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Reliability Analysis of Distributed Systems 
Based on a Fast Reliability Algorithm 

Deng-Jyi Chen, Member, ZEEE, and Tien-Hsiang Huang 

Absh-crct-The reliability of distributed processing system (DPS) 
can be expressed by the analysis of distributed program reliability 
(DPR) and distributed system reliability (DSR). One of the good 
approaches to formulate these reliability performance indexes 
is to generate all disjoint File Spanning l h e s  (FST’s) in the 
DPS graph such that the DPR and DSR can be expressed by 
the probability that at least one of these FST’s is working. In 
this paper, we present a unified algorithm to eficiently generate 
disjoint FST’s by cutting different links and compute the DPR 
and DSR based on a simple and consistent union operation on 
the probability space of the FST’s. The DPS reliability related 
problems are also discussed in this paper. These include 1) the 
reliability of more than one copy of programs running on a given 
DPS starting from different sites, 2) the reliability of a specified 
program running on a given DPS starting from different sites, 
3) the reliability of more than one different programs running 
on a given DPS, and so on. For speeding up the reliability 
evaluation, nodes merged, series, and parallel reduction concepts 
are incorporated in the algorithm. Based on the comparison 
of number of subgraphs (or FST’s) generated by the proposed 
algorithm and by existing evaluation algorithms, we conclude that 
the proposed algorithm is much more economic in terms of time 
and space than the existing algorithms. 

Index Terms- Distributed program reliability (DPR), dis- 
tributed system reliability (DSR), graph theory, file spanning tree 
(FST), spanning tree, reliability. 

I. INTRODUC~ION 

ISTRIBUTED Processing Systems (DPS) provide cost- D effective ways for improving computer system’s resource 
sharing, performance, throughput, fault tolerance, and re- 
liability [3]-[5], [8], [ll], [15], [18]. Both the reliability 
performance and the fault tolerance are significantly affected 
by its redundant resources (i.e., the distribution of data files) 
and cooperation among processing elements. In general, a dis- 
tributed program usually requires one or more of the resources 
(e.g., processing elements, data files, and so on) for successful 
execution. Thus, the operability of the communication link 
and the availability of the required data files all play a role in 
affecting the reliability of a given program running in the DPS. 
Also, different data files distribution could result in different 
reliability performance for a given distributed program as well 
as the overall system. To develop an effective approach for 
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the reliability analysis of distributed system has become an 
important topic. 

Traditional reliability evaluation approaches for computer 
networks such as source-to-terminal [l], [2], [9], [lo], [16], 
[17], Boolean algebra method [6], [7] are not directly appli- 
cable for distributed systems for that the effects of redundant 
data files and programs are not captured in these methods. To 
overcome these problems, new approaches for the reliability 
analysis of distributed programs must be developed. 

In reliability analysis of the DPS, Kumar proposed a very 
good notion called Minimal File Spanning Tree (MFST) and 
develop algorithms to find MFST’s within a DPS graph 
[12]-[14]. The DPR and DSR can then be computed through 
the analysis of the probability that at least one of these 
MFST’s is working. The MFST algorithm presented in [12] 
uses breadth-first search method to travel the DPS graph to 
generate all MFST’s. According to the algorithm, firstly, all 
MFST’s of size 0 are determined; next, all MFST’s of size 1 
are determined; and so on. This procedure is repeated for all 
possible sizes of MFST’s up to n - 1, where n is the number 
of nodes in the underlying DPS. Both the DPR and DSR can 
then be determined by computing the probability that at least 
one of the MFST is working. 

In this paper, we present a unified reliability algorithm to 
efficiently compute the DPR and DSR. The concept of the 
algorithm is based on a special graph cutting approach to 
generate the probability subgraphs that represent the FST’s 
in the DPS graph. The DPR and DSR computation can then 
be done by unioning all these disjoint probability subgraphs 
representing FST’s. This approach guarantees no replicated 
FST’s to be generated during the FST generating process. 
To speed the reliability evaluation process, node merged, 
series, and parallel reduction concepts are incorporated into 
the proposed algorithm. Although the performance of the 
reliability evaluation algorithm is affected by the data file 
distribution, the proposed reliability evaluation algorithm is 
much faster compared with algorithms presented in [12]-[14]. 

11. NOTATIONS, DEFINITIONS, AND PROBLEM STATEMENTS 

Notations and definitions used in the rest of the paper are 
summarized here for easy reference. 

A. Notations 

xi: a node representing a processing element i. 
x i j :  a link between processing elements i and j .  
p i j  ( q i j ) :  probability that the link xi,j is up (down). 
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t: a subgraph, that can be a tree or forests, of DPS’s graph. 
The trees and forests are represented by sets of nodes and links. 

FA;: the set of data files available at processing element xi. 
FAt :  the set of data files available for subgraph t. 
FNi :  the set of data files needed to execute program i .  
F N :  the set of data files needed for current programs to be 

P V :  the set of current programs which need to be executed 

PRGi: the set of programs available at processing element 

PAt: the set of programs available for subgraph t. 
LSt: a set of link states that represents the links’ conditions 

The state conditions of each these links can be one of the 

executed in the DPS. 

in the DPS. 

X i .  

in the current subgraph t. 

followings: 

0 xi,j is down 

* don’t care 
1 x;,j is up (1) 

ST,: a set of link states that can be used to construct the 
Spanning Tree of subgraph t. 

NC,: a set of link states that indicate which link cannot be 
cut in subgraph t. 

LSPt: a set of link states that can be used to compute the 
probability of subgraph t. The state condition could be either 
1, 0, or *. 

B. Definitions 
Definition 1: An FST is a File Spanning Tree that connects 

the root node (the processing element that runs the program 
under consideration) to some other nodes such that its vertices 
hold all the needed files for the program under consideration. 

Definition 2: An MFST is a minimal FST such that there 
exists no other FST which is subset of it. 

Definition 3: Operator A represents the logic AND operation, 
and its applicable operations are listed below. 

Definition 4: Operator V represents the UNION operation 
and it is applied on LSPt only for the summation of the 
probability space of subgraph t. The operation is 0 V 1 -+ 

* under the condition of two LSPt’s only differ in one bit, 
e.g., 

LSPtl = * * 011 
LSPt2 = * * 001 
LSP,1 v LSPt2 = * * 011 v * * 001 = * * 0 * 1. 

Definition 5: A probability graph is a graph that has a 
probability space associated with it. For the original graph, 
the probability space is assumed to be 1. Also, the probability 
space of a subgraph will be equal to the sum of the probability 
space of all subgraphs generated by this subgraph. 

Definition 6: A DPS graph is a graph representing the 
distributed processing system. In the rest of the paper, we 
also use the FST to represent a probability graph. Thus, they 
are used interchangeably. 

C. The Problem Statements 

Consider the distributed processing system in Fig. 1, there 
are four processing elements ( 5 1 ,  ~ 3 ~ x 4 )  connected by 
links x1,2. ~ 1 , 3 ,  X ~ , J , X ~ , ~ ,  and x3,4. Processing element x1 
contains two data files ( F 1  and F2)  and can run program 
1 directly from here to communicate with other nodes for 
accessing data files required to complete the execution of pro- 
gram 1. The detailed information of each node is summarized 
in FA,, FN,,  and PRG,(j = 1,2;. . ,4).  

We are interested in solving the following reliability perfor- 
mance problems: 

1) What will be the reliability of a single distributed 
program 1, 2, or 3 running under the given DPS? 

2) What will be the reliability of two or more distributed 
programs successfully running under a given DPS? 

3) For the same program i, what will be the reliability of 
one program i ,  two copies of program i, three copies of 
program i, and so on running on a given DPS? 

4) What will be the overall system reliability while execut- 
ing all the programs in a given DPS? 

5 )  What will be the distributed program reliability if users 
choose a particular site to run a particular distributed 
program or to execute all the programs in the system? 

111. THE DISTRIBUTED RELIABILITY ALGORITHM 

A .  The Basic Concept of The Algorithm 

The basic idea for the algorithm is to find all disjoint FST’s 
in each size starting from the original graph representing the 
DPS. Consider the DPS graph representation in Fig. 1, if 
we use an efficient method to cut one link each time from 
the graph at a different place to generate possible subgraphs 
recursively, then we are able to predict if each of these 
resulting subgraphs is an FST by examining the set of data 
files contained in this subgraph against the set of required 
data files for executing the distributed programs. This process 
can be repeated starting from graph size n l n  - l , . . . ,  to 0 
(where n is the number of links in the graph). Obviously, 
without an efficient method to remove appropriate links, the 
time and space required for the algorithm could be very poor. 
The concept of the algorithm is described informally below. 

1) If the current graph has contained a FST be working, 
then store the current graph into list FOUND. Otherwise, 
choose an efficient method to cut one link from the 
current graph such that each of these resulting subgraphs 
is generated by cutting different link from the current 
graph and store the current graph with these cutting links 
be working into list FOUND. 

2) Check each subgraph generated by step 1 with the 
set of required data files for executing the distributed 
programs. If the subgraph meets the requirement then 
store it into list TRY. 
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PRGl = [ P1 ) FNl = ( FI,F2,F3 ) 
PRG2 = ( P2,P3 ) FN2 = ( Fl,F2,F4 ) 
PRG3 = ( P3 ) FN3 = ( FI,F2,F3,F4 ) 
PRG4 = ( PI ) 

FA1 = ( FI,F2) 
FA2 = ( F3 ) 
FA3 = ( F1,F4 ) 
FA4 = ( F2,F3 ) 

Fig. 1. A simple DPS with four processing elements 

3) For each subgraph in TRY, apply steps 1 and 2 repeat- 

4) All the FST’s in each size are now stored in list FOUND. 
edly until TRY is empty. 

B. A Method for Graph Cutting and Reliability Computation 
The method for cutting the graph plays an important role in 

finding the FST’s and in computing the reliability of the DPS. 
Let us use an example to illustrate this graph cutting method. 
Consider the DPS graph in Fig. 1 again, we could make sure 
that all nodes in the DPS should be able to communicate with 
each other if links x 1 , 2 , 2 2 , 3 ,  and 2 3 , 4  are all working. This 
communicate path ( 2 1 , 2 , 2 2 , 3 , 5 3 , 4 )  is exactly a spanning tree 
of the original DPS graph. Let the probability space of the 
DPS graph be 1, then it should be equal to the sum of the 
following four disjoint probability subgraphs: 

1) A probability subgraph that links x1,2, 2 2 , 3 , 2 3 , 4  are all 

2) A probability subgraph that link $ 1 , ~  fails, 
3) A probability subgraph that link 2 2 , 3  fails but link 2 1 , 2  

4) A probability subgraph that link 2 3 , 4  fails but both links 

This relationship can be depicted in Fig. 2. The whole circle 
represents the total probability space which is equal to 1. The 
portion A (shadowed) represents the probability space that the 
graph has been confirmed to be working and itself is an FST of 
size 5. While portions B, C, and D are needed to be determined 
further for finding the FST of size 4. It should be noted that 
the probability of portion A, B, C, and D is not graphically 
DroDortional but thev should be summed UD to 1. 

working, 

must work, 

21,~ and 2 2 , 3  must work. 

- .  . link of spanning tree 

Fig. 2. The probability space of the original graph G. 

What we need to do next is to determine the probability 
space of portion B, C, and D. Follow the same idea, we then 
find a spanning tree from the subgraph representing portion B. 
The spanning tree tells us that links 2 1 , 3 ,  ~ 2 , 3 ,  and 2 2 , 4  must 
be up in order to make sure the connection among all four 
nodes. Thus, the probability of portion B will be the sum of 
the following four disjoint probability subgraphs: 

1) A probability subgraph that links 2 1 , 3 ,  2 2 , 3 ,  ~ 2 , 4  are all 

2) A probability subgraph that link ~ 1 , 3  fails, 
3) A‘probability subgraph that link 2 2 , 3  fails but link 2 1 , 3  

working, 

must work, 
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x2 

0 

n n 

Fig. 3. The probability space of the subgraph representing portion B. Fig. 4. The probability space of the subgraph representing portion B3. 

4) A probability subgraph that link ~ 2 , 4  fails but both links 

This relationship is depicted in Fig. 3. The whole circle rep- 
resents the total probability space of portion B. The portion B1 
(shadowed) represents the probability space that the subgraph 
has been confirmed to be working and is an FST of size 4. 
While portions B2, B3, and B4 are needed to be determined 
further for finding the FST of size 3. It should be noted that 
the probability space of portion B1, B2, B3, and B4 is not 
graphically proportional but they should be summed up to the 
probability space of portion B (in Fig. 2). 

Based on the same concept, we compute the probability 
subgraphs representing the portion B2, B3, and B4. For 
example, the probability subgraphs representing portion B3 is 
depicted in Fig. 4. Again, the probability subgraphs in Fig. 4 
should be summed up to the probability space of portion B3. 
We repeat this process until either the FST of size 0 is obtained, 
no available links can be cut, or the subgraph does not contain 
the required data files for executing the distributed program. 
For example, Fig. 5 depicts one of the termination conditions 
of this process. 

Once the concept of cutting the graph is understood, we 
need an appropriate representation scheme to illustrate. Let 
si,j be the state of link xi,j of the DPS, where 

~ 1 , 3  and X Z , ~  must work. 

0 xi,j is down 
si,j = 1 ~ i , j  is UP { * don’t care 

with applicable operations based on operator (defined in 
Section 11-C), then notations LSt,  NCt, STt, and LSP, 
(defined in Section 11-A) can be used to represent the 
graph cutting process. For example, for the graph of portion 
A in Fig. 2, suppose the bit state sequence of links are 
q 2 ,  x 1 , 3 ,  X 2 , 3 ,  x 2 , 4 , ~ 3 , 4 ,  we represent it as 

LSA = *****  (the initial graph) 
NCA = 00000 (subgraphs can be generated by cutting any 

links) 

Fig. 5.  The probability space of the subgraph representing portion B3. 

STA = 1*1*1 (since links x 1 , 2 ,  ~ 2 , 3 ,  x 3 , 4  have to be work- 

LSPA = 1*1*1 (it is obtained by L S  A ST). Likewise, for 
ing) 

the subgraphs B, C,  and D can be represented as 

LSD = 1*1*0 
NCB = 00000 NCc = 10000 NCD = 10100 
STB = * I l l *  STc = ** * * *  STD = ***** 
LSPB = 0111* L S P c  = 1*0** LSPD = 1*1*0. 

LSB = 0**** L s c  = I*()** 

Since the subgraphs C and D both contain an FST be work- 
ing (link x 1 , 2  must be working), thus we do not need to find 
a spanning tree in subgraphs C and D, so STc = *****  and 
STD = *****.  NCc = 10000 guarantee that the subgraph C is 
disjoint with the subgraph B, and NCD = 10100 guarantee that 
the subgraph D is disjoint with the subgraph B and C. It can be 
inferred that Pr(LS) = Pr(LSPA) + Pr(LSB) + Pr (LSc)  + 
Pr(LSD) = 1, where Pr(LSc) = Pr(LSPc) ,Pr(LSD) = 
Pr(LSPD), and Pr(LS) can be computed recursively using 
the graph cutting method introduced above. The informal 
algorithm for cutting the graph and computing the reliability 
can be described below. 

1) Find a spanning tree from the current graph if necessary 
and compute STt, 

2) Compute the vector LSPt  by ST, A LSt, and convert 
vector LSP, to the probability expression. 

3) Cut the current graph according to the vectors STt and 
NCt to obtain its subgraphs (or FST’s), 
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4) Repeat 1 to 3 to compute each subgraph’s vector LSPt,  
5) The reliability of the DPS graph is obtained by unioning 

all LSPt-vectors that are associated with all the FST’s. 

C. The Complete Reliability Algorithm 

Once the concept of finding all FST’s and computing the 
reliability of the DPS is understood, we now present the 
complete algorithm for finding the FST’s and computing the 
reliability of the FST. 

FST Reliability Algorithm 
begin 

step 1: initialization 
t = original graph ; 
TRY = t ; (store the original graph into list TRY) 
FOUND = 4 
LSt = **...* ; 
NCt = 00 ... 0 ; 
F N  = Ui FNi (where program i E P V )  ; 
R = 4 ;  

step 2: generate spanning tree 
repeat 

2.1 get a subgraph t from TRY ; 
2.2 checking step (check and find spanning tree) 

remove t from TRY ; 
if a FST has been working in t 

then add t to FOUND ; 
STt = **...* ; 

else find a spanning tree of connected 
component i in t such that F A (  2 
F N  and PAi  2 PV, and represent 
it by STt; 

LSPt = LSt A STt ; 
2.3: cutting step (generate subgraphs) 

add subgraph(t) to TRY ; 
until (TRY = 4) 

step 3: compute reliability 
for all t in FOUND do 

od 
Reliability = Pr(R) ; 

R = R V L S P t  ; 

end 

procedure subgraph(t) 
begin 

child = $ ; 
temp = 4 ; 
find each link Xk,l  with its value in STt = 1 and in 

/* STt represents all the links of the spanning tree, 

cut = U ~ , J  {xk,l}; /* cut store all the links can be cut 

for all xi,j E cut do 

NCt = 0 ; 

NCt represents all the links cannot be cut */ 

*/ 

LSnewt = Lst; 
set the state of xi,j in LSnewt to 0; 

/* cut link xi9j now */ 

find all links E temp and set those links’ states in 

temp = temp u{x;,j} ; 
LSnewt to 1 ; 

find a connected component i in t such 

if there are any connected component i found 
that FA; 2 F N  and P A i  2 PV; 

then add newt to child ; 
od 

return (child) ; 
end (* subgraph *) 

D. The FST Reliability Algorithm with Series and Parallel 
Reduction 

How to speed the reliability evaluation process up is the 
major concern of the proposed algorithm. The basic principle 
of speeding the reliability evaluation is to generate correct 
FST’s with less cutting steps. There are four methods that can 
be used interchangeably to speed the reliability evaluation. 
These methods are 1) nodes merged, 2) parallel reduction, 3) 
series reduction, and 4) degree-2 reduction. 

Nodes merged occurs when a probability subgraph has 
bit value 1 in its LS vector. For example, probability 
subgraph B3 in Fig. 3 (Section 111-B) with LSB3 = 
010** indicates that node x1 and x3 can be merged 
together since all the subgraphs generated by subgraph 
B3 must contain link 21,3. This characteristic is also 
indicated by the NC vector, N C B ~  = 01 000 in Fig. 3, 
which tells that link ~ 1 , 3  cannot be cut to obtain its 
subgraphs. That is the reason why one can get disjoint 
FST’s using this graph cutting technique. 
Parallel reduction occurs when a probability subgraph 
contains two or more links between two nodes. With 
connectivity property, these redundant links can be re- 
duced to one link. 
Series reduction occurs when a probability subgraph has 
a node, with node degree = 2, that contains no data file 
required for executing the distributed program. Since 
such a node, after deletion, still does not affect the 
correct FST generation, we can remove this node and 
reduce two links that connect to its neighboring nodes 
into one link. 
degree-2 reduction occurs when a probability subgraph 
has a node, with node degree = 2, that is not a leaf 
node of any MFST’s of the current graph. Since this 
node is not a leaf node of any MFST’s, then the 
two adjacent links of this node must be working or 
fail simultaneously, thus we can remove this node and 
reduce two links that connect to its neighboring nodes 
into one link, and copy the data files and programs in 
this node to its two neighboring nodes. 

If node x, satisfies the following checking procedures, then 
it is defined as a degree-2 reducible node and it will not be a 
leaf node of any MFST’s. 

The procedures of checking if node xn is a degree-2 
reducible node: 

1) delete link xn,i, where node xi is a neighbor node of 
node xn .  
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get a data file Flc from node x,, delete all nodes in the 
DPS that contains data file Flc 
try to find a FST starting from node x,, if there is a 
FST be found, then node x, is not a degree-2 reducible 
node and stop these checking procedures. 
repeat step 2 to step 3 until each of the data files in 
node x, is considered. 
get a program Pk from node x,, delete all nodes in the 
DPS that contain program Plc. 
try to find an FST starting from node x,, if there is an 
FST be found, then node x, is not a degree-2 reducible 
node and stop these checking procedures. 
repeat step 5 to step 6 until each of the programs in 
node x, is checked. 
recover link z,,~ and delete the other link xn,j, where 
node xj is another neighbor node of node x,. 
repeat step 2 to step 7 

10) if the checking procedures is not stopped in the middle 

In the following, we use an example to illustrate these 
reduction methods. Suppose there is a subgraph generated as 
shown in Fig. 6(a), we need to compute the reliability of 
program 1 which requires data files F1, F2,  F3, and F 4  
for completing its execution. Suppose the bit state sequence 
of links are x 1 , 2 ,  ~ 1 , 3 ~  X Z , ~ ~  ~ 2 , 4 ,  x3,5, x4,5, and the following 
reduction steps are applicable for speedup the correct FST 
generation. 

Step 1: Since link x1,2 can no longer be cut and must be 
up for the rest of its subgraph generation (LS  = l**O**), 
we apply nodes merged reduction on nodes x1 and x2. The 
resulting subgraph(b) is shown in Fig. 6(b). 

Step 2: A parallel reduction can be applied on the resulting 
subgraph (from step 1) since links x 1  3 and ~ 2 , 3  are parallel. 
The new resulting subgraph(c) is shown in Fig. 6(b). 

Step 3: A series reduction occurs since node 2 5  contains no 
data files for the execution of program 1. The new resulting 
subgraph(d) is shown in Fig. 6(b). 

Step 4: A degree-2 reduction occurs since node 2 3  is not 
a leaf node of any MFST's. The final subgraph(e) after these 
reductions is also shown in Fig. 6(b). 

Once these reduction techniques are understood, we need 
new representations for computing STt and LSnewt . These 
new representing schemes are discussed below. 

1) STt and LSnewt representation in parallel reduction: 
Let two links x , , ~  and xk,l in graph t be parallelly reduced 
into itself be one of the links in the spanning tree 
we found, and the bit state sequence of both STt and LSnewt 
be (. . 9 xz, jxk, l  . . .), then 

a) the state of STt after reduction will be 
(. . . l l . . . )  V (. . . l o . .  .) V (. . .Ol . .  .), and 

b) the state of LSnewt (newt is a child of t )  after 
reduction will be (. . .OO . . .). 

This can be seen from the fact that x : , ~  = ~ , , ~ x k , l .  It implies 
that if link x : , ~  is working then either link x2,3  or 2 k , l  must 
be working, and if link fails then both links x , , ~  and 
2k , I  must have failed. 
2) STt and LSnewt representation in series reduction or in 

and X I F  I in graph 

then x, is a degree-2 reducible node. 

degree-:! reduction: Let two links x, 

m m m  

I 4 FA _ _ _ _ _ _ _ _  '2.4 2 FA F4 

_ - _ -  : failure 
FA FI x2,3 x4,5 - : working 

X1 PRG PI 
- :don'tcare 

x133 FA F3 FA F5 FN1 = (Fl,FZE3.F4} 

x3.5 
x3 x5 

LS = 1**0** 

NC = 1 0 0 0 0 0  

x1 and x2are merged 
parallel reduclion series reduction for degree-2 reduction for 
for x1.3 mdX2,3 XS. '5,s mdx4.5 x39x1,3 & 9 , 4  

(step 1) (step 2) (step 3) (step 4) 

(b) 

Fig. 6. (a) A subgraph during reliability evaluation process. (b) Reduction 
for subgraph of (a). 

t be series reduced or be degree-2 reduced into xi,j, xi,j 
itself be one of the links in the spanning tree we found, 
and the bit state sequence of both STt and LS,,,t be 
(. . . ~ ~ , ~ z k , l . .  .), then 

the state of STt after reduction will be (. . . 11 . . .). 
the state of LSnewt (new, is a child of t )  af- 
ter reduction will be (. . . O O . .  .) V (. . . l o . .  .) V 

This can be seen from the fact that x : , ~  = xi,j nxk,z. It also 
implies that when link x : , ~  is working then both links xi,j 
and xk,J  must be working, and if link x : , ~  fails then either 
link xi,j or x k , l  must be failed. 
3) STt and LSnewt representation in the combination of 

both series and parallel reduction or degree-2 and par- 
allel reduction: There are several combination reduction 
cases that may occur during the FST generation. For ex- 
ample, links xi,j and xk,j, firstly, are parallelly reduced 
into xi,j, and then and xm,, are series or degree-2 
reduced into x&. Let the bit state sequence of both STt 
and LSnewt be (. . . xi, jXk,lxm,n..  .), then 

the state of STt after reduction will be (. . . 111 . . .) 

a) 
b) 

(. . .Ol . .  .). 

a) 
v (. . . l O l . .  .) v(. . .011. .  .). 

b) the state of LSnewt (newt is a child of t )  af- 
ter reduction will be (. . ,001.. .) V (. . . l l O . .  .) 

This can be seen from the fact that x : , ~  = (xi,jUzk,l)nz,,,. 
Other combination cases can be represented in the same way. 

v(. . . l o o . .  .) v v(. . .010.. .). 
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The FST reliability algorithm can be incorporated with these 
techniques to speed up the reliability evaluation. The complete 
FST reliability algorithm with series, parallel, and degree-2 
reduction is listed below. 

FST-SPR algorithm 
begin 

step 1: initialization 
t = original graph; 
TRY = { t }  (store the original graph into list TRY) 
FOUND = 4 
LSt = * *  . . . *; 
NCt = 00 . . . 0; 
FIV = U, F N I  (where program i E Pk') ; 
R = 4 ;  

step 2: generate spanning tree 

step 

end 

repeat 
2.1 get a subgraph t from TRY ; 
2.2 reduction step 

repeat 
series-reduction(t) ; 
degree-2-reduction(t) ; 
parallel-reduction(t) ; 

until no reduction occurs 

remove t from TRY; 
if an FST has been working in t 

2.3 checking step 

then add t to FOUND; 

else find a spanning tree of connected component / in f such that 
F A ,  2 F N  and PA, 2 PV,  and repreqent i t  by STt 
with the new representation discussed in Section 111-D ; 

ST,=*" . . .  " 

LSPt = LSt A STt ; 
2.4 cutting step 

add subgraph(t) to TRY ; 
until (TRY = 4) 

3: compute reliability 
for all t in FOUND do 

od 
Reliability = Pr(R); 

R = R V LSP,; 

procedure subgraph(t) 
begin 

child = d, ; 
temp = 4 ; 
find each 3'1; 1 where r1; 
cut = u1; I { &  1 ) ;  

for all ic, cut do 

E stree and the state of .L'k in NCt = 0 
/* cut store all the iinks can be cut */ 

LS,,ult = LSt; 
set the state of x, in LSILevt to 0; /* cut links, now */ 
find all links which temp and modify LS,,, + with these links by new 
representation discussed in Section 111-D; 
merge(newt,temp) ; 
temp = temp ~ { r ,  3 } ;  

find a connected component a in t such that FA,  2 F N  and PA, 2 PV; 
if there are any connected component z found 
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then add newt to child; 
od 

return (child); 
end (* subgraph *) 

procedure series-reduction(t) 
begin 

for all node xi in t do 
if degree of xi = 2 

then if (FAi  n F N  = 4 ) AND (PRG; n PV = 4 ) 
then delete node xi and link xi,j (x j  is one neighbor of x i )  from t;  

if X k , j  exists 
then rename X k , i  to x i , j ;  
else rename X k , i  to X k , j ;  

record X k , j  (or x i , j )  be series reduced by X k , ;  and x i j ;  
od 

end (* series-reduction *) 

procedure parallel-reduction(t) 
begin 

for all node xi in t do 
for all xi’s neighbors xj do 

if there are two links x,,j and x : , ~  between x; and xj  ; 
then record parallel-reduction on link x;,j and x : , ~  ; 

delete x : , ~  from t ;  
od 

od 
end (* parallel-reduction *) 

procedure degree-2-reduction(t) 
begin 

for all node x ,  in t do 
if deg(x,) = 2 

then for all the adjacent link x , , ~  of node x ,  do 
delete link x , , ~ ;  
repeat. 

get a data file Fk from FA, or a program Pk from PRG,, delete 
all nodes that contain data file Fk or Pk in subgraph t ;  
try to find a FST starting from node x,, 
if there is a FST be found, 

then node x ,  is not a degree-2 reducible node and break 
until all F k  or Pk reside in node x ,  has been considered. 
recover link x , , ~ ;  

od 
if node x ,  has not been determined is a degree-2 reducible node or not 

then delete node x ,  and link x,,, (xJ  is one neighbor of x ,  ) from t; 
if X k , ,  exists 

then rename xk,, to x;,,; 
else rename X k , ,  to xk,, ; 

P k , j  (or Pi,, ) = pk,z * Pz,, ; 
FAk = FAk U FA,; PRGk = PRGk U PRG, ; 
F A ,  = F A ,  U F A ,  ; PRG, = PRG, U PRG, ; 

od 
end 

procedure nodes-merged(t,temp) 
begin 

for all link x;,j whose state in temp is 1 do 
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FAi  = FAi  U FA,; 
PRGi = PRGi A PRGj; 
delete node x j  and link xij  ; 
parallel-reduction(t) ; 

od 
end (* nodes-merged *) 

IV, RELIABILITY ANALYSIS OF DPS USING THE 
FST AND FST-SPR RELIABILITY ALGORITHMS 

A. Examples 
In this section we use the FST and FST-SPR reliability 

algorithms to evaluate some distributed processing systems. 
Example I: Consider the simple DPS example in Fig. 1 

again, we use the FST reliability algorithm to analyze the 
DPR1. We use the Distributed Program Reliability i (DPR,) 
to describe the reliability of the distributed program i running 
under the DPS and Distributed System Reliability (DSR) to 
describe the overall reliability of the distributed system. 

The splitting snapshot of subgraphs generated by the FST 
reliability algorithm is illustrated in Fig. 7. 

To compute the reliability, we simply sum all the disjoint 
terms represented by vectors U P t .  Let Pr(i) be the probability 
subgraph i, then 

Pr(A) = Pr(1 *1 * 1) 
Pr(B) = Pr(Olll*) + Pr(1) + Pr(1c) 

= Pr(Olll* V 0110* V 01001 VO1011 V 00 101 V 

= Pr(Olll* v 0110* V 010*1 v 00 101 V 0011* 
0011* v 00 011 v 00 001) 

V O O O l l  v 00001) 
= P r ( O l l l *  vo110* v 010*1 v 00 101 v 0011* 

v OOO*l) 
= Pr(Oll** V 010 * 1 V 00 101 V 0011* V 000*1) 
= Pr(Oll** V 0*0*1 V 00 101 V 0011*) 

Pr(C) = Pr(l*O**) 
Pr(D) = Pr(l*l*O) 
DPRl = Pr(A) + Pr(B) + Pr(C) + Pr(D) 

= Pr((1 * 1 * 1) V (011** V 0*0*1 V 00 101 V 

= Pr(1 * 1 * * V 011** V 0*0*1 V 00 101 V 

= Pr(l**** 011** 0*0*1 00 101 OOll*) 
= P1,2 + 41,2P1,3P2,3 + 41,2!?2,3P3,4 

OOll*) v (l*O**) v (1 * 1 * 0)) 

0011* v l*O**) 

+Q1,2Q1,3P2,3q2,4P3,4 + Q1,241,3P2,3P2,4 
If we assume all the links have the same reliability 0.9, 

then DPRl is equal to 0.99891. 
For evaluating the DSR, the FN = {Fl, F2, F3, 

F4). Applying the same algorithm, we obtain DSR = 
P1,2P2,3 + P1,2P1,3q2,3 + pl,Zq1,3q2,3P2,4P3,4 + 91,2P1,3P2,3 + 
41,242,3P2,4P3,4 +Ql,291,3P2,3Q2,4P3,4 +41,241,3P2,3P2,4. Again, 
if we assume all the links have the same reliability 0.9, then the 
DSR is equal to 0.9963. These results are correctly matched 

DPRJ = Pr( 11**1 V 011*1 V *01*1 V 0*011 V 10011 
v 11*10 v *0110 v 01110) 

Pl,2P1,3Q2,3Q2,4P3,4 + P1,2P1,3Q2,3P2,4Q3,4 = 0.98658 (with 
= P2,3P2,4 + P2,342,41)3,4 + 42,3P2,41)3,4 + 

the assumption of reliability 0.9 for all links) 
Example 3: Considering the DPS shown in Fig. 9, it contains 

six processing elements and the detailed information of each 
node is given in sets of FAj ,  PRGj, and FNj.  

Again, we want to compute the DPRl and DSR of the 
DPS. Applying the same reliability program, we get DPRl 
= 0.9995076 and DSR = 0.9975515 under the assumption of 
all links with reliability 0.9 

B. Other Evaluation Results 
Reliability problems listed in Section 11-C are addressed 

here. Fig. 10 presents the single distributed program reliability 
(DPR1, DPR2, DPR3, and DPR4) running under the DPS in 
Fig 9. This analysis can help us to understand the reliability of 
each program under a certain data files distribution such that 
an optimal data files distribution for balancing each program’s 
reliability can be validated. 

Fig. 11 presents the reliability of two or more distributed 
programs running together under the DPS in Fig. 9. This anal- 
ysis will help us to assign programs into different processing 
elements. An intended programs assignment to achieve higher 
reliability can be validated through this analysis. 

Fig. 12 presents the reliability of one or more copies of 
the program 1 running together starting from different sites. 
The resulting reliability is under the DPS graph in Fig 9. 
This analysis will help us to make sure if the program under 
execution has reached the required reliability. 

Fig. 13 presents the DPRl under the choices of different 
user sites. This analysis will help users to choose a better site 
to execute a certain program. 

C. The Correctness and Time Complexity of the Algorithm 
Theorem I :  Given a graph G = { N ,  E} where N = 

{x1,52, .. . ,x,} is a set of nodes, and E = (L1, L z , . . .  , Ln} 
is a set of links. Let L = { L1, L2,. , Lm-l} E E be a set of 
links representing a spanning tree of G, then the probability 
space of the graph G can be expressed as the following disjoint 
terms. 

Pr(G) = ~ 1 ~ 2 . .  -pm-1Pr(G1) + qiPr(G2) 
+ plq2Pr(G3) + * . . + ~ 1 ~ 2 .  * .pm-zqm-1Pr(Gm) (1) 

where pi denotes the probability that L; is working, q; 
denotes the probability that L, is failure, GI  denotes G with 
L1, L2, . . , L,-l is working. G2 denotes G with L1 is failure. 
G3 denotes G with L1 is working and L2 is failure, . . . G, 
denotes G with L1, L 2 , . - - ,  Lm-2 is working and L,-1 is 
failure. 

Proof: By factoring theorem (or conditional probability). 
with the results in [12] and [13]. 

Example 2: Considering the DPS graph in Fig. S(a), we will 
use the FST-SPR reliability algorithm to compute the DPR3. 
The splitting subgraphs generated by the FST-SPR reliability 
algorithm is illustrated in Fig. 8(b). 

Pr(G) = qiPr(GIFi) + p iPr (G(E)  = qiPr(Gi) + piPr(Gi) 

where Fi denotes the event that Li is failure, F, denotes the 
event that Li is working, G, denotes G with Li is failure, GI 
denotes G with Li is working. 
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Fig. 7. The splitting snapshot of the original graph. 

If we choose L1 be the first factor, then If we repeat the same action, then Pr (Gh- l )  can be 
expressed as 

Pr(G) = qlPr(G2) + plPr(G/,) .  
Pr(GL-l)  = q,-lPr(Gm) + prn-lF’r(GL) 

Obviously, Pr(Gh) can be expressed in the same way, thus 
we choose La be the second factor, then 

where G, denotes G h P l  with L,-1 is failure, GL denotes 
GL-l with L,-1 is working. 
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Fig. 8 (a) An example of DPS. (b) The splitting snapshot of example 2. 
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f plp2p3q4Pr(G5) + ‘ ‘ ’ + P1P2 * ’ ‘pm-2qm-lPr(Gm) 
x 

2 
X 

+ PlP2. . % - l P 4 G 6 )  (2) 

where G L  denotes G with L1, L2, e . . , Lm-l is working, G2 
denotes G with L1 is failure, G3 denotes G with L1 is working 
and L2 is failure, . . . Gm denotes G with L1, L2, . ’ , Lm-2 
is working, and L,-1 is failure. Let G1 (in equation 1) = G L  
[in (2)], then (1) = (2). Thus, Theorem 1 is proved. Q.E.D. 

Proof: To prove FST reliability algorithm correct, we 
transfer this problem into the one shown in Theorem 1. The 

Theorem 2: The FST reliability algorithm is correct. 

3 x 5  

PRGl = ( p i  1 
PRG2 = [ p4) 
PRG3 = [ ~ 2 . ~ 3  ) FN2 = F2,F4.F6 
PRG4 = ( ~ 2 . ~ 3  ) 
PRG5 = ( p4 I 
PRG6 = [ pl 1 

F N l  = (Fl,FZ,F3 ) 

FN3 FlV4 = = ( ( F 1 m m  Fl.FZ.F4,F6 ) 

novelty of the FST reliability algorithm lies in its graph cutting 
method. The cutting technique works exactly the same way as 

Fii 5 I Fig 
Fi: 1 / z;F; 

the enumeration of all disjoint terms in Theorem 1. Recalling F i z  1 / E;;: 1 
the probability subgraphs in Fig. 2, the original graph is 
partitioned into four probability subgraphs A, B, C, and D 
by the cutting technique. By analogizing these probability 
subgraphs to the terms in Theorem 1, we found that the original 
Probability graph represents Pr(G); subgraph A represents 
P I , ~ P ~ , ~ P ~ , ~ P I ( G A ) ;  subgraph represents q i , 2 P r ( G ~ ) ;  sub- 
graph c represents P I , ~ Q ~ , ~ P ~ ( G c ) ;  subgraph D represents 
P1,2P2,3q3,4Pr(GD). More precisely, 

Fig. 9. A DPS with six processing elements. 

no data files required for executing the distributed program, 
and each degree-2 reduction occurs when a graph has a node 
with node degree=2 and this node is not a leaf node of any 
MFST’s. None of these cases has violated the disjoint property 
and FST definition. Thus, the’ FST-SPR reliability algorithm 

P ~ ( L S G )  = P ~ L S P A )  + P ~ ( L S B )  +Pr(LSc) +Pr(LSD) is also correct. Q.E.D. 
Theorem 4: The FST and FST-SPR reliability algorithms 

guarantee no replicated FST’s to be generated during the 
reliability evaluation. 

Proof: Suppose there are two or more replicated trees 
generated by the FST or FST-SPR reliability algorithm, then 
both FST and FST-SPR algorithms will generate nondisjoint 
probability subgraphs. This is contradiction with Theorem 1 
which generates the disjoint probability space of each term. 
Thus, the FST and FST-SPR algorithm guarantee no replicated 
FST’s to be generated during the reliability eva1uation.Q.E.D. 

Unlike the time complexity analysis in the K-graph prob- 
lem, which is statically dependent on the given k-terminal 

= Pr(1 * I * I) + Pr(O * * * *) + Pr(1 * O * *) 
+ Pr(1 * 1 * 0) 

= P1,2P2,3P3,4Pr(Ga) + ql,2Pr(Gb) 

+ P1,2q2,3Pr(Gc) + P1,2P2,3q3,4Pr(Gd) 
= Pr(G).  

The probability of these subgraphs can be computed recur- 
sively based on the graph cutting technique again to obtain the 
probability of its subgraphs. The FST reliability algorithm uses 
such cutting technique to compute the reliability of any size 
and any data distribution DPS. Thus, generalized terms will be 

Pr(LSG) = Pr(LSP1) + Pr(LS2) + +Pr(LS3).  . . + 
Pr(LSn) 

= P1,2P1,3p2,3.. .Prn,nPr(Gl) + q1,2Pr(G2) 
f q1,2Pr(G2)P1,2q1,3Pr(G3) 

+ ’ ’ ‘ + P1,2P1,3P2,3 ‘ ’ “?m,nPr(Gn) 
= Pr(G).  

By such analogous, we have successfully transferred the 
FST reliability algorithm into the problem in Theorem 1. Since 
Theorem 1 is correct, therefore, Theorem 2 is also correct. 
Q.E.D. 

Theorem 3: The FST-SPR reliability algorithm is correct. 
Proof: We have shown the correctness of the FST relia- 

bility algorithm. What we need to show is the correctness of 
nodes merged, series, parallel, and degree-2 reductions. These 
reduction techniques are true intuitively. Since each nodes 
merged occurs when a particular link in the graph cannot 
be cut in the rest of its subgraphs generation, each parallel 
reduction occurs when a graph with two or more links are 
connected between two nodes, each series reduction occurs 
when a graph has a node with node degree = 2 contains 

connection, the time complexity of distributed program relia- 
bility problem is dynamically bound to the data files required 
for each distributed program. The time complexity of the 
algorithms presented in [12]-[14], in worst case, can generate 
as many as (n  - l)(e-l) intermediate trees, where TI denotes 
number of nodes and e is the maximum in-degree of a node in 
the graph. However, in practical condition, such case never 
occurs since once an FST is found the tree expansion is 
stopped. The proposed FST algorithm uses the graph cutting 
technique with incorporated series and parallel reduction to 
speed the FST generation. The time complexity is quite 
difficult to quantify since the number of links and nodes 
may be reduced or merged during the evaluation process. 
However, by common reasoning, the complexity should be 
less than that of the algorithms presented in [12]-[14]. One 
of the good ways to compare the proposed FST algorithm 
with existing algorithms [12]-[14] will be based on the 
intermediate trees (or subgraphs) generated during the whole 
reliability evaluation process. In this way, one can tell how 
much memory space and time unit required for their algorithms 
to run the distributed program. We will present some such 
comparison results in Section IV-D. 
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Fig. 11 Reliability of two or more programs running together. 

D. Algorithms Comparison 

Unlike Kumar’s algorithm [12], [13] required two passes 
to formulate the reliability of the DPS, i.e., to generate all 
MFST’s first and then use reliability analysis program such 
as SYREL [ll] to compute the reliability DPR and DSR, 
our algorithm requires only one pass to generate the FST’s 
and compute the reliability. Kumar’s algorithm [12], [13] 
has potential to generate a lot of replicated MFST’s during 
the MFST’s generating process. Thus, it has to pay extra 
effort to remove the replicated trees. Our algorithm guarantees 
no replicated FST’s to be generated during the subgraphs 
generating process. Fig. 14 presents the replicated FST’s 
generated while computing the DPRl in the DPS in Fig. 8 
by using Kumar 86’s algorithm. 

Although the algorithm presented in [14] also uses one pass 
to generate FST (by matrix representation) and compute the 
reliability, it only addresses a single distributed program issue. 
For problem statements such as 2, 3, and 4 listed in Section II- 
C, their algorithm cannot solve such problems. In general, the 
difference between the FST algorithm and existing algorithms 
[ 121 -[ 141 lies in that existing algorithms use the concept of 
tree growing while the FST algorithm uses the concept of 
graph cutting. 

Since the time and space required of these algorithms are 
bound by the number of subgraphs (or trees) generated during 
the FST generating process, we present some sampling DPS 
graphs for comparison. 

reliability 
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Fig. 12. DPRl with several copies of distributed program one. 
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Fig. 13 The DPRl under different user sites 

Table I presents the best case of our algorithm. It should 
be noted that the current algorithms in [Kumar 86, 881 cannot 
compute the reliability of a distributed program with no data 
files in the distributed networks. Results in Table I are based on 
the modification of their algorithms to take care such problem. 
Table 11, 111, and IV show the cases for the reliability analysis 
of programs 1, 2, and 3 respectively. The size of the graphs 
(or trees) is measured by the number of links. 

For the actual execution time comparison, we present the 
DPR, ( i  = 1,2,3,4)  analysis based on the IBM RISC 
System/6000 under single user environment to collect exe- 
cution time. All four algorithms are structured to have the 
same I/O activities to insure the fairness of the comparison. 
These four programs are listed in the Appendix in [19]. It is 
clear that the FST-SPR algorithm has the best performance 
while Kumar 86’s algorithm is the worst one. This result 
justifies that the tedious and time consumming procedures to 
check replicated trees and to remove them from the TRY-LIST 
dominate the whole computation time. The computation time 
(in microseconds) of the DPR, are listed in Table V. 

Overall speaking, the FST algorithm has the following 
advantages compared that with existing algorithms. 

1) The FST algorithm generates less subgraphs and thus 
saves the computation time and space. Unlike Kumar’s 
algorithm [12], [13] which has potential to generate 
replicated FST’s which requires a tedious checking 
process, our algorithm guarantees no replicated FST’s 
to be generated during the subgraphs generation. 

2) With the incorporation of nodes merged, series, degree- 
2, and parallel reduction methods into the FST relia- 
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F S T - S P R 1  
Kumar 86 
Kumar 88 

TABLE I 
SUBGRAPHS GENERATED FOR COMPUTING D P k  

Size 1 1 4 1 1 3 1 1 2 1 1 1 1 1 0 1 9 1  8 1 7 1 6 1 5 1 4 1 3 1 2 1 l I O I T o t a l  
FST I 1 l o l o l o l o l o l o  l o l o l o l o l o l o l o l o l  1 

0 0 0 0 0  0 0 0 0 0 0 0 0 0  1 
0 0 0 0 0 0 1984 2206 1144 396 112 32 8 2 1 5885 
0 0 0 0 0 0 640 828 499 206 67 22 7 2 1 2272 

FST-SPR 
Kumar 86 
Kumar 88 

TABLE I1 
SUBGRAPHS GENERATED FOR COMPUTING DPRl 

1 0 0 0 1 1 2 2 5 9 10 15 15 18 109 188 
0 0 0 0 0 0 1260 2844 2092 884 284 80 20 4 1 7469 
0 0 0 0 0 0 321 863 748 373 139 46 14 4 1 2509 

TABLE 111 
SUBGRAPHS GENERATED FOR COMPUTING DPR2 

Size I 14 I 1 3  I 1 2  I l l  I 1 0  I 9 I 8 I 7 I 6 1 5  I 4  1 3  1 2  1 1  I O  ITotal 
FST I 1 I 8 I 33 I 96 I 232 I 451 I 651 I 646 I 308 I 52 I 0 I 0 I 0 1 0 I 0 I 2478 

TABLE IV 
SUBGRAPHS GENERATED FOR COMPUTING DPR3 

bility algorithm, our reliability evaluation algorithm for 
distributed program is much faster and requires less 
memory space. 

3) The FST reliability algorithm addresses some distributed 
program related problems which were not addressed by 
some other techniques. 

4) The FST Reliability evaluation algorithm is simple and 
consistent through a special union operation on all 
vectors LSP  representing the probability space of each 
FST. Our algorithm is a unified approach for both 
generating FST’s and computing the reliability of the 
DPS. 

Fig. 16 shows a different DPS configuration for more 
comparisons and the results are listed in Table VI. 

V. CONCLUSION 

Distributed Processing system provides cost-effective ways 
for improving computer system’s performance such as through- 
put, fault-tolerance, reliability, and so on. The reliability 
analysis of the DPS becomes an important issue. Traditional 
approaches for the reliability analysis of computer networks 
may not be directly applicable for the DPS for that the effects 

of redundant data files and programs are not captured in these 
methods. To overcome these limitations, new method should 
be proposed. In this paper, we present a unified algorithm 
to generate FST’s and to compute the reliability of the DPS. 
To speed up the reliability evaluation, nodes merged, series, 
degree-2, and parallel reduction techniques are incorporated 
into the algorithm. 

The algorithm presented in this paper is based on the 
concept of graph cutting to generate FST’s. The reliability 
computation is simple and consistent through a special union 
operation on all vectors LSP representing the probability space 
of each FST. The algorithm guarantees no replicated FST’s to 
be generated. The proposed algorithm outperforms existing 
algorithms in terms of less time and space requirement. This 
can be evidenced from the various comparisons shown in 
Section IV-D. It should be mentioned that the best case 
performance of Kumar’s algorithms is that all the data files 
required for the program to be executed are collided at one 
same node that also contains the executed program. In fact, 
this case is not like to happen in the distributed process- 
ing system which usually evenly distributed the available 
resources @rograms,data files). Several DPS related problems 
which are not addressed by other algorithms are studied here 
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FST 
FST SPR 

* R e p l i E d  

A - d l  
E-dZ-d4 
C-d3 
D-d5 
E-da 

DPRl DPR2 DPR3 DPR4 
2200000 148oooO 209oooO 0.5 

14000 15oooO 5 m  0.5 

P - d10 
0 - d 7  
H - d9 

x 

5 

*d3 =+- 

Fig. 14. The replicated FST’s generated by Kumar’s algorithm. 

x4 

x3 x, xs 
FNl = (FZ,F3,FS,F7,FS,F9) 
FN2 = (FI,F2,F3,F6,F7,FS) 
FN3 = (F3,F4,F7,FS) 
FN4 = (F10) 

Fig. 15. A complex and large DPS example. 

TABLE V 
THE COMPUTATION TIME (IN MICROSECONDS) OF EACH DPR, ( i  = 1 , 2 , 3 , 4 )  

FA4:F 

W W 
x3 x5  

FNl = ( FI,F2,F3,F4,F5,F6,F7 ) 

Fig. 16. A DPS with different configuration 

TABLE VI 
SUBGRAPHS GENERATED FOR COMPUTING DPRl IN FIG. 16 

Kumar86 1 I 
Kumar88 I 0 I 0 I 1 6  I 2 4  I 2 5  I 2 0  I 1 0  I 4 I 1 I 

I 0 I 0 I 48 I 68 I 64 I 40 1 16 I 4 I 241 
100 

I Kumar 86 I 453oooO I 486oooO I 291oooO I 3180000 I 
Kumar88 I 340000 ] 31oooO I 23oooO 1 25oooO 

using the proposed techniques. These analyses allow us to 
validate if the reliability performance of an existing DPS meets 
the required reliability performance for executing a set of 
distributed programs. 
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