the fourth-order Runge-Kutta method. 
The capacitance C involved in each variable amplifier of the 
circuit is assumed to be 1 pF. Figs. 4 and 5 show the time 
evolutions of three output noise powers and the resulting 
output SNR's corresponding to their associated signal power 
levels 0.1, 1, and 10, respectively. It is worth observing that 
the converge time of each curve in Figs. 4 and 5 is almost 
independent of ps  and equal to 0.1 ns. Since the converge 
time is characterized by the time constant of system, one may 
use the dominant equivalent time constant 7, which is defined 
in Appendix I to verify this particular time behavior. By 
using the G and B given in Table I, these dominant time 
constants are found to be also independent of p ,  and equal to 
5 x lop9 s. It has been shown that the converge time of each 
curve is bounded by the dominant time constant. In addition, 
while reaching the equilibrium state, those resulting solution 
weights do not satisfy both equality constraints exactly. Ap- 
pendix I1 shows that these two steady-state constraint viola- 



Rrn = 

RI, = 
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- 
101.10 57.37 -35.60 -97.13 -73.91 13.54 88.81 86.16 7.81 -77. 
57.37 101.10 57.37 -35.60 -97.13 -73.91 13.54 88.81 86.16 7 .  

-35.60 57.37 101.10 57.37 -35.60 -97.13 -73.91 13.54 88.81 86. 
-97.13 -35.60 57.37 101.10 57.37 -35.60 -97.13 -73.91 13. 
-73.91 -97.13 -35.60 57.37 101.10 57.37 -35.60 -97.13 -73. 

13.54 -73.91 -97.13 -35.60 57.37 101.10 57.37 -35.60 - 
88.81 13.54 -73.91 -97.13 -35.60 57.37 101.10 57.37 - 
86.16 88.81 13.54 -73.91 -97.13 -35.60 57.37 101.10 
7.81 86.16 88.81 13.54 -73.91 -97.13 -35.60 57.37 1 

--77.98 7.81 86.16 88.81 13.54 -73.91 -97.13 -35.60 57 

0.00 -82.11 -92.44 -21.75 68.53 99.82 44.74 -48.95 - 
82.11 0.00 -82.11 -92.44 -21.75 68.53 99.82 44.74 -48.95 -99.97 
92.44 82.11 0.00 -82.11 -92.44 -21.75 68.53 99.82 44.74 -48.95 
21.75 92.44 82.11 0.00 -82.11 -92.44 -21.75 68.53 

-68.53 21.75 92.44 82.11 0.00 -82.11 -92.44 -21.75 6 
-99.82 -68.53 21.75 92.44 82.11 0.00 -82.11 -92.44 - 
-44.74 -99.82 -68.53 21.75 92.44 82.11 0.00 -82.11 - 

48.95 -44.74 -99.82 -68.53 21.75 92.44 82.11 0.00 -82.11 -92.44 
99.97 48.95 -44.74 -99.82 -68.53 21.75 92.44 82.11 0.00 -82.11 

- 64.18 99.97 48.95 -44.74 -99.82 -68.53 21.75 92.44 82.11 0.00- 

. Output noise power WHRNW versus the response time for a 
ement linear array with half-wavelength spacing. Two interferences are 

assumed: 8 ,  = 72", p ,  = 100, 0, = 98", p 2  = 1. U," = 0.1. The look 
direction angle is 90". The initial values of the weights are zero. '-': 
p ,  = 0.1, ' . . . '. . p ,  = 1, '+': p ,  = 10. 

tion errors could be estimated by e h ,  = 2 u p , / ( ~  + up,) 
and eir, = 0. As a result, the penalty multiplier should be 
chosen large enough to make eik, sufficiently small. The final 
results are illustrated in the following table. 

Simulation Constraint Error 
Theoretical Results Weighting Error Estimates 

r SNR Value v(0) = 0 a! fi errl err2 eir, eir, 

7.956 7.956 0.001 0.4 0.00056 0 0.0005 0 
1 79.56 79.56 0.001 0.4 0.005 0 0.005 0 
10 795.6 795.6 0.001 0.4 0.048 0 0.0488 0 

It is worth simulating the case of large jammers by varying 
the INR's (interference-to-noise ratio) for both interfering 

++,++,,,,r+++**t*+++*+++**.**+++++**+++++*******++**********~~*~.+***+** 
16 
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Fig. 5. Output signal-to-noise ratio versus the 
ment linear array with half-wavelength spacing. Two interferences are 
assumed: 8 ,  = 72", pi = 100, O 2  = 98", p 2  = 1. U," = 0.1. The look 
direction angle is 90". The initial values of weights are zero. '-': p ,  = 0.1, 
' . . . ' .  . p ,  = 1, '+': p ,  = 10. 

signals from 30-70 dB simultane Fig. 6 shows that the 
resulting output SNR of each curve is almost independent of 

the same steady state level. Since the 
nto the variable amplifier is approximately 

proportional to the INR for the case of large jammers, it is 
expected that the converge time improves as INR increases. 
However, the acceleration factor is adjusted to smaller value 
in view of stability consideration and the dominant time 
constant in such case is about lop5 s. Another situation of 
particular interest is the performance evaluation of the beam- 
former under the influence of broad-band jammers. This is 
given by way of examples which demonstrate how the result- 
ing SNR varies as the element spacing changed from 0.35 A,, 
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Tmc (rcc) 

Fig. 6 .  Output signal-to-noise ratio versus the response time for 10 element 
linear array with half-wavelength spacing. Two interferences are assumed: 
8, = 72", 8 2  = 98". U,' = 0.1. The look direction angle is 90", ps  = 10. 
The initial values of the weights are zero. '-': INR = 30 dB, '--': INR = 50 
dB. ' ... ': INR = 70 dB. 

to 0.75 X,, where X, is the wavelength and the signal source 
corresponds to the half-wavelength spacing. For comparison, 
all the parameter settings are taken to be the same as used in 
the previous case. One observes from Fig. 7 that the SNR 
starts to increase as the element spacing increases. It reaches 
its maximum level when the element spacing is equal to 0.68 
X,. Beyond that the SNR level drops slightly. The reason is 
that the larger element spacing causes the grating lobes to 
appear in the array and thus degrades the overall output SNR. 
Finally, a comprehensive example is conducted to test the 
network performance for the case of closely spaced jammers. 
The phases of the interfering signals are assumed such that 
the angles of arrival for the two jammers are as close as 
O 1  = 72" and O 2  = 74", respectively. The powers of both 
interferences are taken to be of the same level and equal to 
100. The signal power, look direction angle and element 
spacing are suggested to be 10, 90" and 0 .5  X, respectively. 
The resultant array output SNR is shown in Fig. 8 which 
reaches its maximum value of 950 rapidly. Fig. 9 compares 
the power patterns of the resultant adaptive array pattern with 
that of the conventional uniform array pattern. One observes 
clearly that two sharp nulls presented in the pattern corre- 
spond to the directions of arrival of the interferences. As a 
result, the interferences are suppressed and the output SNR 
of the adaptive array reaches the optimal value. 

VI. CONCLUSION 
In this paper, we have proposed a cost-effective analog 

circuit implementation for computing the MVDR beamform- 
ing problem based on Kennedy and Chua's cannonical neural 
network. Their novel neural-based optimizer is able to guar- 
antee the stability and robustness of the solution, the con- 
verge time can be characterized by the dominant time con- 
stant of the network. It turns out that the speed of reaching a 
steady-state solution depends essentially on the time constant, 
not on the algorithmic time complexity. Finally, a linear 
array of 10 elements with three signal levels is constructed 
accordingly to verify the performance of the proposed cir- 

950! 

558\5 0 4  0.45 0.5 0.55 0.6 065 0.7 0.!5 

Narmalved element spring  

Fig. 7.  Output signal-to-noise ratio versus the element spacing for a 
ten-element linear array. Two interferences are assumed: 8,  = 72", p - 
100, 8, = 98", p ,  = 100. U,' = 0.1. The look direction angle is ;O', 
ps  = IO. The initial values of the weights are zero. 
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Fig. 8. Output signal-to-noise ratio versus the response time for a ten-ele- 
ment linear array with half-wavelength spacing. Two interferences are 
assumed: 8, = 72", p ,  = 100, 8, = 74", p z  = 100. U,' = 0.1. The look 
direction angle is 90", p ,  = 10. The initial values of the weights are zero. 
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Fig. 9. The conventional uniform array pattern '--' and the resultant 
adaptive array pattern '-' for a 10-element linear array with half-wavelength 
spacing. Two interferences are assumed: 81 = 72", p1 = 100, 8, = 74", 
p ,  = 100. U,' = 0.1. The look direction angle is 90", ps  = 10. The initial 
values of the weights are zero. 
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cuit. It shows that the MVDR-based neural circuit is able to 
quickly attain its optimal performance in 0.1 ns when the 
dominant time constant is 5 x s and work satisfactorily 
under the stringent environment of strong jammers as well as 
closely spaced jammers. 

APPENDIX I 
THE DOMINANT TIME CONSTANT FOR AN MVDR-BASED 

NEURAL CIRCUIT 

Substituting (38) into (39), one may obtain the system of 
first-order differential equations in matrix form and given by 

d v  1 
- = - - [ ( G  + pBTB)v + pBTe] 
dt  C 

= - M v + N e  (44) 

where M = ( G  + pBTB)/C and N = -pBT/C. 
[ 1 11 showed that the solution of (44) can be expressed as a 

linear combination of modes tke-’rt where A, is the ith 
eigenvalue of M. It is known that the time behavior of system 
(44) would be dominated by the minimum eigenvalue 
&,,,,(M) = min, (A,). Consequently, a dominant time con- 
stant for the MVDR-based neural circuit is defined by 

(45) 

APPENDIX II 
ESTIMATION OF STEADY-STATE CONSTRAINT VIOLATION 

ERRORS 
Let the steady-state constraint violation errors for both 

equality constraints defined in (25) be represented by err, and 
err2, respectively. While reaching the equilibrium state, these 
two constraints become 

and 

2 L  
1 B,,u, = (1 - err,) 
k= 1 

2 L  

1 B,,u, = err2. (47) 
k= 1 

Since the noise power pnoIse is assumed to be insignificant to 
the signal power, the objective function 4 is given by 

and the penalty function is calculated as 

(49) P = ;(err: + err;). 

Therefore, the energy function becomes 

E I steady state 

321 

= U 4  + p P  

= + { 2 a p S ( 1  - err,)’ + perrt 

By the chain rule and the fact that dE/dt = 0 at the e 
rium state, the time derivative of E becomes 

Equation (51) implies that both partial derivatives of E with 
respect to err, and err2 should vanish re 

where eh-, and eir, are the es 
respectively. Then, we obtain 
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