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Knowledge-Guided Visual Perception of 3-D Human 
Gait from a Single Image Sequence 

Zen Chen and Hsi-Jian Lee 

Abstract-A computer vision method is presented to determine the 3- 
D spatial locations of joints or feature points of a human body from a 
film recording the human motion during walking. The proposed method 
first applies the geometric projection theory to obtain a set of feasible 
postures from a single image, then it makes use of the given dimensions 
of the human stick figure, physiological and motion-specific knowledge to 
constrain the feasible postures in both the single-frame analysis and the 
multi-frame analysis. Finally a unique gait interpretation is selected by 
an optimization algorithm. Computer simulations are used to illustrate 
the ideas presented. 

I. INTRODUCTION 
In the past a large amount of work has been devoted to problems 

of human locomotion, notably walking [1]-[3]. In the human gait 
analysis the entire body motion during walking is represented as a 
set of spatial trajectories of joints (or anatomic points) [4]-[7]. The 
mechanics of joint forces and moments is characterized by angular 
accelerations, velocities and displacements [2], [8]-[9]. Typical ap- 
plication fields of the gait analysis include the physical therapy of 
joint diseases, biomechanical simulations, kinesiological analysis and 
mobile robot design, etc. [2], [lo]-[ll].  

There are two major vision methods: stereo vision and monocular 
vision. In the stereo vision at least two views of the subject are 
simultaneously taken, then a triangulation method is applied to these 
views to compute the 3-D coordinates for those joints appearing 
in two views simultaneously [12]-[13]. On the other hand, the 
monocular vision can determine the 3-D motion and structure (unique 
up to a scaling factor) of the subject based on a number of consecutive 
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frames [ 141-[ 171. Both approaches have their own advantages and 
shortcomings [18]. 

In the human gait analysis, the stereo vision can determine the 
joint positions without using any a priori knowledge. Since the 
triangulation method completely relies on the two vectors defined 
by the viewpoints and projected points, any digitization error of 
projected points will lead to an inaccurate joint position. This is true 
especially when the two vectors are nearly parallel to each other. 
As a consequence, the obtained joint positions may not represent the 
legal (i.e., original) human body model. Furthermore, it is difficult 
to use any knowledge about the human model to refine the result in 
the stereo vision method. Therefore, for the well-constrained human 
body model, the stereo vision may not be suitable. 

As to the monocular vision, the method requires a sufficient number 
of joints on the subject to appear in consecutive frames. It is generally 
impossible to have so many points for human body segments such 
as arms and legs. Besides, only the structure, unique up to a scaling 
factor, can be obtained instead of the exact body position. In the 
field of the robot vision there are methods that can directly determine 
the 3-D locations of the subject, if the dimensions of the subject 
is known beforehand [ 191-[20]. However, in these methods some 
viewing conditions or object structure conditions are assumed; it is not 
very realistic in the human gait analysis. So far there have been only 
partial solutions to the visual interpretation problem of the general 
human motion data [17], [21]-[22]. 

Up to now only geometrical and topological models of a human 
body are employed in the gait interpretation which generally lead 
to nonunique joint position recovery from the film. Rashid [21] 
indicated that the object topology and world knowledge are required 
to help the interpretation. Herman [23] tried to obtain a meaningful 
description of a human body motion while playing baseball by 
using domain-dependent knowledge about the body model. O’Rourke 
and Badler [22] used constraints of the human body model such 
as distance constraints, joint angle limits, collision avoidance to 
refine the 3-D joint positions. In a previous study, we also used 
physiological and motion specific constraints to derive a small 
set of feasible body postures for a single frame [7]. Therefore, 
the application of various sources of  knowledge will reduce the 
joint position ambiguity and can lead to a small set of candidate 
solutions. 

It is not very meaningful to describe a human motion with only 
a single frame. Instead, the human motion is better described by a 
collection of consecutive frames as a whole. Hence, certain candidate 
solutions obtained in the single-frame analysis may be ruled out by 
checking the interframe compatibility or consistency pertinent to the 
motion analysis. 

In this study a computer vision method for interpreting the human 
motion during walking is presented. In Section I1 basic analyses for 
gait interpretations are described which lead to a set of possible 
interpretations. Then a computational model based on a graph search 
theory is formulated for finding a unique interpretation solution 
in Section 111. Algorithm A” with a proper evaluation function is 
proposed to find the solutions. Two sets of experimental data are 
used in the simulation. The algorithm and simulation results are 
given in Section IV. The results indicate that the algorithm has some 
minor defects. In Section V two modifications are made to Algorithm 
A’. After these changes, together with the aid of additional motion- 
specific knowledge, a final unique gait interpretation is reached. The 
simulation results show the goodness of the method. Section VI gives 
the conclusion. 
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Fig. 2. An interpretation tree for joint position determination. 
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Fig. 1.  A stick-figure human body model. 

11. BASIC ANALYSES FOR GAIT INTERPRETATIONS 

A.  Position Determination of a Jointed Body 

A human body is considered as a jointed object, consisting of a 
number of subparts: head, torso, hip, arms and legs. Each subpart is 
assumed to be rigid and is characterized by a set of feature points. A 
body model adopted here as well as in a previous study [7] is shown 
in Fig. 1. It contains 14 joints and 17 segments; the head above the 
neck is not shown. There are six or more feature points on the head: 
neck, nose, two eyes, two ears and chin, etc. Assume that the lengths 
of all (rigid) segments, plus the relative locations of the feature points 
on the head, are given beforehand. 

1) Single-Frame Analysis: The numbers of available feature points 
on subparts are different: six (or more) for the head, four for the 
torso, three for the hip, arms and legs. The possibility of using the 
geometrical projection theory to recover the subpart location depends 
on the number of feature points available. It is possible to find the 
relative location of a rigid part with respect to the camera coordinate 
system, if the rigid part contains six or more known feature points 
[24]. After the feature points of the head are determined, the possible 
locations of feature points on other subparts can be determined from 
joint to joint in a transitive manner [7]. It is shown that there are 
generally two possible solutions for the 3-D coordinates values of a 
feature point under the condition that the segment has a given length. 
The possible solutions of the feature points can be represented by an 
interpretation tree, as shown in Fig. 2. There are 2"-l or less possible 
body configurations or postures where n is the number of joints. 

2) Tree Pruning by Using World Knowledge: Not all of the 2"-' 
body configurations are possible in the real world. Various sources 
of knowledge can be used to prune the interpretation tree [7]. The 
physiological knowledge in the form of joint angle constraints, fixed 
distance constraints, and segment length constraints can be applied 
to eliminate a great number of infeasible solutions. In addition, the 
general walking-model constraints such as the following rules can be 
applied to further reduce the number of possible solutions: 

Rule 1: The two arms cannot be both in front of or behind the torso 
simultaneously. The same restriction also holds for the two legs. 

(frame 3) 

wnst) 

(frame 1) 
(frame 2) 

Fig. 3. The possible configurations of the right arm during swinging. 

Rule 2: The arm and the leg which are on the same side of the 
body cannot swing forward or backward at the same time. 

B. Motion Analysis Using Multiple Frames 

The solutions obtained for all single frames can be combined 
to determine whether or not they constitute a legal motion. It has 
been argued [25] that because of the passive viscoelastic and active 
chemicomechanical properties of muscle, the muscular movement 
during walking is constrained to proceed in a relatively smooth, 
continuous fashion. The relatively smooth, continuous motion also 
means a steady consumption of body energy at the joints (Le., without 
any abrupt change in joint torques). It is for this reason that a legal 
or normal walking means a relatively smooth, continuous motion. 

In Fig. 3 we give an example to show how to use the multi-frame 
analysis to remove some illegal solutions obtained in the single-frame 
analysis. Assume that the number of possible configurations of the 
right arm is two for frames 1 and 2, and one for frames 3 and 4. 
These four consecutive frames constitute a partial cycle of the right 
arm motion during walking, It can be seen that the relatively smooth 
angular motion of the lower arm from frame 3 to frame 4 indicates 
that the correct solutions for the right arm in frames 1 and 2 are those 
bent arms instead of the stretched ones. Thus, the unique solutions 
for frames 1 and 2 are obtained through the motion analysis. 

Thus the legal motion recorded in consecutive frames corresponds 
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to the correct transition path of the body configurations chosen from 
the frames. And a graph search framework can be used to describe 
the motion analysis that will be presented next. 

111. MOTION ANALYSIS BY GRAPH SEARCH 

A computational model for the motion analysis is needed. With 
this model, a relatively smooth, continuous trajectory of motion cor- 
responding to the given gait displacement data can be quantitatively 
defined. 

Let variable z, den2te one of the possible body configurations 
in frame i .  Also let A(z , )  denote the position vector of joint A 
A%(x,) denote the vector from joint A to joint B on a segment AB, 
all in body configuration z, . Assume the time interval between two 
consecutive frames is At. Then the relative translational velocity of 
the segment AB from body configuration z1 in frame i to another 
body configuration x,+1 in frame i + 1 is defined as: 

The relative angular velocity and acceleration of segment AB are 
also defined as 

- 4  

LS;iB(~,,z,+l) = AB x V;i~(z~,z,+1) (a cross product) 

and 

~;i~(xt.zt+i,~~+z) = 13m(xt+i,zt+z) - G;i~(zt,zt+i)l/At. 

The body movement is a process involving rather complicated 
human dynamics where the internal and external forces act on the 
skeleton [2].  Nevertheless, the walking motion consists of periodic 
gait cycles that can be viewed as the individual periodic motions of all 
body segments linked at joints. In fact, these body segments undergo 
rotational motions. The rotations of the legs with respect to the ground 
results in the body translation. To define each individual periodic 
angular motion of a body segment, the translational component of 
the body segment is decomposed and subtracted. 

A smooth, continuous body movement during walking is now 
considered as a collection of smooth, continuous angular motions 
of all body segments. In addition, a smooth angular motion of a 
body segment during walking indicates a nearly constant angular 
velocity, or equivalently, a nearly zero angular acceleration. Thus, to 
measure the smoothness of a walking motion during frames i ,  i + 1, 
and i + 2, we define an angular acceleration function associated with 
body configurations x z ,  z2+1, X , + Z  as: 

f*(xt,zt+1,x*+2) = E l ~ ; i B ( ~ * , ~ z + l r ~ ~ + 2 ) 1 ,  
- 
A B  

where the summation is taken over all body segments and the 
magnitudes of angular accelerations are used for simplicity. Next, 
the overall angular acceleration function defined over N frames is 
given as 

f ( z l , x2 ,  ' '  'zN) =fl(zI,Z2,Z3) + f Z Z 2 , 5 3 , z 4 )  

+ ...+ ~N-Z(ZN-Z,ZN-I,~N). 
Theoretically speaking, to find a smooth spatial trajectory from the 

given N frames of human motion data during walking is equivalent 
to finding a solution to f(sl,z2,. . . , ZN) with the smallest value 
(or, to be more realistic, with a nearly smallest value). 

The problem of finding the smallest value of f(x1,22,. . , ZN) 
can be formulated as a graph search problem. Here a multistage 
biframe transition graph similar to the graph used by Martelli [26] 
is defined below. 

T 

S 

Fig. 4. A multistage biframe transition graph. 

In Fig. 4 a multistage biframe graph for recovered body config- 
urations corresponding to a gait cycle of six consecutive frames is 
illustrated. A start node s is added at stage zero. It is the head of the 
biframe transition graph. The nodes at stage 1 correspond to the body 
configurations of frames 1 and 2, represented by the pair of variables 
z1 and x 2 .  The nodes at stage 2 correspond to the combinations 
of body configurations of frames 2 and 3, represented by the pair 
of variables z2 and 23. Since 2 2  and z3 interact with z1 through 
function f l  ( 2 1 ,  z2, Q), there will be an edge between the nodes at 
stage 1 and stage 2, if the values of variable x2 of the two stages are 
the same. The nodes and edges at subsequent stages are constructed 
in the same manner. 

IV. FINDING GAIT SOLUTIONS BY ALGORITHM A' 

A. Algorithm A' with an Evaluation Function 

Algorithm A* can be effective in finding the optimal solution to 
the graph search problem, if a suitable evaluation function is defined. 
The evaluation function consists of two functions g and h. The g(n) 
function associated with a node R is defined to be the estimated cost 
from the start node s to the node R. In our application, the g value 
of a biframe node (z2,z,+1) is given by 

Yl(zl,zz) = 0 

and 

gt(xt,x,+l) = gr--l(xp--lrzt) + f2--l(zt.I--l,xl,~,+1) f o r i  2 2. 

After the recursive substitution, the function g can be expressed as 

gt ( 2 ~ 3  zt+l) = fl(z1722 , z3) + fi (z2,23 9 z4) 

+ .  . * + ft-l(Zt-1, zt,zt+1). 
It is the sum of acceleration functions along the transition path from 
the start node to node (zZ,zl+l). 

On the other hand, the value of the heuristic function h(n)  is 
defined to be the estimated cost from node n to a goal node. In this 
study, the h(zt,z1+1) value at node (z2,z,+1) is defined as 

h ( ~ ,  ~ + 1 )  = min[f2(z,, G+I, zZ+2)1 
Z%+2 

N - 2  

For the h function defined previously, it can be easily shown 
that the h function satisfies the admissible constraint, that is, 
h(z , ,  z;+I) 5 h*(~i, z~+I), where h* is the optimal h value. Also, 
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TABLE I 
OPTIMAL TRANSITION PATHS FOUW BY ALGORITHM A' 

A-FOR THE FIRST IMAGE StQUENCt Posl 
Starting-frame, Optimal Transition 
Ending-frame, Number of Path Specified by 

Parameter Max Number of Nodes Total Body Conf 
No Transitions Expanded Co\t in Each Frdme 

209 1871 64 (6,6,2,2,2,1,1,9,1) 

2 (1,W 84 1871 64 (6,6,2.2,2.1,1,9,1) 
1 ( 1 3 3  

B-FOR THt SECOND IMAGE S t Q L E U C t  P o s 2  

Starting-frame, Optimal Transition 
Ending-frame, Number of Path Specified by 

Parameter Max Number of Nodes Total Body Conf. 
No. Transitions Expanded Cost in Each Frame 

1 (1 ,W) 121 3307.1 (4.13.4,4.3,1S,S.',3,3,3,3,6,6,13,6,~,S) 
2 (1.18.8) 70 31 18.2 /4,13,4.4,3,33,7.2,3,3,3,3.f~.6,7.6.6.S) 

the 11 function satisfies the condition of monotone restriction[27]. That 
is, for every node (.vi+, . .r,+2 j that is a successor of node ( J , .  . I , , +  I ), 

h ( . r L . . r , + l )  - h(.r,+l.,rL+2) 5 f,(.r,..r<+l..r,+l). 
With this property, we have g ( n )  = { j * ( ~ t  j ,  the optimal value 
at node r r ,  for any expanded node 1 1 .  Namely, the node expansion 
process will not have any parentage redirection, so it will be more 
efficient. 

In the application of algorithm A*,  the available number of node 
expansions due to the possible transitions between two consecutive 
frames may be quite large. To reduce the memory size and computa- 
tional time required, it is a common practice to restrict the maximum 
number of transitions between two consecutive frames to a fixed 
number, say, k .  Here the first k smallest sums of relative angular 
displacements between all possible pairings of body configurations 
of two consecutive frames are found. These k transitions are then 
used in the node expansion process of algorithm A*.  

B. Simulation Results and Discussions 

Two experiments are conducted to test the goodness of algorithm 
A*. Each experiment uses a single input image sequence. The first 
experiment uses an image sequence, IMGI, that is the perspective 
views of 3D human walking data (generated initially by Cutting[ZX]), 
taken by a camera located in front of the walking man. And the second 
experiment used another input image sequence, IMG2, that is taken 
with the camera located in front, but to the right of the walking man. 
In each experiment, the single-frame analysis [7] is performed first 
to obtain the set of recovered body configurations from each frame 
of the input image data. Denote the collection of recovered body 
configurations in the sequence of all frames as POSl for the first 
experiment and POS2 for the second experiment. 

In each experiment two different sets of control parameters are used 
that specify the starting and ending frames of the input image data 
used and the maximum number of allowable transitions, 1.. considered 
in the graph search process. Table I gives the optimal transition 
paths found by algorithm A* for the two experiments with the given 
different sets of control parameters. From this table the obtained 
optimal transition paths with the two different control parameters are 
the same for the sequence POSl and quite similar for the sequence 
POS2. 

Now we compare the results with the actual input image data. 
Fig. 5 shows the projected view of the body configurations of the 
given input image sequence IMGl and that of the optimal transition 
path found by Algorithm A* from the given input data, all in the 
camera-centered :,.,y,. coordinate system with the :, axis being the 

Fig. S. The projected views of the body configurations in the 3, y,. cam- 
era-centered coordinate system corresponding to (a) the input image sequence 
IMGI.  and (b)  the optimal Iran4tion path found by algorithm A* for the data 
\et POSI(I. 9. 5 ) .  

optical axis. It can be seen that these two sets of body configurations 
are remarkably in agreement. Table I I  gives the mean and variance 
values of the joint position errors betwecn the recovered positions 
and actual positions in the 3D space over all frames. These values 
are rather small for all joints except the joints of the right lower arm 
and of the left lower leg in frame 7. This partizl disagreement will 
be overcome in a later section by the application of motion-specific 
knowledge. 

One the other hand, the recovered body configurations in the 
second experiment POS2( I ,  18,5) arc almost correct except that both 
arms swing in a direction not parallel to the walking direction. Figs. 6 
and 7 show thc projected view of the body configurations of the given 
input image sequence IMG2 and that of the optimal transition path 
found by algorithm A'.  It can be seen that in  Fig. 7 either arm swings 
in a direction different from that shown in Fig. 6. Table Il l  shows 
that the mean and variance values of the two wrist joint positions 
are relatively large. 

The possible reasons for the previous disagreements at a few joints 
in the two experiments include the following. 

I )  The true solution, as will he seen later, may have a total cost 
slightly larger than that of the optimal transition path, so the 
optimal solution is theoretically the best one, but it may only 
be close to the true solution. 

2) The allowable transitions in the graph search process are 
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TABLE 11 

POSITION ERRORS FOR THE TRANSITION PATH 

DATA SET POSl (1, 9, 5) 

Neck 0.09 0.00 

Left shoulder 1.49 0.81 
Right elbow 2.38 9.73 
Left elbow 2.07 2.15 
Right wrist 3.03 13.86 
Left wrist 2.57 3.12 
Pelvis 0.76 0.28 
Right hip 1.68 2.46 
Left hip 1.48 1.38 
Right knee 1.32 1.75 
Left knee 1.95 5.65 

Left ankle 1.86 5.01 

THE M ~ A N  AND VARIANCE VALUES OF ALL JOINT 

FOUND BY ALGORITHM A' FOR THE 

Mean Variance 

Right shoulder 1.20 0.80 

Right ankle 1.16 2.13 

Fig. 6. The projected views of the body configurations of the input image 
sequence IMG2. 

restricted to those with the first li smallest sums of relative 
angular displacements. It will be seen later that the correct 
transitions between frames may not always be among the 
assumed first li transitions. 

In the next section we shall modify algorithm A' so that the 
previous two drawbacks can be overcome in order to generate the 
true solution. 

V. SOLUTION REFINEMENT WITH KNOWLEDGE 

A.  Modifications of Algorithm A* 

In order to obtain more than one solution path, one modification 
of algorithm A* is to abandon the restriction of a single parentage 
of a node, since multiple solution paths may meet at a node. To do 
so, during the node expansion process the entire path obtained up to 
a node will be recorded at the node instead of just its most recent 
parentage. Therefore, if there are two or more paths leading to a node, 
there will be the same number of path lists recorded at the node. 
The other aspects of algorithm A' remain the same, although some 
possible simplifications can be made, if desired. The total number of 
solution paths to be found is based on the maximum deviation from 
an optimal value that an acceptable solution path can have. 

We also make another modification about the frame transitions used 
in the algorithm. Recall that there are generally two possible solutions 

TABLE 111 
THE MEAN AND VARIANCE VALUES OF ALL JOINT 

POSITION ERRORS FOR THE TRANSITION PATH 
FOUND BY ALGORITHM A* FOR THE 

DATA SET POS2 (1, 18, 5) 
Mean Variance 

Neck 
Right shoulder 
Left shoulder 
Right elbow 
Left elbow 
Right wrist 
Left wrist 
Pelvis 
Right hip 
Left hip 
Right knee 
Left knee 
Right ankle 
Left ankle 

0.53 0.28 
0.48 0.28 
0.39 0. I6 
1 .U7 3.33 
0.55 0.40 
12.62 47.92 
9.69 44.55 
1.33 1.33 
1.62 I .62 
1.25 1.25 
1.84 4.29 
0.95 0.95 
2.39 11.51 
1.38 1.49 

Fig. 7. The projected views of the optimal transition path found by algorithm 
A' for the data set POS2(1, 18, 5) .  

for each joint of a body configuration. These two solutions are labeled 
as F (for the one close to the camera) and R (for the one farther 
away from the camera). In case that there is only one degenerate 
solution, it will be labeled as D (for the degenerate solution). The 
joint transition will be determined based on the distance between 
the F and R candidate solutions, called the F R  distance. The new 
possible joint transitions in the graph are given as follows. 

When the F R  distance of a joint is larger than a prespecified 
threshold, then the F I R  label of the joint must remain the same 
as that in the previous frame. 
When the F R  distance of a joint is less than the prespecified 
threshold, then the F I R  label of the joint of the next frame can 
be of either type. These conditions for joint transitions between 
two consecutive frames eliminate those transitions with a large 
change in the joint angular displacement. This is appropriate 
under the assumption of smooth walking. 

B. Solution Improvement by the Revised Algorithm A* 

We apply the revised algorithm A' to the same two input data sets. 
The results show great improvements. 

Table IV shows the first and the eighth optimal transition paths 
found by the application of the revised algorithm A* to the image data 
POSl with a control parameter set (1, 9, new) where new indicates 
the new rules for frame transition mentioned previously. Table V is 
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TABLE IV 
THE FIRST AND THE EIGHTH OPTIMAL TRANSITIONS PATHS FOUND BY 

THE REVISED ALGORITHM A* FOR THt DATA SET Pos1(1,9, new) 

(1,9,new) Total Cost Transition Path Specified by Body 
Configurations 

Y 

Path #1 1406.49 (22,22,12,22,21,2,77,12,4) 
Path #8 1462.59 (6,6,2,2,2,1,76,9,1) 

TABLE V 

FOR THE TRANSITION PATHS FOUND BY THE REVISED 
ALGORITHM A* FOR THE DATA SET POSI(1. 9, new) 

Path No. Path #1 Path #2 

THEMEAN AND VARIANCE VALUES OF ALL JOINT DISTAYCES 

Joint mean variance mean 
NCK 0.09 0.00 0.09 
RSH 1.20 0.80 1.20 
LSH 1.49 0.81 1.49 
REB 1.65 2.50 1.65 
LEB 2.07 2.1s 2.07 
RWR 2.15 3.92 2.15 
LW R 2.57 3.12 2.57 
PEL 0.76 0.28 0.76 
RHP 3.18 12.24 1.68 
LHP 3.91 18.26 1.48 
RKN 2.25 7.32 1.32 
LKN 3.24 12.97 1.13 
RAK 2.00 5.53 1.16 
LAK 3.11 11.86 1.09 

variance 
0.00 
0.80 
0.81 
2.50 
2.15 
3.92 
3.12 
0.28 
2.46 
1.38 
1.75 
0.80 
2.13 
0.73 

TABLE VI 
THE FIRST THRFE OPTIMAL TRANSITION PATHS FOUYD BY THE 

REVISED ALGORITHM A* FOR THE DATA SET POS2( I ,  18, new) 

Total 
Cost Configuration\ 

Transition Path Specified by Body (l,lX,new) 

Path #1 2960.76 (3,9,3,3,4,37,8,3,5,5,5,5,10.10,21,8,8,1) 
Path #2 2971.84 (3,9,3,3,4,37,8,3,5,5,5,5,10,10,23,9,9,3) 
Path #3 2973.04 (5,17,5,5,4,33,7,1,1, I , I  , I  ,2,2, I7,6,6,5) 

TABLE VI1 
THE MEAN AND VARIANCE VALUES OF ALL JOINT Posrrio~ 
ERRORS FOR THE TRANSITION PATHS FOUND BY THE REVISED 

ALGORITHM A' FOR THE DATA SET OF Pos2(1, 18, new) 

Path #I Path #2 Path #3 Path 
No. 

Joint mean variance variance variance mean variance 
NCK 0.53 0.28 0.53 0.28 0.53 0.28 
RSH 0.48 0.28 0.48 0.28 0.48 0.28 
LSH 0.39 0.16 0.39 0.16 0.39 0.16 
REB 0.488 0.14 0.48 0.14 0.48 0.14 
LEB 0.47 0.31 0.47 0.31 0.47 0.31 
RWR 0.60 0.38 0.60 0.38 11.21 46.33 
LWR 2.20 12.79 0.61 0.55 2.20 12.79 
PEL 0.82 1.33 0.82 1.33 0.82 1.33 
RHP 1.43 1.62 1.43 1.62 1.43 1.62 
LHP 1.37 1.25 1.37 1.25 1.37 1.25 
RKN 1.84 4.29 1.84 4.29 1.84 4.29 
LKN 1.43 0.95 1.43 0.95 1.43 0.95 
RAK 2.39 11.51 2.39 11.51 2.39 11.51 
LAK 1.38 1.49 1.38 1.49 1.38 1.49 

the list of the mean and variance values of all joint position errors 
for the transition paths found. In comparison with Table I ,  the new 
results obtained have the reduced total costs and the eighth optimal 
transition path has the smallest set of joint position errors. Later 
on, we shall show that this eighth path fulfills additional desirable 
motion properties. 

We also apply the revised algorithm A' to the second image 
sequence, POS2. Tables VI and VI1 give the first three optimal 
transition paths found and the mean and variance values of all joint 
position errors. The total costs are also reduced, when compared with 
the previous experiment. The second optimal transition path has the 
smallest set of joint position errors. 

C. Further Refinement by Additional Motion-Specific Knowledge 

The multiple transition paths found by the revised algorithm A- 
look quite similar to each other, and some are shown in Figs. 8 
and 9. To further refine these results we can apply more stringent 
motion-specific knowledge. Rules 3 through 5 of the walking-model 
constraint proposed in our previous study [7] are restated here: 

Rule 3: When both the shoulder joint and the elbow joint of either 
arm swing, they must swing in the forward or backward direction 
simultaneously. The same holds for the hip joint and the knee joint 
of either leg. 

Rule  4: The motion trajectory of either arm or leg is roughly on a 
plane which is generally parallel to the torso moving direction. 

Rule 5: At any time during walking, there is at most one knee 
having a flexion angle. Moreover, when there is a significant flexion 

(a) (b) 

Fig. 8. The projected views of the solution transition paths found by the 
revised algorithm A* for the data set POSI(1, 9, new). (a) The first transition 
path. and (b) the eighth transition. 

at one leg, then the other leg stands nearly vertically on the ground. 
The eighth transition path shown in Fig. 8(b) is checked against 

Rules 3 to 5 without failure. For the first transition path shown in Fig. 
8(a), it can be seen that the left hip violates Rule 3 in the first half of 
the sequence and that the right hip violates Rule 3 in the second half 
of the sequence. These observations are confirmed by the statistics 
of the mean and variance values of joint position errors. 

The second transition path shown in Fig. 9 corresponds to the 
correct motion in which the two arms swing in planes parallel to the 
walking direction. In the first and the third transition paths, we find 
that the left arm in the last four frames swings in a direction not 
parallel to the walking direction. In addition, in the third transition 
path, the right arm also violates Rule 4. 

Therefore, the application of additional motion specific knowledge 
provides more information to constrain the solution obtained from 
the multiple-frame analysis. In this way a final gait interpretation is 
possible to reach. 

VI. CONCLUSION 

We have presented a computer vision method for interpreting gait 
displacement data. First, we apply the geometrical projection theory 
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Fig. 9. The projected views of the second transition path found by the revised 
algorithm A’ for the data set POSZ(1. 18, new). 

to find possible postures in each single frame. The physiological 
knowledge can be used in the filtering process to eliminate infeasible 
candidates. The correct posture is one among remaining candidates. 
Then a motion analysis using multiple frames is called. The correct 
motion corresponds to a right transition path between the candidate 
postures in the frames, one from each frame. We use a graph search 
method, algorithm A*, to find the spatial trajectory. We modify 
algorithm A* to allow multiple optimal solution paths and define new 
possible frame transitions that satisfy certain conditions imposed by 
motion smoothness. 

The final set of solution paths obtained by the revised algorithm 
A* is interpreted with more stringent motion specific knowledge that 
serves to further constrain the solution domain. In this framework 
an ultimate gait interpretation is obtained. The experiments indicate 
the effectiveness of using this approach. However, world knowledge 
including both physiological and motion-specific knowledge may 
need a more thorough analysis in order to make the best use of 
it. We are currently considering to use this method to monitor or 
to aid the control of a multijoint mobile robot. Wc also consider to 
apply the same principle with different knowledge to other types of 
human motion. 
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