
I39
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

Reliability Analysis of Distributed Systems
Based on a Fast Reliability Algorithm

Deng-Jyi Chen, Member, ZEEE, and Tien-Hsiang Huang

Absh-crct-The reliability of distributed processing system (DPS)
can be expressed by the analysis of distributed program reliability
(DPR) and distributed system reliability (DSR). One of the good
approaches to formulate these reliability performance indexes
is to generate all disjoint File Spanning l h e s (FST’s) in the
DPS graph such that the DPR and DSR can be expressed by
the probability that at least one of these FST’s is working. In
this paper, we present a unified algorithm to eficiently generate
disjoint FST’s by cutting different links and compute the DPR
and DSR based on a simple and consistent union operation on
the probability space of the FST’s. The DPS reliability related
problems are also discussed in this paper. These include 1) the
reliability of more than one copy of programs running on a given
DPS starting from different sites, 2) the reliability of a specified
program running on a given DPS starting from different sites,
3) the reliability of more than one different programs running
on a given DPS, and so on. For speeding up the reliability
evaluation, nodes merged, series, and parallel reduction concepts
are incorporated in the algorithm. Based on the comparison
of number of subgraphs (or FST’s) generated by the proposed
algorithm and by existing evaluation algorithms, we conclude that
the proposed algorithm is much more economic in terms of time
and space than the existing algorithms.

Index Terms- Distributed program reliability (DPR), dis-
tributed system reliability (DSR), graph theory, file spanning tree
(FST), spanning tree, reliability.

I. INTRODUC~ION

ISTRIBUTED Processing Systems (DPS) provide cost- D effective ways for improving computer system’s resource
sharing, performance, throughput, fault tolerance, and re-
liability [3]-[5], [8], [ll], [15], [18]. Both the reliability
performance and the fault tolerance are significantly affected
by its redundant resources (i.e., the distribution of data files)
and cooperation among processing elements. In general, a dis-
tributed program usually requires one or more of the resources
(e.g., processing elements, data files, and so on) for successful
execution. Thus, the operability of the communication link
and the availability of the required data files all play a role in
affecting the reliability of a given program running in the DPS.
Also, different data files distribution could result in different
reliability performance for a given distributed program as well
as the overall system. To develop an effective approach for

Manuscript received October 27, 1989; revised May 21, 1991. This work
was supported in part by the National Science Council under Contract NSC
80-0408-E-009-16 and in part by the Chung-Shan Institute of Science and
Technology under Contract CS79-0210-wo9-03, Taiwan, R.O.C.

The authors are with the Computer Science and Information Engineering
Department, National Chiao Tung University, Hsin Chu, Taiwan, R.O.C.
30050

IEEE Log Number 9105521.

the reliability analysis of distributed system has become an
important topic.

Traditional reliability evaluation approaches for computer
networks such as source-to-terminal [l], [2], [9], [lo], [16],
[17], Boolean algebra method [6], [7] are not directly appli-
cable for distributed systems for that the effects of redundant
data files and programs are not captured in these methods. To
overcome these problems, new approaches for the reliability
analysis of distributed programs must be developed.

In reliability analysis of the DPS, Kumar proposed a very
good notion called Minimal File Spanning Tree (MFST) and
develop algorithms to find MFST’s within a DPS graph
[12]-[14]. The DPR and DSR can then be computed through
the analysis of the probability that at least one of these
MFST’s is working. The MFST algorithm presented in [12]
uses breadth-first search method to travel the DPS graph to
generate all MFST’s. According to the algorithm, firstly, all
MFST’s of size 0 are determined; next, all MFST’s of size 1
are determined; and so on. This procedure is repeated for all
possible sizes of MFST’s up to n - 1, where n is the number
of nodes in the underlying DPS. Both the DPR and DSR can
then be determined by computing the probability that at least
one of the MFST is working.

In this paper, we present a unified reliability algorithm to
efficiently compute the DPR and DSR. The concept of the
algorithm is based on a special graph cutting approach to
generate the probability subgraphs that represent the FST’s
in the DPS graph. The DPR and DSR computation can then
be done by unioning all these disjoint probability subgraphs
representing FST’s. This approach guarantees no replicated
FST’s to be generated during the FST generating process.
To speed the reliability evaluation process, node merged,
series, and parallel reduction concepts are incorporated into
the proposed algorithm. Although the performance of the
reliability evaluation algorithm is affected by the data file
distribution, the proposed reliability evaluation algorithm is
much faster compared with algorithms presented in [12]-[14].

11. NOTATIONS, DEFINITIONS, AND PROBLEM STATEMENTS

Notations and definitions used in the rest of the paper are
summarized here for easy reference.

A. Notations

xi: a node representing a processing element i.
x i j : a link between processing elements i and j .
p i j (q i j) : probability that the link xi,j is up (down).

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

t: a subgraph, that can be a tree or forests, of DPS’s graph.
The trees and forests are represented by sets of nodes and links.

FA;: the set of data files available at processing element xi.
FAt : the set of data files available for subgraph t.
FNi : the set of data files needed to execute program i .
F N : the set of data files needed for current programs to be

P V : the set of current programs which need to be executed

PRGi: the set of programs available at processing element

PAt: the set of programs available for subgraph t.
LSt: a set of link states that represents the links’ conditions

The state conditions of each these links can be one of the

executed in the DPS.

in the DPS.

X i .

in the current subgraph t.

followings:

0 xi,j is down

* don’t care
1 x;,j is up (1)

ST,: a set of link states that can be used to construct the
Spanning Tree of subgraph t.

NC,: a set of link states that indicate which link cannot be
cut in subgraph t.

LSPt: a set of link states that can be used to compute the
probability of subgraph t. The state condition could be either
1, 0, or *.

B. Definitions
Definition 1: An FST is a File Spanning Tree that connects

the root node (the processing element that runs the program
under consideration) to some other nodes such that its vertices
hold all the needed files for the program under consideration.

Definition 2: An MFST is a minimal FST such that there
exists no other FST which is subset of it.

Definition 3: Operator A represents the logic AND operation,
and its applicable operations are listed below.

Definition 4: Operator V represents the UNION operation
and it is applied on LSPt only for the summation of the
probability space of subgraph t. The operation is 0 V 1 -+

* under the condition of two LSPt’s only differ in one bit,
e.g.,

LSPtl = * * 011
LSPt2 = * * 001
LSP,1 v LSPt2 = * * 011 v * * 001 = * * 0 * 1.

Definition 5: A probability graph is a graph that has a
probability space associated with it. For the original graph,
the probability space is assumed to be 1. Also, the probability
space of a subgraph will be equal to the sum of the probability
space of all subgraphs generated by this subgraph.

Definition 6: A DPS graph is a graph representing the
distributed processing system. In the rest of the paper, we
also use the FST to represent a probability graph. Thus, they
are used interchangeably.

C. The Problem Statements

Consider the distributed processing system in Fig. 1, there
are four processing elements (5 1 , ~ 3 ~ x 4) connected by
links x1,2. ~ 1 , 3 , X ~ , J , X ~ , ~ , and x3,4. Processing element x1
contains two data files (F 1 and F2) and can run program
1 directly from here to communicate with other nodes for
accessing data files required to complete the execution of pro-
gram 1. The detailed information of each node is summarized
in FA,, FN,, and PRG,(j = 1,2;. . ,4).

We are interested in solving the following reliability perfor-
mance problems:

1) What will be the reliability of a single distributed
program 1, 2, or 3 running under the given DPS?

2) What will be the reliability of two or more distributed
programs successfully running under a given DPS?

3) For the same program i, what will be the reliability of
one program i , two copies of program i, three copies of
program i, and so on running on a given DPS?

4) What will be the overall system reliability while execut-
ing all the programs in a given DPS?

5) What will be the distributed program reliability if users
choose a particular site to run a particular distributed
program or to execute all the programs in the system?

111. THE DISTRIBUTED RELIABILITY ALGORITHM

A . The Basic Concept of The Algorithm

The basic idea for the algorithm is to find all disjoint FST’s
in each size starting from the original graph representing the
DPS. Consider the DPS graph representation in Fig. 1, if
we use an efficient method to cut one link each time from
the graph at a different place to generate possible subgraphs
recursively, then we are able to predict if each of these
resulting subgraphs is an FST by examining the set of data
files contained in this subgraph against the set of required
data files for executing the distributed programs. This process
can be repeated starting from graph size n l n - l , . . . , to 0
(where n is the number of links in the graph). Obviously,
without an efficient method to remove appropriate links, the
time and space required for the algorithm could be very poor.
The concept of the algorithm is described informally below.

1) If the current graph has contained a FST be working,
then store the current graph into list FOUND. Otherwise,
choose an efficient method to cut one link from the
current graph such that each of these resulting subgraphs
is generated by cutting different link from the current
graph and store the current graph with these cutting links
be working into list FOUND.

2) Check each subgraph generated by step 1 with the
set of required data files for executing the distributed
programs. If the subgraph meets the requirement then
store it into list TRY.

CHEN AND HUANG: RELIABILITY ANALYSIS OF DISTRIBUTED SYSTEMS

X

X

141

x4

x3

PRGl = [P1) FNl = (FI,F2,F3)
PRG2 = (P2,P3) FN2 = (Fl,F2,F4)
PRG3 = (P3) FN3 = (FI,F2,F3,F4)
PRG4 = (PI)

FA1 = (FI,F2)
FA2 = (F3)
FA3 = (F1,F4)
FA4 = (F2,F3)

Fig. 1. A simple DPS with four processing elements

3) For each subgraph in TRY, apply steps 1 and 2 repeat-

4) All the FST’s in each size are now stored in list FOUND.
edly until TRY is empty.

B. A Method for Graph Cutting and Reliability Computation
The method for cutting the graph plays an important role in

finding the FST’s and in computing the reliability of the DPS.
Let us use an example to illustrate this graph cutting method.
Consider the DPS graph in Fig. 1 again, we could make sure
that all nodes in the DPS should be able to communicate with
each other if links x 1 , 2 , 2 2 , 3 , and 2 3 , 4 are all working. This
communicate path (2 1 , 2 , 2 2 , 3 , 5 3 , 4) is exactly a spanning tree
of the original DPS graph. Let the probability space of the
DPS graph be 1, then it should be equal to the sum of the
following four disjoint probability subgraphs:

1) A probability subgraph that links x1,2, 2 2 , 3 , 2 3 , 4 are all

2) A probability subgraph that link $ 1 , ~ fails,
3) A probability subgraph that link 2 2 , 3 fails but link 2 1 , 2

4) A probability subgraph that link 2 3 , 4 fails but both links

This relationship can be depicted in Fig. 2. The whole circle
represents the total probability space which is equal to 1. The
portion A (shadowed) represents the probability space that the
graph has been confirmed to be working and itself is an FST of
size 5. While portions B, C, and D are needed to be determined
further for finding the FST of size 4. It should be noted that
the probability of portion A, B, C, and D is not graphically
DroDortional but thev should be summed UD to 1.

working,

must work,

21,~ and 2 2 , 3 must work.

- . . link of spanning tree

Fig. 2. The probability space of the original graph G.

What we need to do next is to determine the probability
space of portion B, C, and D. Follow the same idea, we then
find a spanning tree from the subgraph representing portion B.
The spanning tree tells us that links 2 1 , 3 , ~ 2 , 3 , and 2 2 , 4 must
be up in order to make sure the connection among all four
nodes. Thus, the probability of portion B will be the sum of
the following four disjoint probability subgraphs:

1) A probability subgraph that links 2 1 , 3 , 2 2 , 3 , ~ 2 , 4 are all

2) A probability subgraph that link ~ 1 , 3 fails,
3) A‘probability subgraph that link 2 2 , 3 fails but link 2 1 , 3

working,

must work,

142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

x2

0

n n

Fig. 3. The probability space of the subgraph representing portion B. Fig. 4. The probability space of the subgraph representing portion B3.

4) A probability subgraph that link ~ 2 , 4 fails but both links

This relationship is depicted in Fig. 3. The whole circle rep-
resents the total probability space of portion B. The portion B1
(shadowed) represents the probability space that the subgraph
has been confirmed to be working and is an FST of size 4.
While portions B2, B3, and B4 are needed to be determined
further for finding the FST of size 3. It should be noted that
the probability space of portion B1, B2, B3, and B4 is not
graphically proportional but they should be summed up to the
probability space of portion B (in Fig. 2).

Based on the same concept, we compute the probability
subgraphs representing the portion B2, B3, and B4. For
example, the probability subgraphs representing portion B3 is
depicted in Fig. 4. Again, the probability subgraphs in Fig. 4
should be summed up to the probability space of portion B3.
We repeat this process until either the FST of size 0 is obtained,
no available links can be cut, or the subgraph does not contain
the required data files for executing the distributed program.
For example, Fig. 5 depicts one of the termination conditions
of this process.

Once the concept of cutting the graph is understood, we
need an appropriate representation scheme to illustrate. Let
si,j be the state of link xi,j of the DPS, where

~ 1 , 3 and X Z , ~ must work.

0 xi,j is down
si,j = 1 ~ i , j is UP { * don’t care

with applicable operations based on operator (defined in
Section 11-C), then notations LSt, NCt, STt, and LSP,
(defined in Section 11-A) can be used to represent the
graph cutting process. For example, for the graph of portion
A in Fig. 2, suppose the bit state sequence of links are
q 2 , x 1 , 3 , X 2 , 3 , x 2 , 4 , ~ 3 , 4 , we represent it as

LSA = ***** (the initial graph)
NCA = 00000 (subgraphs can be generated by cutting any

links)

Fig. 5. The probability space of the subgraph representing portion B3.

STA = 1*1*1 (since links x 1 , 2 , ~ 2 , 3 , x 3 , 4 have to be work-

LSPA = 1*1*1 (it is obtained by L S A ST). Likewise, for
ing)

the subgraphs B, C, and D can be represented as

LSD = 1*1*0
NCB = 00000 NCc = 10000 NCD = 10100
STB = * I l l * STc = ** * * * STD = *****
LSPB = 0111* L S P c = 1*0** LSPD = 1*1*0.

LSB = 0**** L s c = I*()**

Since the subgraphs C and D both contain an FST be work-
ing (link x 1 , 2 must be working), thus we do not need to find
a spanning tree in subgraphs C and D, so STc = ***** and
STD = *****. NCc = 10000 guarantee that the subgraph C is
disjoint with the subgraph B, and NCD = 10100 guarantee that
the subgraph D is disjoint with the subgraph B and C. It can be
inferred that Pr(LS) = Pr(LSPA) + Pr(LSB) + Pr (LSc) +
Pr(LSD) = 1, where Pr(LSc) = Pr(LSPc) ,Pr(LSD) =
Pr(LSPD), and Pr(LS) can be computed recursively using
the graph cutting method introduced above. The informal
algorithm for cutting the graph and computing the reliability
can be described below.

1) Find a spanning tree from the current graph if necessary
and compute STt,

2) Compute the vector LSPt by ST, A LSt, and convert
vector LSP, to the probability expression.

3) Cut the current graph according to the vectors STt and
NCt to obtain its subgraphs (or FST’s),

CHEN AND HUANG: RELIABILITY ANALYSIS OF DISTRIBUTED SYSTEMS 143

4) Repeat 1 to 3 to compute each subgraph’s vector LSPt,
5) The reliability of the DPS graph is obtained by unioning

all LSPt-vectors that are associated with all the FST’s.

C. The Complete Reliability Algorithm

Once the concept of finding all FST’s and computing the
reliability of the DPS is understood, we now present the
complete algorithm for finding the FST’s and computing the
reliability of the FST.

FST Reliability Algorithm
begin

step 1: initialization
t = original graph ;
TRY = t ; (store the original graph into list TRY)
FOUND = 4
LSt = **...* ;
NCt = 00 ... 0 ;
F N = Ui FNi (where program i E P V) ;
R = 4 ;

step 2: generate spanning tree
repeat

2.1 get a subgraph t from TRY ;
2.2 checking step (check and find spanning tree)

remove t from TRY ;
if a FST has been working in t

then add t to FOUND ;
STt = **...* ;

else find a spanning tree of connected
component i in t such that F A (2
F N and PAi 2 PV, and represent
it by STt;

LSPt = LSt A STt ;
2.3: cutting step (generate subgraphs)

add subgraph(t) to TRY ;
until (TRY = 4)

step 3: compute reliability
for all t in FOUND do

od
Reliability = Pr(R) ;

R = R V L S P t ;

end

procedure subgraph(t)
begin

child = $;
temp = 4 ;
find each link Xk,l with its value in STt = 1 and in

/* STt represents all the links of the spanning tree,

cut = U ~ , J {xk,l}; /* cut store all the links can be cut

for all xi,j E cut do

NCt = 0 ;

NCt represents all the links cannot be cut */

*/

LSnewt = Lst;
set the state of xi,j in LSnewt to 0;

/* cut link xi9j now */

find all links E temp and set those links’ states in

temp = temp u{x;,j} ;
LSnewt to 1 ;

find a connected component i in t such

if there are any connected component i found
that FA; 2 F N and P A i 2 PV;

then add newt to child ;
od

return (child) ;
end (* subgraph *)

D. The FST Reliability Algorithm with Series and Parallel
Reduction

How to speed the reliability evaluation process up is the
major concern of the proposed algorithm. The basic principle
of speeding the reliability evaluation is to generate correct
FST’s with less cutting steps. There are four methods that can
be used interchangeably to speed the reliability evaluation.
These methods are 1) nodes merged, 2) parallel reduction, 3)
series reduction, and 4) degree-2 reduction.

Nodes merged occurs when a probability subgraph has
bit value 1 in its LS vector. For example, probability
subgraph B3 in Fig. 3 (Section 111-B) with LSB3 =
010** indicates that node x1 and x3 can be merged
together since all the subgraphs generated by subgraph
B3 must contain link 21,3. This characteristic is also
indicated by the NC vector, N C B ~ = 01 000 in Fig. 3,
which tells that link ~ 1 , 3 cannot be cut to obtain its
subgraphs. That is the reason why one can get disjoint
FST’s using this graph cutting technique.
Parallel reduction occurs when a probability subgraph
contains two or more links between two nodes. With
connectivity property, these redundant links can be re-
duced to one link.
Series reduction occurs when a probability subgraph has
a node, with node degree = 2, that contains no data file
required for executing the distributed program. Since
such a node, after deletion, still does not affect the
correct FST generation, we can remove this node and
reduce two links that connect to its neighboring nodes
into one link.
degree-2 reduction occurs when a probability subgraph
has a node, with node degree = 2, that is not a leaf
node of any MFST’s of the current graph. Since this
node is not a leaf node of any MFST’s, then the
two adjacent links of this node must be working or
fail simultaneously, thus we can remove this node and
reduce two links that connect to its neighboring nodes
into one link, and copy the data files and programs in
this node to its two neighboring nodes.

If node x, satisfies the following checking procedures, then
it is defined as a degree-2 reducible node and it will not be a
leaf node of any MFST’s.

The procedures of checking if node xn is a degree-2
reducible node:

1) delete link xn,i, where node xi is a neighbor node of
node xn .

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

get a data file Flc from node x,, delete all nodes in the
DPS that contains data file Flc
try to find a FST starting from node x,, if there is a
FST be found, then node x, is not a degree-2 reducible
node and stop these checking procedures.
repeat step 2 to step 3 until each of the data files in
node x, is considered.
get a program Pk from node x,, delete all nodes in the
DPS that contain program Plc.
try to find an FST starting from node x,, if there is an
FST be found, then node x, is not a degree-2 reducible
node and stop these checking procedures.
repeat step 5 to step 6 until each of the programs in
node x, is checked.
recover link z,,~ and delete the other link xn,j, where
node xj is another neighbor node of node x,.
repeat step 2 to step 7

10) if the checking procedures is not stopped in the middle

In the following, we use an example to illustrate these
reduction methods. Suppose there is a subgraph generated as
shown in Fig. 6(a), we need to compute the reliability of
program 1 which requires data files F1, F2, F3, and F 4
for completing its execution. Suppose the bit state sequence
of links are x 1 , 2 , ~ 1 , 3 ~ X Z , ~ ~ ~ 2 , 4 , x3,5, x4,5, and the following
reduction steps are applicable for speedup the correct FST
generation.

Step 1: Since link x1,2 can no longer be cut and must be
up for the rest of its subgraph generation (LS = l**O**),
we apply nodes merged reduction on nodes x1 and x2. The
resulting subgraph(b) is shown in Fig. 6(b).

Step 2: A parallel reduction can be applied on the resulting
subgraph (from step 1) since links x 1 3 and ~ 2 , 3 are parallel.
The new resulting subgraph(c) is shown in Fig. 6(b).

Step 3: A series reduction occurs since node 2 5 contains no
data files for the execution of program 1. The new resulting
subgraph(d) is shown in Fig. 6(b).

Step 4: A degree-2 reduction occurs since node 2 3 is not
a leaf node of any MFST's. The final subgraph(e) after these
reductions is also shown in Fig. 6(b).

Once these reduction techniques are understood, we need
new representations for computing STt and LSnewt . These
new representing schemes are discussed below.

1) STt and LSnewt representation in parallel reduction:
Let two links x , , ~ and xk,l in graph t be parallelly reduced
into itself be one of the links in the spanning tree
we found, and the bit state sequence of both STt and LSnewt
be (. . 9 xz, jxk, l . . .), then

a) the state of STt after reduction will be
(. . . l l . . .) V (. . . l o . . .) V (. . .Ol . . .), and

b) the state of LSnewt (newt is a child of t) after
reduction will be (. . .OO . . .).

This can be seen from the fact that x : , ~ = ~ , , ~ x k , l . It implies
that if link x : , ~ is working then either link x2,3 or 2 k , l must
be working, and if link fails then both links x , , ~ and
2k , I must have failed.
2) STt and LSnewt representation in series reduction or in

and X I F I in graph

then x, is a degree-2 reducible node.

degree-:! reduction: Let two links x,

m m m

I 4 FA _ _ _ _ _ _ _ _ '2.4 2 FA F4

_ - _ - : failure
FA FI x2,3 x4,5 - : working

X1 PRG PI
- :don'tcare

x133 FA F3 FA F5 FN1 = (Fl,FZE3.F4}

x3.5
x3 x5

LS = 1**0**

NC = 1 0 0 0 0 0

x1 and x2are merged
parallel reduclion series reduction for degree-2 reduction for
for x1.3 mdX2,3 XS. '5,s mdx4.5 x39x1,3 & 9 , 4

(step 1) (step 2) (step 3) (step 4)

(b)

Fig. 6. (a) A subgraph during reliability evaluation process. (b) Reduction
for subgraph of (a).

t be series reduced or be degree-2 reduced into xi,j, xi,j
itself be one of the links in the spanning tree we found,
and the bit state sequence of both STt and LS,,,t be
(. . . ~ ~ , ~ z k , l . . .), then

the state of STt after reduction will be (. . . 11 . . .).
the state of LSnewt (new, is a child of t) af-
ter reduction will be (. . . O O . . .) V (. . . l o . . .) V

This can be seen from the fact that x : , ~ = xi,j nxk,z. It also
implies that when link x : , ~ is working then both links xi,j
and xk,J must be working, and if link x : , ~ fails then either
link xi,j or x k , l must be failed.
3) STt and LSnewt representation in the combination of

both series and parallel reduction or degree-2 and par-
allel reduction: There are several combination reduction
cases that may occur during the FST generation. For ex-
ample, links xi,j and xk,j, firstly, are parallelly reduced
into xi,j, and then and xm,, are series or degree-2
reduced into x&. Let the bit state sequence of both STt
and LSnewt be (. . . xi, jXk,lxm,n.. .), then

the state of STt after reduction will be (. . . 111 . . .)

a)
b)

(. . .Ol . . .).

a)
v (. . . l O l . . .) v(. . .011. . .).

b) the state of LSnewt (newt is a child of t) af-
ter reduction will be (. . ,001.. .) V (. . . l l O . . .)

This can be seen from the fact that x : , ~ = (xi,jUzk,l)nz,,,.
Other combination cases can be represented in the same way.

v(. . . l o o . . .) v v(. . .010.. .).

CHEN AND HUANG: RELIABILITY ANALYSIS OF DISTRIBUTED SYSTEMS

The FST reliability algorithm can be incorporated with these
techniques to speed up the reliability evaluation. The complete
FST reliability algorithm with series, parallel, and degree-2
reduction is listed below.

FST-SPR algorithm
begin

step 1: initialization
t = original graph;
TRY = { t } (store the original graph into list TRY)
FOUND = 4
LSt = * * . . . *;
NCt = 00 . . . 0;
FIV = U, F N I (where program i E Pk') ;
R = 4 ;

step 2: generate spanning tree

step

end

repeat
2.1 get a subgraph t from TRY ;
2.2 reduction step

repeat
series-reduction(t) ;
degree-2-reduction(t) ;
parallel-reduction(t) ;

until no reduction occurs

remove t from TRY;
if an FST has been working in t

2.3 checking step

then add t to FOUND;

else find a spanning tree of connected component / in f such that
F A , 2 F N and PA, 2 PV, and repreqent i t by STt
with the new representation discussed in Section 111-D ;

ST,=*" . . . "

LSPt = LSt A STt ;
2.4 cutting step

add subgraph(t) to TRY ;
until (TRY = 4)

3: compute reliability
for all t in FOUND do

od
Reliability = Pr(R);

R = R V LSP,;

procedure subgraph(t)
begin

child = d, ;
temp = 4 ;
find each 3'1; 1 where r1;
cut = u1; I { & 1) ;

for all ic, cut do

E stree and the state of .L'k in NCt = 0
/* cut store all the iinks can be cut */

LS,,ult = LSt;
set the state of x, in LSILevt to 0; /* cut links, now */
find all links which temp and modify LS,,, + with these links by new
representation discussed in Section 111-D;
merge(newt,temp) ;
temp = temp ~ { r , 3 } ;

find a connected component a in t such that FA, 2 F N and PA, 2 PV;
if there are any connected component z found

146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

then add newt to child;
od

return (child);
end (* subgraph *)

procedure series-reduction(t)
begin

for all node xi in t do
if degree of xi = 2

then if (FAi n F N = 4) AND (PRG; n PV = 4)
then delete node xi and link xi,j (x j is one neighbor of x i) from t;

if X k , j exists
then rename X k , i to x i , j ;
else rename X k , i to X k , j ;

record X k , j (or x i , j) be series reduced by X k , ; and x i j ;
od

end (* series-reduction *)

procedure parallel-reduction(t)
begin

for all node xi in t do
for all xi’s neighbors xj do

if there are two links x,,j and x : , ~ between x; and xj ;
then record parallel-reduction on link x;,j and x : , ~ ;

delete x : , ~ from t ;
od

od
end (* parallel-reduction *)

procedure degree-2-reduction(t)
begin

for all node x , in t do
if deg(x,) = 2

then for all the adjacent link x , , ~ of node x , do
delete link x , , ~ ;
repeat.

get a data file Fk from FA, or a program Pk from PRG,, delete
all nodes that contain data file Fk or Pk in subgraph t ;
try to find a FST starting from node x,,
if there is a FST be found,

then node x , is not a degree-2 reducible node and break
until all F k or Pk reside in node x , has been considered.
recover link x , , ~ ;

od
if node x , has not been determined is a degree-2 reducible node or not

then delete node x , and link x,,, (xJ is one neighbor of x ,) from t;
if X k , , exists

then rename xk,, to x;,,;
else rename X k , , to xk,, ;

P k , j (or Pi,,) = pk,z * Pz,, ;
FAk = FAk U FA,; PRGk = PRGk U PRG, ;
F A , = F A , U F A , ; PRG, = PRG, U PRG, ;

od
end

procedure nodes-merged(t,temp)
begin

for all link x;,j whose state in temp is 1 do

147 CHEN AND HUANG; RELIABILITY ANALYSIS OF DISTRIBUTED SYSTEMS

FAi = FAi U FA,;
PRGi = PRGi A PRGj;
delete node x j and link xij ;
parallel-reduction(t) ;

od
end (* nodes-merged *)

IV, RELIABILITY ANALYSIS OF DPS USING THE
FST AND FST-SPR RELIABILITY ALGORITHMS

A. Examples
In this section we use the FST and FST-SPR reliability

algorithms to evaluate some distributed processing systems.
Example I: Consider the simple DPS example in Fig. 1

again, we use the FST reliability algorithm to analyze the
DPR1. We use the Distributed Program Reliability i (DPR,)
to describe the reliability of the distributed program i running
under the DPS and Distributed System Reliability (DSR) to
describe the overall reliability of the distributed system.

The splitting snapshot of subgraphs generated by the FST
reliability algorithm is illustrated in Fig. 7.

To compute the reliability, we simply sum all the disjoint
terms represented by vectors U P t . Let Pr(i) be the probability
subgraph i, then

Pr(A) = Pr(1 *1 * 1)
Pr(B) = Pr(Olll*) + Pr(1) + Pr(1c)

= Pr(Olll* V 0110* V 01001 VO1011 V 00 101 V

= Pr(Olll* v 0110* V 010*1 v 00 101 V 0011*
0011* v 00 011 v 00 001)

V O O O l l v 00001)
= P r (O l l l * vo110* v 010*1 v 00 101 v 0011*

v OOO*l)
= Pr(Oll** V 010 * 1 V 00 101 V 0011* V 000*1)
= Pr(Oll** V 0*0*1 V 00 101 V 0011*)

Pr(C) = Pr(l*O**)
Pr(D) = Pr(l*l*O)
DPRl = Pr(A) + Pr(B) + Pr(C) + Pr(D)

= Pr((1 * 1 * 1) V (011** V 0*0*1 V 00 101 V

= Pr(1 * 1 * * V 011** V 0*0*1 V 00 101 V

= Pr(l**** 011** 0*0*1 00 101 OOll*)
= P1,2 + 41,2P1,3P2,3 + 41,2!?2,3P3,4

OOll*) v (l*O**) v (1 * 1 * 0))

0011* v l*O**)

+Q1,2Q1,3P2,3q2,4P3,4 + Q1,241,3P2,3P2,4
If we assume all the links have the same reliability 0.9,

then DPRl is equal to 0.99891.
For evaluating the DSR, the FN = {Fl, F2, F3,

F4). Applying the same algorithm, we obtain DSR =
P1,2P2,3 + P1,2P1,3q2,3 + pl,Zq1,3q2,3P2,4P3,4 + 91,2P1,3P2,3 +
41,242,3P2,4P3,4 +Ql,291,3P2,3Q2,4P3,4 +41,241,3P2,3P2,4. Again,
if we assume all the links have the same reliability 0.9, then the
DSR is equal to 0.9963. These results are correctly matched

DPRJ = Pr(11**1 V 011*1 V *01*1 V 0*011 V 10011
v 11*10 v *0110 v 01110)

Pl,2P1,3Q2,3Q2,4P3,4 + P1,2P1,3Q2,3P2,4Q3,4 = 0.98658 (with
= P2,3P2,4 + P2,342,41)3,4 + 42,3P2,41)3,4 +

the assumption of reliability 0.9 for all links)
Example 3: Considering the DPS shown in Fig. 9, it contains

six processing elements and the detailed information of each
node is given in sets of FAj , PRGj, and FNj.

Again, we want to compute the DPRl and DSR of the
DPS. Applying the same reliability program, we get DPRl
= 0.9995076 and DSR = 0.9975515 under the assumption of
all links with reliability 0.9

B. Other Evaluation Results
Reliability problems listed in Section 11-C are addressed

here. Fig. 10 presents the single distributed program reliability
(DPR1, DPR2, DPR3, and DPR4) running under the DPS in
Fig 9. This analysis can help us to understand the reliability of
each program under a certain data files distribution such that
an optimal data files distribution for balancing each program’s
reliability can be validated.

Fig. 11 presents the reliability of two or more distributed
programs running together under the DPS in Fig. 9. This anal-
ysis will help us to assign programs into different processing
elements. An intended programs assignment to achieve higher
reliability can be validated through this analysis.

Fig. 12 presents the reliability of one or more copies of
the program 1 running together starting from different sites.
The resulting reliability is under the DPS graph in Fig 9.
This analysis will help us to make sure if the program under
execution has reached the required reliability.

Fig. 13 presents the DPRl under the choices of different
user sites. This analysis will help users to choose a better site
to execute a certain program.

C. The Correctness and Time Complexity of the Algorithm
Theorem I : Given a graph G = { N , E} where N =

{x1,52, .. . ,x,} is a set of nodes, and E = (L1, L z , . . . , Ln}
is a set of links. Let L = { L1, L2,. , Lm-l} E E be a set of
links representing a spanning tree of G, then the probability
space of the graph G can be expressed as the following disjoint
terms.

Pr(G) = ~ 1 ~ 2 . . -pm-1Pr(G1) + qiPr(G2)
+ plq2Pr(G3) + * . . + ~ 1 ~ 2 . * .pm-zqm-1Pr(Gm) (1)

where pi denotes the probability that L; is working, q;
denotes the probability that L, is failure, GI denotes G with
L1, L2, . . , L,-l is working. G2 denotes G with L1 is failure.
G3 denotes G with L1 is working and L2 is failure, . . . G,
denotes G with L1, L 2 , . - - , Lm-2 is working and L,-1 is
failure.

Proof: By factoring theorem (or conditional probability).
with the results in [12] and [13].

Example 2: Considering the DPS graph in Fig. S(a), we will
use the FST-SPR reliability algorithm to compute the DPR3.
The splitting subgraphs generated by the FST-SPR reliability
algorithm is illustrated in Fig. 8(b).

Pr(G) = qiPr(GIFi) + p iPr (G(E) = qiPr(Gi) + piPr(Gi)

where Fi denotes the event that Li is failure, F, denotes the
event that Li is working, G, denotes G with Li is failure, GI
denotes G with Li is working.

148 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

- : link of spanning wee

.$.
LS = *****
NC = 00000
ST = 1*1*1
LSP= 1*1*1

0

O O P

NC = 1OOM) NC = 10100
ST = *****
LSP = 1*1*0

NC = 00000
ST = *111*
LSP = 011 1*

ST = *****
LSP = l*O**

/@\
0,

0 0

Ls =oooo*
NC =oOOMl
ST = ****I
LsP =00001

I
0

0 0
0

1s =ooooo
NC =WOW

Fail

0
LS =00010

Ls =oo***
NC =OW00

NC =00010 yr = * t i l *
Fail LSP = 001 I’

/ \ / \

LS =OW** LS =0010*
NC = 00000
ST = * * * I 1 ST =**l*l

NC = 00100

LSP = 0001 L I S P = 00101

I I

=0100* Ls =01010
NC =01000 NC =01010
ST = *l**l Fail

I S P =01001

0
@ o g , , b 0

LS =oOlW Ls =01000

Fail Fail
NC =00100 NC =01000

Fig. 7. The splitting snapshot of the original graph.

If we choose L1 be the first factor, then If we repeat the same action, then Pr (Gh- l) can be
expressed as

Pr(G) = qlPr(G2) + plPr(G/,) .
Pr(GL-l) = q,-lPr(Gm) + prn-lF’r(GL)

Obviously, Pr(Gh) can be expressed in the same way, thus
we choose La be the second factor, then

where G, denotes G h P l with L,-1 is failure, GL denotes
GL-l with L,-1 is working.

CHEN AND HUANG: RELIABILITY ANALYSIS OF DISTRIBUTED SYSTEMS

X

PRGZ: P1

149

PRGI: F2

X
1.3

FAF3

3.4

PRG3: P3

3

PRGl = I p2 1
PRG2 = 1 PI 1
PRG3 = [P3 1
PRG4 = (P2 1

- : Unk of rpannlng lree

11 CM be wrler reduced
xI,2and x1.3 are series reduced Into x2.3' 1

,s = *....
NC = 00000

ST =11**1 v 011.1 v '01.1

LSP = 11-1 v 011.1 v *01*1 x3 Is merged Inlo 12
x3.4 I S CUI

x2*3-* IS>

40
Ls = 11-0 " 011.0 v *01*0

%
1 NC = 00100

ST E ***1*

d
LSP 11-10 v w110 v 01110

x, Is a degree.2 reduclble node
x2.4 M d x3.4 are degree-2
reduced Into X Z , ~ '

q 4 ia cut 1
0
0

Ls = 11.00 v OllOO v *0100

8 ~ 2 . 4 . = x2-4 n x3.4

x2.4'

Ls = 0.0- v 100..
NC = 00000
ST = ***I1
LSP = 0'011 " 10011 NC I 00100

Fall X2,4' I s CUL I
0

0
Ls E 0.001 v 1000'
NC = 00000

Fall

@)

Fig. 8 (a) An example of DPS. (b) The splitting snapshot of example 2.

150 lEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

f plp2p3q4Pr(G5) + ‘ ‘ ’ + P1P2 * ’ ‘pm-2qm-lPr(Gm)
x

2
X

+ PlP2. . % - l P 4 G 6) (2)

where G L denotes G with L1, L2, e . . , Lm-l is working, G2
denotes G with L1 is failure, G3 denotes G with L1 is working
and L2 is failure, . . . Gm denotes G with L1, L2, . ’ , Lm-2
is working, and L,-1 is failure. Let G1 (in equation 1) = G L
[in (2)], then (1) = (2). Thus, Theorem 1 is proved. Q.E.D.

Proof: To prove FST reliability algorithm correct, we
transfer this problem into the one shown in Theorem 1. The

Theorem 2: The FST reliability algorithm is correct.

3 x 5

PRGl = (p i 1
PRG2 = [p4)
PRG3 = [~ 2 . ~ 3) FN2 = F2,F4.F6
PRG4 = (~ 2 . ~ 3)
PRG5 = (p4 I
PRG6 = [pl 1

F N l = (Fl,FZ,F3)

FN3 FlV4 = = ((F 1 m m Fl.FZ.F4,F6)

novelty of the FST reliability algorithm lies in its graph cutting
method. The cutting technique works exactly the same way as

Fii 5 I Fig
Fi: 1 / z;F;

the enumeration of all disjoint terms in Theorem 1. Recalling F i z 1 / E;;: 1
the probability subgraphs in Fig. 2, the original graph is
partitioned into four probability subgraphs A, B, C, and D
by the cutting technique. By analogizing these probability
subgraphs to the terms in Theorem 1, we found that the original
Probability graph represents Pr(G); subgraph A represents
P I , ~ P ~ , ~ P ~ , ~ P I (G A) ; subgraph represents q i , 2 P r (G ~) ; sub-
graph c represents P I , ~ Q ~ , ~ P ~ (G c) ; subgraph D represents
P1,2P2,3q3,4Pr(GD). More precisely,

Fig. 9. A DPS with six processing elements.

no data files required for executing the distributed program,
and each degree-2 reduction occurs when a graph has a node
with node degree=2 and this node is not a leaf node of any
MFST’s. None of these cases has violated the disjoint property
and FST definition. Thus, the’ FST-SPR reliability algorithm

P ~ (L S G) = P ~ L S P A) + P ~ (L S B) +Pr(LSc) +Pr(LSD) is also correct. Q.E.D.
Theorem 4: The FST and FST-SPR reliability algorithms

guarantee no replicated FST’s to be generated during the
reliability evaluation.

Proof: Suppose there are two or more replicated trees
generated by the FST or FST-SPR reliability algorithm, then
both FST and FST-SPR algorithms will generate nondisjoint
probability subgraphs. This is contradiction with Theorem 1
which generates the disjoint probability space of each term.
Thus, the FST and FST-SPR algorithm guarantee no replicated
FST’s to be generated during the reliability eva1uation.Q.E.D.

Unlike the time complexity analysis in the K-graph prob-
lem, which is statically dependent on the given k-terminal

= Pr(1 * I * I) + Pr(O * * * *) + Pr(1 * O * *)
+ Pr(1 * 1 * 0)

= P1,2P2,3P3,4Pr(Ga) + ql,2Pr(Gb)

+ P1,2q2,3Pr(Gc) + P1,2P2,3q3,4Pr(Gd)
= Pr(G).

The probability of these subgraphs can be computed recur-
sively based on the graph cutting technique again to obtain the
probability of its subgraphs. The FST reliability algorithm uses
such cutting technique to compute the reliability of any size
and any data distribution DPS. Thus, generalized terms will be

Pr(LSG) = Pr(LSP1) + Pr(LS2) + +Pr(LS3). . . +
Pr(LSn)

= P1,2P1,3p2,3.. .Prn,nPr(Gl) + q1,2Pr(G2)
f q1,2Pr(G2)P1,2q1,3Pr(G3)

+ ’ ’ ‘ + P1,2P1,3P2,3 ‘ ’ “?m,nPr(Gn)
= Pr(G).

By such analogous, we have successfully transferred the
FST reliability algorithm into the problem in Theorem 1. Since
Theorem 1 is correct, therefore, Theorem 2 is also correct.
Q.E.D.

Theorem 3: The FST-SPR reliability algorithm is correct.
Proof: We have shown the correctness of the FST relia-

bility algorithm. What we need to show is the correctness of
nodes merged, series, parallel, and degree-2 reductions. These
reduction techniques are true intuitively. Since each nodes
merged occurs when a particular link in the graph cannot
be cut in the rest of its subgraphs generation, each parallel
reduction occurs when a graph with two or more links are
connected between two nodes, each series reduction occurs
when a graph has a node with node degree = 2 contains

connection, the time complexity of distributed program relia-
bility problem is dynamically bound to the data files required
for each distributed program. The time complexity of the
algorithms presented in [12]-[14], in worst case, can generate
as many as (n - l)(e-l) intermediate trees, where TI denotes
number of nodes and e is the maximum in-degree of a node in
the graph. However, in practical condition, such case never
occurs since once an FST is found the tree expansion is
stopped. The proposed FST algorithm uses the graph cutting
technique with incorporated series and parallel reduction to
speed the FST generation. The time complexity is quite
difficult to quantify since the number of links and nodes
may be reduced or merged during the evaluation process.
However, by common reasoning, the complexity should be
less than that of the algorithms presented in [12]-[14]. One
of the good ways to compare the proposed FST algorithm
with existing algorithms [12]-[14] will be based on the
intermediate trees (or subgraphs) generated during the whole
reliability evaluation process. In this way, one can tell how
much memory space and time unit required for their algorithms
to run the distributed program. We will present some such
comparison results in Section IV-D.

CHEN AND HUANG: RELIABILITY ANALYSIS OF DISTRIBUTED SYSTEMS 151

reliability

reliability

reliability of links

Fig. 10. Reliability of each DPR.

A

0

A

U
0

DPRl

DPRP

DPR3

DPR4

P1 &P2

Pl&P2&P3

p1 &p2&p3&p4

reliability of links

Fig. 11 Reliability of two or more programs running together.

D. Algorithms Comparison

Unlike Kumar’s algorithm [12], [13] required two passes
to formulate the reliability of the DPS, i.e., to generate all
MFST’s first and then use reliability analysis program such
as SYREL [ll] to compute the reliability DPR and DSR,
our algorithm requires only one pass to generate the FST’s
and compute the reliability. Kumar’s algorithm [12], [13]
has potential to generate a lot of replicated MFST’s during
the MFST’s generating process. Thus, it has to pay extra
effort to remove the replicated trees. Our algorithm guarantees
no replicated FST’s to be generated during the subgraphs
generating process. Fig. 14 presents the replicated FST’s
generated while computing the DPRl in the DPS in Fig. 8
by using Kumar 86’s algorithm.

Although the algorithm presented in [14] also uses one pass
to generate FST (by matrix representation) and compute the
reliability, it only addresses a single distributed program issue.
For problem statements such as 2, 3, and 4 listed in Section II-
C, their algorithm cannot solve such problems. In general, the
difference between the FST algorithm and existing algorithms
[121 -[141 lies in that existing algorithms use the concept of
tree growing while the FST algorithm uses the concept of
graph cutting.

Since the time and space required of these algorithms are
bound by the number of subgraphs (or trees) generated during
the FST generating process, we present some sampling DPS
graphs for comparison.

reliability

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

reliability of links

* X l

0 ~ 1 . ~ 6

-x- XI ~ 2 . ~ 6 or
xl.x2,x4.x6 or
x i ,~2,~3,x4.x6 or
xl .x2.x3.x4.x5.~6

Fig. 12. DPRl with several copies of distributed program one.

reliability

I
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

n X 2 01 X3 01 X4 OT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I
reliabili~y of links

Fig. 13 The DPRl under different user sites

Table I presents the best case of our algorithm. It should
be noted that the current algorithms in [Kumar 86, 881 cannot
compute the reliability of a distributed program with no data
files in the distributed networks. Results in Table I are based on
the modification of their algorithms to take care such problem.
Table 11, 111, and IV show the cases for the reliability analysis
of programs 1, 2, and 3 respectively. The size of the graphs
(or trees) is measured by the number of links.

For the actual execution time comparison, we present the
DPR, (i = 1,2,3,4) analysis based on the IBM RISC
System/6000 under single user environment to collect exe-
cution time. All four algorithms are structured to have the
same I/O activities to insure the fairness of the comparison.
These four programs are listed in the Appendix in [19]. It is
clear that the FST-SPR algorithm has the best performance
while Kumar 86’s algorithm is the worst one. This result
justifies that the tedious and time consumming procedures to
check replicated trees and to remove them from the TRY-LIST
dominate the whole computation time. The computation time
(in microseconds) of the DPR, are listed in Table V.

Overall speaking, the FST algorithm has the following
advantages compared that with existing algorithms.

1) The FST algorithm generates less subgraphs and thus
saves the computation time and space. Unlike Kumar’s
algorithm [12], [13] which has potential to generate
replicated FST’s which requires a tedious checking
process, our algorithm guarantees no replicated FST’s
to be generated during the subgraphs generation.

2) With the incorporation of nodes merged, series, degree-
2, and parallel reduction methods into the FST relia-

152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 192

F S T - S P R 1
Kumar 86
Kumar 88

TABLE I
SUBGRAPHS GENERATED FOR COMPUTING D P k

Size 1 1 4 1 1 3 1 1 2 1 1 1 1 1 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 l I O I T o t a l
FST I 1 l o l o l o l o l o l o l o l o l o l o l o l o l o l o l 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1984 2206 1144 396 112 32 8 2 1 5885
0 0 0 0 0 0 640 828 499 206 67 22 7 2 1 2272

FST-SPR
Kumar 86
Kumar 88

TABLE I1
SUBGRAPHS GENERATED FOR COMPUTING DPRl

1 0 0 0 1 1 2 2 5 9 10 15 15 18 109 188
0 0 0 0 0 0 1260 2844 2092 884 284 80 20 4 1 7469
0 0 0 0 0 0 321 863 748 373 139 46 14 4 1 2509

TABLE 111
SUBGRAPHS GENERATED FOR COMPUTING DPR2

Size I 14 I 1 3 I 1 2 I l l I 1 0 I 9 I 8 I 7 I 6 1 5 I 4 1 3 1 2 1 1 I O ITotal
FST I 1 I 8 I 33 I 96 I 232 I 451 I 651 I 646 I 308 I 52 I 0 I 0 I 0 1 0 I 0 I 2478

TABLE IV
SUBGRAPHS GENERATED FOR COMPUTING DPR3

bility algorithm, our reliability evaluation algorithm for
distributed program is much faster and requires less
memory space.

3) The FST reliability algorithm addresses some distributed
program related problems which were not addressed by
some other techniques.

4) The FST Reliability evaluation algorithm is simple and
consistent through a special union operation on all
vectors LSP representing the probability space of each
FST. Our algorithm is a unified approach for both
generating FST’s and computing the reliability of the
DPS.

Fig. 16 shows a different DPS configuration for more
comparisons and the results are listed in Table VI.

V. CONCLUSION

Distributed Processing system provides cost-effective ways
for improving computer system’s performance such as through-
put, fault-tolerance, reliability, and so on. The reliability
analysis of the DPS becomes an important issue. Traditional
approaches for the reliability analysis of computer networks
may not be directly applicable for the DPS for that the effects

of redundant data files and programs are not captured in these
methods. To overcome these limitations, new method should
be proposed. In this paper, we present a unified algorithm
to generate FST’s and to compute the reliability of the DPS.
To speed up the reliability evaluation, nodes merged, series,
degree-2, and parallel reduction techniques are incorporated
into the algorithm.

The algorithm presented in this paper is based on the
concept of graph cutting to generate FST’s. The reliability
computation is simple and consistent through a special union
operation on all vectors LSP representing the probability space
of each FST. The algorithm guarantees no replicated FST’s to
be generated. The proposed algorithm outperforms existing
algorithms in terms of less time and space requirement. This
can be evidenced from the various comparisons shown in
Section IV-D. It should be mentioned that the best case
performance of Kumar’s algorithms is that all the data files
required for the program to be executed are collided at one
same node that also contains the executed program. In fact,
this case is not like to happen in the distributed process-
ing system which usually evenly distributed the available
resources @rograms,data files). Several DPS related problems
which are not addressed by other algorithms are studied here

CHEN AND HUANG RELIABILITY ANALYSIS OF DISTRIBUTED SYSTEMS 153

FST
FST SPR

* R e p l i E d

A - d l
E-dZ-d4
C-d3
D-d5
E-da

DPRl DPR2 DPR3 DPR4
2200000 148oooO 209oooO 0.5

14000 15oooO 5 m 0.5

P - d10
0 - d 7
H - d9

x

5

*d3 =+-

Fig. 14. The replicated FST’s generated by Kumar’s algorithm.

x4

x3 x, xs
FNl = (FZ,F3,FS,F7,FS,F9)
FN2 = (FI,F2,F3,F6,F7,FS)
FN3 = (F3,F4,F7,FS)
FN4 = (F10)

Fig. 15. A complex and large DPS example.

TABLE V
THE COMPUTATION TIME (IN MICROSECONDS) OF EACH DPR, (i = 1 , 2 , 3 , 4)

FA4:F

W W
x3 x5

FNl = (FI,F2,F3,F4,F5,F6,F7)

Fig. 16. A DPS with different configuration

TABLE VI
SUBGRAPHS GENERATED FOR COMPUTING DPRl IN FIG. 16

Kumar86 1 I
Kumar88 I 0 I 0 I 1 6 I 2 4 I 2 5 I 2 0 I 1 0 I 4 I 1 I

I 0 I 0 I 48 I 68 I 64 I 40 1 16 I 4 I 241
100

I Kumar 86 I 453oooO I 486oooO I 291oooO I 3180000 I
Kumar88 I 340000] 31oooO I 23oooO 1 25oooO

using the proposed techniques. These analyses allow us to
validate if the reliability performance of an existing DPS meets
the required reliability performance for executing a set of
distributed programs.

REFERENCES

[l] K.K. Aggarwal and S. Rai, “Reliability evaluation in computer-
communication networks,” IEEE Trans Reliability, vol. R-30, pp. 32-35,
Apr. 1981.

[2] A. Aggarwal and R.E. Barlow, “A survey of network reliability and
domination theory,” Oper. Res., vol. 32, no. 3, May-June 1984.

[3] T. C. K. Chou and J. A. Abraham “Load redistribution under failure in
distributed systems,” IEEE Trans. Comput., vol. C-32, pp. 799-808,
Sept. 1983.

[4] D. W. Davies, E. Holler, E. D. Jensen, S. R. Kimbleton, B. W. Lampson,
G. Lelann, K. J. Thurber, and R. W. Watson, “Distributed systems
architecture and implementation,” in LectureNofes in Computer Science,
vol. 105.

[SI P. Enslow, “What is a distributed data processing system,” IEEE
Comput. Mag., vol. 11, Jan. 1978.

[6] L. Fratta and U. G. Montanari, “Synthesis of available networks,” IEEE
Trans. Reliability, vol. R-25, no. 2, pp. 81-86, June 1976.

[7] -, “A recursive method based on case analysis for computing
network terminal reliability,” IEEE. Trans. Commun., vol. COM-26, pp.
1156-1177, Aug. 1978.

[8] J. Garcia-Molina, “Reliability issues for fully replicated distributed
database,” IEEE Compuf. Mag., vol. 16, pp. 34-42, Sept. 1982.

[9] A. P. Grnarov and M. Gerla, “Multiterminal reliability analysis of
distributed processing system,” in Proc. I981 Inf. Con$ Parallel Pro-
cessing, Aug. 1981, pp. 79-86.

[lo] E. Hansler, “A fast recursive algorithm to calculate the reliability of a
communication network,” IEEE Trans. Commun., vol. COM-20, June
1972.

[l l] S. Hariri, C. S. Raghavendra, and V. K. Prasanna Kumar, “Reliability
measures for distributed processing systems,” in Proc. 6th Inf. Conf:
Distributed Compuf. Syst., May 1986, pp. 564-571.

[12] K. P. Kumar, S. Hariri, and C. S. Raghavendra, “Distributed program
reliability analysis, “ IEEE Trans. Sofrware Eng., pp. 2-50 Jan. 1986

[I31 C. S. Raghavendra, K. P. Kumar, and S. Hariri, “Reliability analysis in
distributed systems” IEEE Trans. Compuf. vol. 37, pp. 352-358, May
1988.

[14] A. Kumar, S. Rai, and D.P. Agrawal, “On computer communication
network reliability under program execution constraints,” IEEEJ. Select.
Areas Commun., pp. 1393-1400, Oct., 1988.

[15] D. A. Rennels, “Distributed fault-tolerant computer systems,” IEEE
Cornput. Mag., vol. 13, pp. 5 5 4 5 , Mar. 1980.

1161 A. Satyanarayana and A. Prabhakar, “New topological formula and rapid
algorithm for reliability analysis of complex networks,” IEEE Conf.,

Berlin, Germany: Springer-Verlag, 1981.

154 IEEE TRANSACTIONS ON PARWEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

1978.
1171 A. Satyanarayana, “A unified formula for analysis of some network

reliability problems,” IEEE Trans. Reliability, vol. R-31, pp. 23-32,
Apr. 1982.

[18] J. A. Stankovic, “A perspective on distributed computer systems,” IEEE
Trans. Cornput., vol. C-33, pp. 1102-1115, Dec. 1984.

1191 D. J. Chen, “RFST A distributed system reliability analysis program,”
TR-91-004, Comput. Sci. and Inform. Eng. Dep., National Chiao Tung
Univ., 1991. Association.

Tien-Hsiang Huang received the B.S. and M.S.
degrees in computer science and information engi-
neering from the National Chiao Tung University,
Hsinchu, Taiwan, in 1989 and 1991, respectively.

His interests include reliability and performance
evaluation of distributed systems, development of
real-time systems, and object-oriented computing.

MI. Huang is a member of Chinese Open System

Deng-Jyi Chen (S’87-M’88) received the B.S. de-
gree in computer science from the Missouri state
University, Cape Girardeau, and the M.S. and Ph.D.
degrees in computer science from the University of
Texas, Arlington, in 1983, 1985, 1988, respectively.

He is an Associate Professor at the National Chiao
Tung University, Hsinchu, Taiwan. Prior to joining
the faculty of the National Chiao Tung University,
he was with the National Cheng Kung University,
Tainan, Taiwan, and the United Company, Fort
Worth, TX. His interests include object-oriented

computing (design methodology, programming language, and computer archi-
tecture), software reuse, reliability and performance evaluation of distributed
systems, computer networks, and fault-tolerant systems.

Dr. Chen is a member of the IEEE Computer Society and Chinese Open
System Association.

